| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <memory> |
| |
| #include "api/audio_codecs/builtin_audio_decoder_factory.h" |
| #include "common_types.h" // NOLINT(build/include) |
| #include "modules/audio_coding/neteq/accelerate.h" |
| #include "modules/audio_coding/neteq/expand.h" |
| #include "modules/audio_coding/neteq/include/neteq.h" |
| #include "modules/audio_coding/neteq/mock/mock_buffer_level_filter.h" |
| #include "modules/audio_coding/neteq/mock/mock_decoder_database.h" |
| #include "modules/audio_coding/neteq/mock/mock_delay_manager.h" |
| #include "modules/audio_coding/neteq/mock/mock_delay_peak_detector.h" |
| #include "modules/audio_coding/neteq/mock/mock_dtmf_buffer.h" |
| #include "modules/audio_coding/neteq/mock/mock_dtmf_tone_generator.h" |
| #include "modules/audio_coding/neteq/mock/mock_packet_buffer.h" |
| #include "modules/audio_coding/neteq/mock/mock_red_payload_splitter.h" |
| #include "modules/audio_coding/neteq/neteq_impl.h" |
| #include "modules/audio_coding/neteq/preemptive_expand.h" |
| #include "modules/audio_coding/neteq/sync_buffer.h" |
| #include "modules/audio_coding/neteq/timestamp_scaler.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| #include "test/mock_audio_decoder.h" |
| #include "test/mock_audio_decoder_factory.h" |
| |
| using ::testing::AtLeast; |
| using ::testing::Return; |
| using ::testing::ReturnNull; |
| using ::testing::_; |
| using ::testing::SetArgPointee; |
| using ::testing::SetArrayArgument; |
| using ::testing::InSequence; |
| using ::testing::Invoke; |
| using ::testing::WithArg; |
| using ::testing::Pointee; |
| using ::testing::IsNull; |
| |
| namespace webrtc { |
| |
| // This function is called when inserting a packet list into the mock packet |
| // buffer. The purpose is to delete all inserted packets properly, to avoid |
| // memory leaks in the test. |
| int DeletePacketsAndReturnOk(PacketList* packet_list) { |
| packet_list->clear(); |
| return PacketBuffer::kOK; |
| } |
| |
| class NetEqImplTest : public ::testing::Test { |
| protected: |
| NetEqImplTest() { config_.sample_rate_hz = 8000; } |
| |
| void CreateInstance() { |
| NetEqImpl::Dependencies deps(config_, CreateBuiltinAudioDecoderFactory()); |
| |
| // Get a local pointer to NetEq's TickTimer object. |
| tick_timer_ = deps.tick_timer.get(); |
| |
| if (use_mock_buffer_level_filter_) { |
| std::unique_ptr<MockBufferLevelFilter> mock(new MockBufferLevelFilter); |
| mock_buffer_level_filter_ = mock.get(); |
| deps.buffer_level_filter = std::move(mock); |
| } |
| buffer_level_filter_ = deps.buffer_level_filter.get(); |
| |
| if (use_mock_decoder_database_) { |
| std::unique_ptr<MockDecoderDatabase> mock(new MockDecoderDatabase); |
| mock_decoder_database_ = mock.get(); |
| EXPECT_CALL(*mock_decoder_database_, GetActiveCngDecoder()) |
| .WillOnce(ReturnNull()); |
| deps.decoder_database = std::move(mock); |
| } |
| decoder_database_ = deps.decoder_database.get(); |
| |
| if (use_mock_delay_peak_detector_) { |
| std::unique_ptr<MockDelayPeakDetector> mock( |
| new MockDelayPeakDetector(tick_timer_)); |
| mock_delay_peak_detector_ = mock.get(); |
| EXPECT_CALL(*mock_delay_peak_detector_, Reset()).Times(1); |
| deps.delay_peak_detector = std::move(mock); |
| } |
| delay_peak_detector_ = deps.delay_peak_detector.get(); |
| |
| if (use_mock_delay_manager_) { |
| std::unique_ptr<MockDelayManager> mock(new MockDelayManager( |
| config_.max_packets_in_buffer, delay_peak_detector_, tick_timer_)); |
| mock_delay_manager_ = mock.get(); |
| EXPECT_CALL(*mock_delay_manager_, set_streaming_mode(false)).Times(1); |
| deps.delay_manager = std::move(mock); |
| } |
| delay_manager_ = deps.delay_manager.get(); |
| |
| if (use_mock_dtmf_buffer_) { |
| std::unique_ptr<MockDtmfBuffer> mock( |
| new MockDtmfBuffer(config_.sample_rate_hz)); |
| mock_dtmf_buffer_ = mock.get(); |
| deps.dtmf_buffer = std::move(mock); |
| } |
| dtmf_buffer_ = deps.dtmf_buffer.get(); |
| |
| if (use_mock_dtmf_tone_generator_) { |
| std::unique_ptr<MockDtmfToneGenerator> mock(new MockDtmfToneGenerator); |
| mock_dtmf_tone_generator_ = mock.get(); |
| deps.dtmf_tone_generator = std::move(mock); |
| } |
| dtmf_tone_generator_ = deps.dtmf_tone_generator.get(); |
| |
| if (use_mock_packet_buffer_) { |
| std::unique_ptr<MockPacketBuffer> mock( |
| new MockPacketBuffer(config_.max_packets_in_buffer, tick_timer_)); |
| mock_packet_buffer_ = mock.get(); |
| deps.packet_buffer = std::move(mock); |
| } |
| packet_buffer_ = deps.packet_buffer.get(); |
| |
| if (use_mock_payload_splitter_) { |
| std::unique_ptr<MockRedPayloadSplitter> mock(new MockRedPayloadSplitter); |
| mock_payload_splitter_ = mock.get(); |
| deps.red_payload_splitter = std::move(mock); |
| } |
| red_payload_splitter_ = deps.red_payload_splitter.get(); |
| |
| deps.timestamp_scaler = std::unique_ptr<TimestampScaler>( |
| new TimestampScaler(*deps.decoder_database.get())); |
| |
| neteq_.reset(new NetEqImpl(config_, std::move(deps))); |
| ASSERT_TRUE(neteq_ != NULL); |
| } |
| |
| void UseNoMocks() { |
| ASSERT_TRUE(neteq_ == NULL) << "Must call UseNoMocks before CreateInstance"; |
| use_mock_buffer_level_filter_ = false; |
| use_mock_decoder_database_ = false; |
| use_mock_delay_peak_detector_ = false; |
| use_mock_delay_manager_ = false; |
| use_mock_dtmf_buffer_ = false; |
| use_mock_dtmf_tone_generator_ = false; |
| use_mock_packet_buffer_ = false; |
| use_mock_payload_splitter_ = false; |
| } |
| |
| virtual ~NetEqImplTest() { |
| if (use_mock_buffer_level_filter_) { |
| EXPECT_CALL(*mock_buffer_level_filter_, Die()).Times(1); |
| } |
| if (use_mock_decoder_database_) { |
| EXPECT_CALL(*mock_decoder_database_, Die()).Times(1); |
| } |
| if (use_mock_delay_manager_) { |
| EXPECT_CALL(*mock_delay_manager_, Die()).Times(1); |
| } |
| if (use_mock_delay_peak_detector_) { |
| EXPECT_CALL(*mock_delay_peak_detector_, Die()).Times(1); |
| } |
| if (use_mock_dtmf_buffer_) { |
| EXPECT_CALL(*mock_dtmf_buffer_, Die()).Times(1); |
| } |
| if (use_mock_dtmf_tone_generator_) { |
| EXPECT_CALL(*mock_dtmf_tone_generator_, Die()).Times(1); |
| } |
| if (use_mock_packet_buffer_) { |
| EXPECT_CALL(*mock_packet_buffer_, Die()).Times(1); |
| } |
| } |
| |
| void TestDtmfPacket(NetEqDecoder decoder_type) { |
| const size_t kPayloadLength = 4; |
| const uint8_t kPayloadType = 110; |
| const uint32_t kReceiveTime = 17; |
| const int kSampleRateHz = 16000; |
| config_.sample_rate_hz = kSampleRateHz; |
| UseNoMocks(); |
| CreateInstance(); |
| // Event: 2, E bit, Volume: 17, Length: 4336. |
| uint8_t payload[kPayloadLength] = { 0x02, 0x80 + 0x11, 0x10, 0xF0 }; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterPayloadType( |
| decoder_type, "telephone-event", kPayloadType)); |
| |
| // Insert first packet. |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_FALSE(muted); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Verify first 64 samples of actual output. |
| const std::vector<int16_t> kOutput({ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1578, -2816, -3460, -3403, -2709, -1594, |
| -363, 671, 1269, 1328, 908, 202, -513, -964, -955, -431, 504, 1617, |
| 2602, 3164, 3101, 2364, 1073, -511, -2047, -3198, -3721, -3525, -2688, |
| -1440, -99, 1015, 1663, 1744, 1319, 588, -171, -680, -747, -315, 515, |
| 1512, 2378, 2828, 2674, 1877, 568, -986, -2446, -3482, -3864, -3516, |
| -2534, -1163 }); |
| ASSERT_GE(kMaxOutputSize, kOutput.size()); |
| EXPECT_TRUE(std::equal(kOutput.begin(), kOutput.end(), output.data())); |
| } |
| |
| std::unique_ptr<NetEqImpl> neteq_; |
| NetEq::Config config_; |
| TickTimer* tick_timer_ = nullptr; |
| MockBufferLevelFilter* mock_buffer_level_filter_ = nullptr; |
| BufferLevelFilter* buffer_level_filter_ = nullptr; |
| bool use_mock_buffer_level_filter_ = true; |
| MockDecoderDatabase* mock_decoder_database_ = nullptr; |
| DecoderDatabase* decoder_database_ = nullptr; |
| bool use_mock_decoder_database_ = true; |
| MockDelayPeakDetector* mock_delay_peak_detector_ = nullptr; |
| DelayPeakDetector* delay_peak_detector_ = nullptr; |
| bool use_mock_delay_peak_detector_ = true; |
| MockDelayManager* mock_delay_manager_ = nullptr; |
| DelayManager* delay_manager_ = nullptr; |
| bool use_mock_delay_manager_ = true; |
| MockDtmfBuffer* mock_dtmf_buffer_ = nullptr; |
| DtmfBuffer* dtmf_buffer_ = nullptr; |
| bool use_mock_dtmf_buffer_ = true; |
| MockDtmfToneGenerator* mock_dtmf_tone_generator_ = nullptr; |
| DtmfToneGenerator* dtmf_tone_generator_ = nullptr; |
| bool use_mock_dtmf_tone_generator_ = true; |
| MockPacketBuffer* mock_packet_buffer_ = nullptr; |
| PacketBuffer* packet_buffer_ = nullptr; |
| bool use_mock_packet_buffer_ = true; |
| MockRedPayloadSplitter* mock_payload_splitter_ = nullptr; |
| RedPayloadSplitter* red_payload_splitter_ = nullptr; |
| bool use_mock_payload_splitter_ = true; |
| }; |
| |
| |
| // This tests the interface class NetEq. |
| // TODO(hlundin): Move to separate file? |
| TEST(NetEq, CreateAndDestroy) { |
| NetEq::Config config; |
| NetEq* neteq = NetEq::Create(config, CreateBuiltinAudioDecoderFactory()); |
| delete neteq; |
| } |
| |
| TEST_F(NetEqImplTest, RegisterPayloadTypeNetEqDecoder) { |
| CreateInstance(); |
| uint8_t rtp_payload_type = 0; |
| NetEqDecoder codec_type = NetEqDecoder::kDecoderPCMu; |
| const std::string kCodecName = "Robert\'); DROP TABLE Students;"; |
| EXPECT_CALL(*mock_decoder_database_, |
| RegisterPayload(rtp_payload_type, codec_type, kCodecName)); |
| neteq_->RegisterPayloadType(codec_type, kCodecName, rtp_payload_type); |
| } |
| |
| TEST_F(NetEqImplTest, RegisterPayloadType) { |
| CreateInstance(); |
| constexpr int rtp_payload_type = 0; |
| const SdpAudioFormat format("pcmu", 8000, 1); |
| EXPECT_CALL(*mock_decoder_database_, |
| RegisterPayload(rtp_payload_type, format)); |
| neteq_->RegisterPayloadType(rtp_payload_type, format); |
| } |
| |
| TEST_F(NetEqImplTest, RemovePayloadType) { |
| CreateInstance(); |
| uint8_t rtp_payload_type = 0; |
| EXPECT_CALL(*mock_decoder_database_, Remove(rtp_payload_type)) |
| .WillOnce(Return(DecoderDatabase::kDecoderNotFound)); |
| // Check that kOK is returned when database returns kDecoderNotFound, because |
| // removing a payload type that was never registered is not an error. |
| EXPECT_EQ(NetEq::kOK, neteq_->RemovePayloadType(rtp_payload_type)); |
| } |
| |
| TEST_F(NetEqImplTest, RemoveAllPayloadTypes) { |
| CreateInstance(); |
| EXPECT_CALL(*mock_decoder_database_, RemoveAll()).WillOnce(Return()); |
| neteq_->RemoveAllPayloadTypes(); |
| } |
| |
| TEST_F(NetEqImplTest, InsertPacket) { |
| CreateInstance(); |
| const size_t kPayloadLength = 100; |
| const uint8_t kPayloadType = 0; |
| const uint16_t kFirstSequenceNumber = 0x1234; |
| const uint32_t kFirstTimestamp = 0x12345678; |
| const uint32_t kSsrc = 0x87654321; |
| const uint32_t kFirstReceiveTime = 17; |
| uint8_t payload[kPayloadLength] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = kFirstSequenceNumber; |
| rtp_header.timestamp = kFirstTimestamp; |
| rtp_header.ssrc = kSsrc; |
| Packet fake_packet; |
| fake_packet.payload_type = kPayloadType; |
| fake_packet.sequence_number = kFirstSequenceNumber; |
| fake_packet.timestamp = kFirstTimestamp; |
| |
| rtc::scoped_refptr<MockAudioDecoderFactory> mock_decoder_factory( |
| new rtc::RefCountedObject<MockAudioDecoderFactory>); |
| EXPECT_CALL(*mock_decoder_factory, MakeAudioDecoderMock(_, _, _)) |
| .WillOnce(Invoke([&](const SdpAudioFormat& format, |
| absl::optional<AudioCodecPairId> codec_pair_id, |
| std::unique_ptr<AudioDecoder>* dec) { |
| EXPECT_EQ("pcmu", format.name); |
| |
| std::unique_ptr<MockAudioDecoder> mock_decoder(new MockAudioDecoder); |
| EXPECT_CALL(*mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(*mock_decoder, SampleRateHz()).WillRepeatedly(Return(8000)); |
| // BWE update function called with first packet. |
| EXPECT_CALL(*mock_decoder, |
| IncomingPacket(_, kPayloadLength, kFirstSequenceNumber, |
| kFirstTimestamp, kFirstReceiveTime)); |
| // BWE update function called with second packet. |
| EXPECT_CALL( |
| *mock_decoder, |
| IncomingPacket(_, kPayloadLength, kFirstSequenceNumber + 1, |
| kFirstTimestamp + 160, kFirstReceiveTime + 155)); |
| EXPECT_CALL(*mock_decoder, Die()).Times(1); // Called when deleted. |
| |
| *dec = std::move(mock_decoder); |
| })); |
| DecoderDatabase::DecoderInfo info(NetEqDecoder::kDecoderPCMu, absl::nullopt, |
| mock_decoder_factory); |
| |
| // Expectations for decoder database. |
| EXPECT_CALL(*mock_decoder_database_, GetDecoderInfo(kPayloadType)) |
| .WillRepeatedly(Return(&info)); |
| |
| // Expectations for packet buffer. |
| EXPECT_CALL(*mock_packet_buffer_, Empty()) |
| .WillOnce(Return(false)); // Called once after first packet is inserted. |
| EXPECT_CALL(*mock_packet_buffer_, Flush()) |
| .Times(1); |
| EXPECT_CALL(*mock_packet_buffer_, InsertPacketList(_, _, _, _, _)) |
| .Times(2) |
| .WillRepeatedly(DoAll(SetArgPointee<2>(kPayloadType), |
| WithArg<0>(Invoke(DeletePacketsAndReturnOk)))); |
| // SetArgPointee<2>(kPayloadType) means that the third argument (zero-based |
| // index) is a pointer, and the variable pointed to is set to kPayloadType. |
| // Also invoke the function DeletePacketsAndReturnOk to properly delete all |
| // packets in the list (to avoid memory leaks in the test). |
| EXPECT_CALL(*mock_packet_buffer_, PeekNextPacket()) |
| .Times(1) |
| .WillOnce(Return(&fake_packet)); |
| |
| // Expectations for DTMF buffer. |
| EXPECT_CALL(*mock_dtmf_buffer_, Flush()) |
| .Times(1); |
| |
| // Expectations for delay manager. |
| { |
| // All expectations within this block must be called in this specific order. |
| InSequence sequence; // Dummy variable. |
| // Expectations when the first packet is inserted. |
| EXPECT_CALL(*mock_delay_manager_, last_pack_cng_or_dtmf()) |
| .Times(2) |
| .WillRepeatedly(Return(-1)); |
| EXPECT_CALL(*mock_delay_manager_, set_last_pack_cng_or_dtmf(0)) |
| .Times(1); |
| EXPECT_CALL(*mock_delay_manager_, ResetPacketIatCount()).Times(1); |
| // Expectations when the second packet is inserted. Slightly different. |
| EXPECT_CALL(*mock_delay_manager_, last_pack_cng_or_dtmf()) |
| .WillOnce(Return(0)); |
| EXPECT_CALL(*mock_delay_manager_, SetPacketAudioLength(30)) |
| .WillOnce(Return(0)); |
| } |
| |
| // Insert first packet. |
| neteq_->InsertPacket(rtp_header, payload, kFirstReceiveTime); |
| |
| // Insert second packet. |
| rtp_header.timestamp += 160; |
| rtp_header.sequenceNumber += 1; |
| neteq_->InsertPacket(rtp_header, payload, kFirstReceiveTime + 155); |
| } |
| |
| TEST_F(NetEqImplTest, InsertPacketsUntilBufferIsFull) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const int kPayloadLengthSamples = 80; |
| const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit. |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterPayloadType( |
| NetEqDecoder::kDecoderPCM16B, "", kPayloadType)); |
| |
| // Insert packets. The buffer should not flush. |
| for (size_t i = 1; i <= config_.max_packets_in_buffer; ++i) { |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| rtp_header.timestamp += kPayloadLengthSamples; |
| rtp_header.sequenceNumber += 1; |
| EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer()); |
| } |
| |
| // Insert one more packet and make sure the buffer got flushed. That is, it |
| // should only hold one single packet. |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer()); |
| const Packet* test_packet = packet_buffer_->PeekNextPacket(); |
| EXPECT_EQ(rtp_header.timestamp, test_packet->timestamp); |
| EXPECT_EQ(rtp_header.sequenceNumber, test_packet->sequence_number); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT) { |
| TestDtmfPacket(NetEqDecoder::kDecoderAVT); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT16kHz) { |
| TestDtmfPacket(NetEqDecoder::kDecoderAVT16kHz); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT32kHz) { |
| TestDtmfPacket(NetEqDecoder::kDecoderAVT32kHz); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT48kHz) { |
| TestDtmfPacket(NetEqDecoder::kDecoderAVT48kHz); |
| } |
| |
| // This test verifies that timestamps propagate from the incoming packets |
| // through to the sync buffer and to the playout timestamp. |
| TEST_F(NetEqImplTest, VerifyTimestampPropagation) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // This is a dummy decoder that produces as many output samples as the input |
| // has bytes. The output is an increasing series, starting at 1 for the first |
| // sample, and then increasing by 1 for each sample. |
| class CountingSamplesDecoder : public AudioDecoder { |
| public: |
| CountingSamplesDecoder() : next_value_(1) {} |
| |
| // Produce as many samples as input bytes (|encoded_len|). |
| int DecodeInternal(const uint8_t* encoded, |
| size_t encoded_len, |
| int /* sample_rate_hz */, |
| int16_t* decoded, |
| SpeechType* speech_type) override { |
| for (size_t i = 0; i < encoded_len; ++i) { |
| decoded[i] = next_value_++; |
| } |
| *speech_type = kSpeech; |
| return rtc::checked_cast<int>(encoded_len); |
| } |
| |
| void Reset() override { next_value_ = 1; } |
| |
| int SampleRateHz() const override { return kSampleRateHz; } |
| |
| size_t Channels() const override { return 1; } |
| |
| uint16_t next_value() const { return next_value_; } |
| |
| private: |
| int16_t next_value_; |
| } decoder_; |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| &decoder_, NetEqDecoder::kDecoderPCM16B, |
| "dummy name", kPayloadType)); |
| |
| // Insert one packet. |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_FALSE(muted); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Start with a simple check that the fake decoder is behaving as expected. |
| EXPECT_EQ(kPayloadLengthSamples, |
| static_cast<size_t>(decoder_.next_value() - 1)); |
| |
| // The value of the last of the output samples is the same as the number of |
| // samples played from the decoded packet. Thus, this number + the RTP |
| // timestamp should match the playout timestamp. |
| // Wrap the expected value in an absl::optional to compare them as such. |
| EXPECT_EQ( |
| absl::optional<uint32_t>(rtp_header.timestamp + |
| output.data()[output.samples_per_channel_ - 1]), |
| neteq_->GetPlayoutTimestamp()); |
| |
| // Check the timestamp for the last value in the sync buffer. This should |
| // be one full frame length ahead of the RTP timestamp. |
| const SyncBuffer* sync_buffer = neteq_->sync_buffer_for_test(); |
| ASSERT_TRUE(sync_buffer != NULL); |
| EXPECT_EQ(rtp_header.timestamp + kPayloadLengthSamples, |
| sync_buffer->end_timestamp()); |
| |
| // Check that the number of samples still to play from the sync buffer add |
| // up with what was already played out. |
| EXPECT_EQ( |
| kPayloadLengthSamples - output.data()[output.samples_per_channel_ - 1], |
| sync_buffer->FutureLength()); |
| } |
| |
| TEST_F(NetEqImplTest, ReorderedPacket) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _)) |
| .WillRepeatedly(Return(0)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| int16_t dummy_output[kPayloadLengthSamples] = {0}; |
| // The below expectation will make the mock decoder write |
| // |kPayloadLengthSamples| zeros to the output array, and mark it as speech. |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes, |
| kSampleRateHz, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| &mock_decoder, NetEqDecoder::kDecoderPCM16B, |
| "dummy name", kPayloadType)); |
| |
| // Insert one packet. |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Insert two more packets. The first one is out of order, and is already too |
| // old, the second one is the expected next packet. |
| rtp_header.sequenceNumber -= 1; |
| rtp_header.timestamp -= kPayloadLengthSamples; |
| payload[0] = 1; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| rtp_header.sequenceNumber += 2; |
| rtp_header.timestamp += 2 * kPayloadLengthSamples; |
| payload[0] = 2; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| // Expect only the second packet to be decoded (the one with "2" as the first |
| // payload byte). |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes, |
| kSampleRateHz, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| // Pull audio once. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Now check the packet buffer, and make sure it is empty, since the |
| // out-of-order packet should have been discarded. |
| EXPECT_TRUE(packet_buffer_->Empty()); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // This test verifies that NetEq can handle the situation where the first |
| // incoming packet is rejected. |
| TEST_F(NetEqImplTest, FirstPacketUnknown) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Insert one packet. Note that we have not registered any payload type, so |
| // this packet will be rejected. |
| EXPECT_EQ(NetEq::kFail, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_LE(output.samples_per_channel_, kMaxOutputSize); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kPLC, output.speech_type_); |
| |
| // Register the payload type. |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterPayloadType( |
| NetEqDecoder::kDecoderPCM16B, "", kPayloadType)); |
| |
| // Insert 10 packets. |
| for (size_t i = 0; i < 10; ++i) { |
| rtp_header.sequenceNumber++; |
| rtp_header.timestamp += kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| EXPECT_EQ(i + 1, packet_buffer_->NumPacketsInBuffer()); |
| } |
| |
| // Pull audio repeatedly and make sure we get normal output, that is not PLC. |
| for (size_t i = 0; i < 3; ++i) { |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_LE(output.samples_per_channel_, kMaxOutputSize); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_) |
| << "NetEq did not decode the packets as expected."; |
| } |
| } |
| |
| // This test verifies that NetEq can handle comfort noise and enters/quits codec |
| // internal CNG mode properly. |
| TEST_F(NetEqImplTest, CodecInternalCng) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateKhz = 48; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(20 * kSampleRateKhz); // 20 ms. |
| const size_t kPayloadLengthBytes = 10; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| int16_t dummy_output[kPayloadLengthSamples] = {0}; |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateKhz * 1000)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _)) |
| .WillRepeatedly(Return(0)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| // Packed duration when asking the decoder for more CNG data (without a new |
| // packet). |
| EXPECT_CALL(mock_decoder, PacketDuration(nullptr, 0)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| |
| // Pointee(x) verifies that first byte of the payload equals x, this makes it |
| // possible to verify that the correct payload is fed to Decode(). |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes, |
| kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(1), kPayloadLengthBytes, |
| kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(IsNull(), 0, kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes, |
| kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| &mock_decoder, NetEqDecoder::kDecoderOpus, |
| "dummy name", kPayloadType)); |
| |
| // Insert one packet (decoder will return speech). |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| // Insert second packet (decoder will return CNG). |
| payload[0] = 1; |
| rtp_header.sequenceNumber++; |
| rtp_header.timestamp += kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateKhz); |
| AudioFrame output; |
| AudioFrame::SpeechType expected_type[8] = { |
| AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech, |
| AudioFrame::kCNG, AudioFrame::kCNG, |
| AudioFrame::kCNG, AudioFrame::kCNG, |
| AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech |
| }; |
| int expected_timestamp_increment[8] = { |
| -1, // will not be used. |
| 10 * kSampleRateKhz, |
| -1, -1, // timestamp will be empty during CNG mode; indicated by -1 here. |
| -1, -1, |
| 50 * kSampleRateKhz, 10 * kSampleRateKhz |
| }; |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| absl::optional<uint32_t> last_timestamp = neteq_->GetPlayoutTimestamp(); |
| ASSERT_TRUE(last_timestamp); |
| |
| // Lambda for verifying the timestamps. |
| auto verify_timestamp = [&last_timestamp, &expected_timestamp_increment]( |
| absl::optional<uint32_t> ts, size_t i) { |
| if (expected_timestamp_increment[i] == -1) { |
| // Expect to get an empty timestamp value during CNG and PLC. |
| EXPECT_FALSE(ts) << "i = " << i; |
| } else { |
| ASSERT_TRUE(ts) << "i = " << i; |
| EXPECT_EQ(*ts, *last_timestamp + expected_timestamp_increment[i]) |
| << "i = " << i; |
| last_timestamp = ts; |
| } |
| }; |
| |
| for (size_t i = 1; i < 6; ++i) { |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(expected_type[i - 1], output.speech_type_); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| SCOPED_TRACE(""); |
| verify_timestamp(neteq_->GetPlayoutTimestamp(), i); |
| } |
| |
| // Insert third packet, which leaves a gap from last packet. |
| payload[0] = 2; |
| rtp_header.sequenceNumber += 2; |
| rtp_header.timestamp += 2 * kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| for (size_t i = 6; i < 8; ++i) { |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(expected_type[i - 1], output.speech_type_); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| SCOPED_TRACE(""); |
| verify_timestamp(neteq_->GetPlayoutTimestamp(), i); |
| } |
| |
| // Now check the packet buffer, and make sure it is empty. |
| EXPECT_TRUE(packet_buffer_->Empty()); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| TEST_F(NetEqImplTest, UnsupportedDecoder) { |
| UseNoMocks(); |
| CreateInstance(); |
| static const size_t kNetEqMaxFrameSize = 5760; // 120 ms @ 48 kHz. |
| static const size_t kChannels = 2; |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateHz = 8000; |
| |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = 1; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| int16_t dummy_output[kPayloadLengthSamples * kChannels] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| ::testing::NiceMock<MockAudioDecoder> decoder; |
| |
| const uint8_t kFirstPayloadValue = 1; |
| const uint8_t kSecondPayloadValue = 2; |
| |
| EXPECT_CALL(decoder, |
| PacketDuration(Pointee(kFirstPayloadValue), kPayloadLengthBytes)) |
| .Times(AtLeast(1)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize + 1))); |
| |
| EXPECT_CALL(decoder, DecodeInternal(Pointee(kFirstPayloadValue), _, _, _, _)) |
| .Times(0); |
| |
| EXPECT_CALL(decoder, DecodeInternal(Pointee(kSecondPayloadValue), |
| kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(1) |
| .WillOnce(DoAll( |
| SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples * kChannels), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(static_cast<int>(kPayloadLengthSamples * kChannels)))); |
| |
| EXPECT_CALL(decoder, |
| PacketDuration(Pointee(kSecondPayloadValue), kPayloadLengthBytes)) |
| .Times(AtLeast(1)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize))); |
| |
| EXPECT_CALL(decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| |
| EXPECT_CALL(decoder, Channels()) |
| .WillRepeatedly(Return(kChannels)); |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| &decoder, NetEqDecoder::kDecoderPCM16B, |
| "dummy name", kPayloadType)); |
| |
| // Insert one packet. |
| payload[0] = kFirstPayloadValue; // This will make Decode() fail. |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| // Insert another packet. |
| payload[0] = kSecondPayloadValue; // This will make Decode() successful. |
| rtp_header.sequenceNumber++; |
| // The second timestamp needs to be at least 30 ms after the first to make |
| // the second packet get decoded. |
| rtp_header.timestamp += 3 * kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| AudioFrame output; |
| bool muted; |
| // First call to GetAudio will try to decode the "faulty" packet. |
| // Expect kFail return value. |
| EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted)); |
| // Output size and number of channels should be correct. |
| const size_t kExpectedOutputSize = 10 * (kSampleRateHz / 1000) * kChannels; |
| EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels); |
| EXPECT_EQ(kChannels, output.num_channels_); |
| |
| // Second call to GetAudio will decode the packet that is ok. No errors are |
| // expected. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels); |
| EXPECT_EQ(kChannels, output.num_channels_); |
| |
| // Die isn't called through NiceMock (since it's called by the |
| // MockAudioDecoder constructor), so it needs to be mocked explicitly. |
| EXPECT_CALL(decoder, Die()); |
| } |
| |
| // This test inserts packets until the buffer is flushed. After that, it asks |
| // NetEq for the network statistics. The purpose of the test is to make sure |
| // that even though the buffer size increment is negative (which it becomes when |
| // the packet causing a flush is inserted), the packet length stored in the |
| // decision logic remains valid. |
| TEST_F(NetEqImplTest, FloodBufferAndGetNetworkStats) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const size_t kPayloadLengthSamples = 80; |
| const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit. |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterPayloadType( |
| NetEqDecoder::kDecoderPCM16B, "", kPayloadType)); |
| |
| // Insert packets until the buffer flushes. |
| for (size_t i = 0; i <= config_.max_packets_in_buffer; ++i) { |
| EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer()); |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| rtp_header.timestamp += rtc::checked_cast<uint32_t>(kPayloadLengthSamples); |
| ++rtp_header.sequenceNumber; |
| } |
| EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer()); |
| |
| // Ask for network statistics. This should not crash. |
| NetEqNetworkStatistics stats; |
| EXPECT_EQ(NetEq::kOK, neteq_->NetworkStatistics(&stats)); |
| } |
| |
| TEST_F(NetEqImplTest, DecodedPayloadTooShort) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _)) |
| .WillRepeatedly(Return(0)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, _)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| int16_t dummy_output[kPayloadLengthSamples] = {0}; |
| // The below expectation will make the mock decoder write |
| // |kPayloadLengthSamples| - 5 zeros to the output array, and mark it as |
| // speech. That is, the decoded length is 5 samples shorter than the expected. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .WillOnce( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples - 5), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples - 5)))); |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| &mock_decoder, NetEqDecoder::kDecoderPCM16B, |
| "dummy name", kPayloadType)); |
| |
| // Insert one packet. |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| |
| EXPECT_EQ(5u, neteq_->sync_buffer_for_test()->FutureLength()); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // This test checks the behavior of NetEq when audio decoder fails. |
| TEST_F(NetEqImplTest, DecodingError) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateHz = 8000; |
| const int kDecoderErrorCode = -97; // Any negative number. |
| |
| // We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms. |
| const size_t kFrameLengthSamples = |
| static_cast<size_t>(5 * kSampleRateHz / 1000); |
| |
| const size_t kPayloadLengthBytes = 1; // This can be arbitrary. |
| |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _)) |
| .WillRepeatedly(Return(0)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, _)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples))); |
| EXPECT_CALL(mock_decoder, ErrorCode()) |
| .WillOnce(Return(kDecoderErrorCode)); |
| EXPECT_CALL(mock_decoder, HasDecodePlc()) |
| .WillOnce(Return(false)); |
| int16_t dummy_output[kFrameLengthSamples] = {0}; |
| |
| { |
| InSequence sequence; // Dummy variable. |
| // Mock decoder works normally the first time. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(3) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))) |
| .RetiresOnSaturation(); |
| |
| // Then mock decoder fails. A common reason for failure can be buffer being |
| // too short |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .WillOnce(Return(-1)) |
| .RetiresOnSaturation(); |
| |
| // Mock decoder finally returns to normal. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(2) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))); |
| } |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| &mock_decoder, NetEqDecoder::kDecoderPCM16B, |
| "dummy name", kPayloadType)); |
| |
| // Insert packets. |
| for (int i = 0; i < 6; ++i) { |
| rtp_header.sequenceNumber += 1; |
| rtp_header.timestamp += kFrameLengthSamples; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| } |
| |
| // Pull audio. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Pull audio again. Decoder fails. |
| EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| // We are not expecting anything for output.speech_type_, since an error was |
| // returned. |
| |
| // Pull audio again, should continue an expansion. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kPLC, output.speech_type_); |
| |
| // Pull audio again, should behave normal. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // This test checks the behavior of NetEq when audio decoder fails during CNG. |
| TEST_F(NetEqImplTest, DecodingErrorDuringInternalCng) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test. |
| const int kSampleRateHz = 8000; |
| const int kDecoderErrorCode = -97; // Any negative number. |
| |
| // We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms. |
| const size_t kFrameLengthSamples = |
| static_cast<size_t>(5 * kSampleRateHz / 1000); |
| |
| const size_t kPayloadLengthBytes = 1; // This can be arbitrary. |
| |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _)) |
| .WillRepeatedly(Return(0)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, _)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples))); |
| EXPECT_CALL(mock_decoder, ErrorCode()) |
| .WillOnce(Return(kDecoderErrorCode)); |
| int16_t dummy_output[kFrameLengthSamples] = {0}; |
| |
| { |
| InSequence sequence; // Dummy variable. |
| // Mock decoder works normally the first 2 times. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(2) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))) |
| .RetiresOnSaturation(); |
| |
| // Then mock decoder fails. A common reason for failure can be buffer being |
| // too short |
| EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _)) |
| .WillOnce(Return(-1)) |
| .RetiresOnSaturation(); |
| |
| // Mock decoder finally returns to normal. |
| EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _)) |
| .Times(2) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))); |
| } |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| &mock_decoder, NetEqDecoder::kDecoderPCM16B, |
| "dummy name", kPayloadType)); |
| |
| // Insert 2 packets. This will make netEq into codec internal CNG mode. |
| for (int i = 0; i < 2; ++i) { |
| rtp_header.sequenceNumber += 1; |
| rtp_header.timestamp += kFrameLengthSamples; |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_header, payload, kReceiveTime)); |
| } |
| |
| // Pull audio. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kCNG, output.speech_type_); |
| |
| // Pull audio again. Decoder fails. |
| EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| // We are not expecting anything for output.speech_type_, since an error was |
| // returned. |
| |
| // Pull audio again, should resume codec CNG. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kCNG, output.speech_type_); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // Tests that the return value from last_output_sample_rate_hz() is equal to the |
| // configured inital sample rate. |
| TEST_F(NetEqImplTest, InitialLastOutputSampleRate) { |
| UseNoMocks(); |
| config_.sample_rate_hz = 48000; |
| CreateInstance(); |
| EXPECT_EQ(48000, neteq_->last_output_sample_rate_hz()); |
| } |
| |
| TEST_F(NetEqImplTest, TickTimerIncrement) { |
| UseNoMocks(); |
| CreateInstance(); |
| ASSERT_TRUE(tick_timer_); |
| EXPECT_EQ(0u, tick_timer_->ticks()); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(1u, tick_timer_->ticks()); |
| } |
| |
| TEST_F(NetEqImplTest, TargetDelayMs) { |
| UseNoMocks(); |
| use_mock_delay_manager_ = true; |
| CreateInstance(); |
| // Let the dummy target delay be 17 packets. |
| constexpr int kTargetLevelPacketsQ8 = 17 << 8; |
| EXPECT_CALL(*mock_delay_manager_, TargetLevel()) |
| .WillOnce(Return(kTargetLevelPacketsQ8)); |
| // Default packet size before any packet has been decoded is 30 ms, so we are |
| // expecting 17 * 30 = 510 ms target delay. |
| EXPECT_EQ(17 * 30, neteq_->TargetDelayMs()); |
| } |
| |
| TEST_F(NetEqImplTest, InsertEmptyPacket) { |
| UseNoMocks(); |
| use_mock_delay_manager_ = true; |
| CreateInstance(); |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = 17; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_CALL(*mock_delay_manager_, RegisterEmptyPacket()); |
| neteq_->InsertEmptyPacket(rtp_header); |
| } |
| |
| class Decoder120ms : public AudioDecoder { |
| public: |
| Decoder120ms(int sample_rate_hz, SpeechType speech_type) |
| : sample_rate_hz_(sample_rate_hz), |
| next_value_(1), |
| speech_type_(speech_type) {} |
| |
| int DecodeInternal(const uint8_t* encoded, |
| size_t encoded_len, |
| int sample_rate_hz, |
| int16_t* decoded, |
| SpeechType* speech_type) override { |
| EXPECT_EQ(sample_rate_hz_, sample_rate_hz); |
| size_t decoded_len = |
| rtc::CheckedDivExact(sample_rate_hz, 1000) * 120 * Channels(); |
| for (size_t i = 0; i < decoded_len; ++i) { |
| decoded[i] = next_value_++; |
| } |
| *speech_type = speech_type_; |
| return rtc::checked_cast<int>(decoded_len); |
| } |
| |
| void Reset() override { next_value_ = 1; } |
| int SampleRateHz() const override { return sample_rate_hz_; } |
| size_t Channels() const override { return 2; } |
| |
| private: |
| int sample_rate_hz_; |
| int16_t next_value_; |
| SpeechType speech_type_; |
| }; |
| |
| class NetEqImplTest120ms : public NetEqImplTest { |
| protected: |
| NetEqImplTest120ms() : NetEqImplTest() {} |
| virtual ~NetEqImplTest120ms() {} |
| |
| void CreateInstanceNoMocks() { |
| UseNoMocks(); |
| CreateInstance(); |
| } |
| |
| void CreateInstanceWithDelayManagerMock() { |
| UseNoMocks(); |
| use_mock_delay_manager_ = true; |
| CreateInstance(); |
| } |
| |
| uint32_t timestamp_diff_between_packets() const { |
| return rtc::CheckedDivExact(kSamplingFreq_, 1000u) * 120; |
| } |
| |
| uint32_t first_timestamp() const { return 10u; } |
| |
| void GetFirstPacket() { |
| bool muted; |
| for (int i = 0; i < 12; i++) { |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_FALSE(muted); |
| } |
| } |
| |
| void InsertPacket(uint32_t timestamp) { |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = sequence_number_; |
| rtp_header.timestamp = timestamp; |
| rtp_header.ssrc = 15; |
| const size_t kPayloadLengthBytes = 1; // This can be arbitrary. |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload, 10)); |
| sequence_number_++; |
| } |
| |
| void Register120msCodec(AudioDecoder::SpeechType speech_type) { |
| decoder_.reset(new Decoder120ms(kSamplingFreq_, speech_type)); |
| ASSERT_EQ(2u, decoder_->Channels()); |
| EXPECT_EQ(NetEq::kOK, neteq_->RegisterExternalDecoder( |
| decoder_.get(), NetEqDecoder::kDecoderOpus_2ch, |
| "120ms codec", kPayloadType)); |
| } |
| |
| std::unique_ptr<Decoder120ms> decoder_; |
| AudioFrame output_; |
| const uint32_t kPayloadType = 17; |
| const uint32_t kSamplingFreq_ = 48000; |
| uint16_t sequence_number_ = 1; |
| }; |
| |
| TEST_F(NetEqImplTest120ms, AudioRepetition) { |
| config_.playout_mode = kPlayoutFax; |
| CreateInstanceNoMocks(); |
| Register120msCodec(AudioDecoder::kSpeech); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kAudioRepetition, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, AlternativePlc) { |
| config_.playout_mode = kPlayoutOff; |
| CreateInstanceNoMocks(); |
| Register120msCodec(AudioDecoder::kSpeech); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kAlternativePlc, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, CodecInternalCng) { |
| CreateInstanceNoMocks(); |
| Register120msCodec(AudioDecoder::kComfortNoise); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kCodecInternalCng, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Normal) { |
| CreateInstanceNoMocks(); |
| Register120msCodec(AudioDecoder::kSpeech); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| EXPECT_EQ(kNormal, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Merge) { |
| CreateInstanceWithDelayManagerMock(); |
| |
| Register120msCodec(AudioDecoder::kSpeech); |
| InsertPacket(first_timestamp()); |
| |
| GetFirstPacket(); |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| |
| InsertPacket(first_timestamp() + 2 * timestamp_diff_between_packets()); |
| |
| // Delay manager reports a target level which should cause a Merge. |
| EXPECT_CALL(*mock_delay_manager_, TargetLevel()).WillOnce(Return(-10)); |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kMerge, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Expand) { |
| CreateInstanceNoMocks(); |
| Register120msCodec(AudioDecoder::kSpeech); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kExpand, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, FastAccelerate) { |
| CreateInstanceWithDelayManagerMock(); |
| Register120msCodec(AudioDecoder::kSpeech); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| InsertPacket(first_timestamp() + timestamp_diff_between_packets()); |
| |
| // Delay manager report buffer limit which should cause a FastAccelerate. |
| EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _)) |
| .Times(1) |
| .WillOnce(DoAll(SetArgPointee<0>(0), SetArgPointee<1>(0))); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kFastAccelerate, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, PreemptiveExpand) { |
| CreateInstanceWithDelayManagerMock(); |
| Register120msCodec(AudioDecoder::kSpeech); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| InsertPacket(first_timestamp() + timestamp_diff_between_packets()); |
| |
| // Delay manager report buffer limit which should cause a PreemptiveExpand. |
| EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _)) |
| .Times(1) |
| .WillOnce(DoAll(SetArgPointee<0>(100), SetArgPointee<1>(100))); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kPreemptiveExpand, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Accelerate) { |
| CreateInstanceWithDelayManagerMock(); |
| Register120msCodec(AudioDecoder::kSpeech); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| InsertPacket(first_timestamp() + timestamp_diff_between_packets()); |
| |
| // Delay manager report buffer limit which should cause a Accelerate. |
| EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _)) |
| .Times(1) |
| .WillOnce(DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2))); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(kAccelerate, neteq_->last_operation_for_test()); |
| } |
| |
| }// namespace webrtc |