blob: 1f7973e376e78c31cb723a5807ddb677297eb6b6 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/tools/event_log_visualizer/analyzer.h"
#include <algorithm>
#include <limits>
#include <map>
#include <sstream>
#include <string>
#include <utility>
#include "webrtc/audio_receive_stream.h"
#include "webrtc/audio_send_stream.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/call.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/congestion_controller/include/congestion_controller.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
#include "webrtc/video_receive_stream.h"
#include "webrtc/video_send_stream.h"
namespace webrtc {
namespace plotting {
namespace {
std::string SsrcToString(uint32_t ssrc) {
std::stringstream ss;
ss << "SSRC " << ssrc;
return ss.str();
}
// Checks whether an SSRC is contained in the list of desired SSRCs.
// Note that an empty SSRC list matches every SSRC.
bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) {
if (desired_ssrc.size() == 0)
return true;
return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) !=
desired_ssrc.end();
}
double AbsSendTimeToMicroseconds(int64_t abs_send_time) {
// The timestamp is a fixed point representation with 6 bits for seconds
// and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the
// time in seconds and then multiply by 1000000 to convert to microseconds.
static constexpr double kTimestampToMicroSec =
1000000.0 / static_cast<double>(1 << 18);
return abs_send_time * kTimestampToMicroSec;
}
// Computes the difference |later| - |earlier| where |later| and |earlier|
// are counters that wrap at |modulus|. The difference is chosen to have the
// least absolute value. For example if |modulus| is 8, then the difference will
// be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will
// be in [-4, 4].
int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) {
RTC_DCHECK_LE(1, modulus);
RTC_DCHECK_LT(later, modulus);
RTC_DCHECK_LT(earlier, modulus);
int64_t difference =
static_cast<int64_t>(later) - static_cast<int64_t>(earlier);
int64_t max_difference = modulus / 2;
int64_t min_difference = max_difference - modulus + 1;
if (difference > max_difference) {
difference -= modulus;
}
if (difference < min_difference) {
difference += modulus;
}
return difference;
}
void RegisterHeaderExtensions(
const std::vector<webrtc::RtpExtension>& extensions,
webrtc::RtpHeaderExtensionMap* extension_map) {
extension_map->Erase();
for (const webrtc::RtpExtension& extension : extensions) {
extension_map->Register(webrtc::StringToRtpExtensionType(extension.uri),
extension.id);
}
}
constexpr float kLeftMargin = 0.01f;
constexpr float kRightMargin = 0.02f;
constexpr float kBottomMargin = 0.02f;
constexpr float kTopMargin = 0.05f;
} // namespace
EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log)
: parsed_log_(log), window_duration_(250000), step_(10000) {
uint64_t first_timestamp = std::numeric_limits<uint64_t>::max();
uint64_t last_timestamp = std::numeric_limits<uint64_t>::min();
// Maps a stream identifier consisting of ssrc and direction
// to the header extensions used by that stream,
std::map<StreamId, RtpHeaderExtensionMap> extension_maps;
PacketDirection direction;
uint8_t header[IP_PACKET_SIZE];
size_t header_length;
size_t total_length;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT &&
event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT &&
event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT &&
event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT &&
event_type != ParsedRtcEventLog::LOG_START &&
event_type != ParsedRtcEventLog::LOG_END) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
first_timestamp = std::min(first_timestamp, timestamp);
last_timestamp = std::max(last_timestamp, timestamp);
}
switch (parsed_log_.GetEventType(i)) {
case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: {
VideoReceiveStream::Config config(nullptr);
parsed_log_.GetVideoReceiveConfig(i, &config);
StreamId stream(config.rtp.remote_ssrc, kIncomingPacket);
RegisterHeaderExtensions(config.rtp.extensions,
&extension_maps[stream]);
video_ssrcs_.insert(stream);
for (auto kv : config.rtp.rtx) {
StreamId rtx_stream(kv.second.ssrc, kIncomingPacket);
RegisterHeaderExtensions(config.rtp.extensions,
&extension_maps[rtx_stream]);
video_ssrcs_.insert(rtx_stream);
rtx_ssrcs_.insert(rtx_stream);
}
break;
}
case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: {
VideoSendStream::Config config(nullptr);
parsed_log_.GetVideoSendConfig(i, &config);
for (auto ssrc : config.rtp.ssrcs) {
StreamId stream(ssrc, kOutgoingPacket);
RegisterHeaderExtensions(config.rtp.extensions,
&extension_maps[stream]);
video_ssrcs_.insert(stream);
}
for (auto ssrc : config.rtp.rtx.ssrcs) {
StreamId rtx_stream(ssrc, kOutgoingPacket);
RegisterHeaderExtensions(config.rtp.extensions,
&extension_maps[rtx_stream]);
video_ssrcs_.insert(rtx_stream);
rtx_ssrcs_.insert(rtx_stream);
}
break;
}
case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: {
AudioReceiveStream::Config config;
// TODO(terelius): Parse the audio configs once we have them.
break;
}
case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: {
AudioSendStream::Config config(nullptr);
// TODO(terelius): Parse the audio configs once we have them.
break;
}
case ParsedRtcEventLog::RTP_EVENT: {
MediaType media_type;
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
StreamId stream(parsed_header.ssrc, direction);
// Look up the extension_map and parse it again to get the extensions.
if (extension_maps.count(stream) == 1) {
RtpHeaderExtensionMap* extension_map = &extension_maps[stream];
rtp_parser.Parse(&parsed_header, extension_map);
}
uint64_t timestamp = parsed_log_.GetTimestamp(i);
rtp_packets_[stream].push_back(
LoggedRtpPacket(timestamp, parsed_header, total_length));
break;
}
case ParsedRtcEventLog::RTCP_EVENT: {
uint8_t packet[IP_PACKET_SIZE];
MediaType media_type;
parsed_log_.GetRtcpPacket(i, &direction, &media_type, packet,
&total_length);
RtpUtility::RtpHeaderParser rtp_parser(packet, total_length);
RTPHeader parsed_header;
RTC_CHECK(rtp_parser.ParseRtcp(&parsed_header));
uint32_t ssrc = parsed_header.ssrc;
RTCPUtility::RTCPParserV2 rtcp_parser(packet, total_length, true);
RTC_CHECK(rtcp_parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = rtcp_parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
switch (packet_type) {
case RTCPUtility::RTCPPacketTypes::kTransportFeedback: {
// Currently feedback is logged twice, both for audio and video.
// Only act on one of them.
if (media_type == MediaType::VIDEO) {
std::unique_ptr<rtcp::RtcpPacket> rtcp_packet(
rtcp_parser.ReleaseRtcpPacket());
StreamId stream(ssrc, direction);
uint64_t timestamp = parsed_log_.GetTimestamp(i);
rtcp_packets_[stream].push_back(LoggedRtcpPacket(
timestamp, kRtcpTransportFeedback, std::move(rtcp_packet)));
}
break;
}
default:
break;
}
rtcp_parser.Iterate();
packet_type = rtcp_parser.PacketType();
}
break;
}
case ParsedRtcEventLog::LOG_START: {
break;
}
case ParsedRtcEventLog::LOG_END: {
break;
}
case ParsedRtcEventLog::BWE_PACKET_LOSS_EVENT: {
BwePacketLossEvent bwe_update;
bwe_update.timestamp = parsed_log_.GetTimestamp(i);
parsed_log_.GetBwePacketLossEvent(i, &bwe_update.new_bitrate,
&bwe_update.fraction_loss,
&bwe_update.expected_packets);
bwe_loss_updates_.push_back(bwe_update);
break;
}
case ParsedRtcEventLog::BWE_PACKET_DELAY_EVENT: {
break;
}
case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: {
break;
}
case ParsedRtcEventLog::UNKNOWN_EVENT: {
break;
}
}
}
if (last_timestamp < first_timestamp) {
// No useful events in the log.
first_timestamp = last_timestamp = 0;
}
begin_time_ = first_timestamp;
end_time_ = last_timestamp;
call_duration_s_ = static_cast<float>(end_time_ - begin_time_) / 1000000;
}
class BitrateObserver : public CongestionController::Observer,
public RemoteBitrateObserver {
public:
BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {}
void OnNetworkChanged(uint32_t bitrate_bps,
uint8_t fraction_loss,
int64_t rtt_ms) override {
last_bitrate_bps_ = bitrate_bps;
bitrate_updated_ = true;
}
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
uint32_t bitrate) override {}
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
bool GetAndResetBitrateUpdated() {
bool bitrate_updated = bitrate_updated_;
bitrate_updated_ = false;
return bitrate_updated;
}
private:
uint32_t last_bitrate_bps_;
bool bitrate_updated_;
};
bool EventLogAnalyzer::IsRtxSsrc(StreamId stream_id) {
return rtx_ssrcs_.count(stream_id) == 1;
}
bool EventLogAnalyzer::IsVideoSsrc(StreamId stream_id) {
return video_ssrcs_.count(stream_id) == 1;
}
bool EventLogAnalyzer::IsAudioSsrc(StreamId stream_id) {
return audio_ssrcs_.count(stream_id) == 1;
}
void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction,
Plot* plot) {
std::map<uint32_t, TimeSeries> time_series;
PacketDirection direction;
MediaType media_type;
uint8_t header[IP_PACKET_SIZE];
size_t header_length, total_length;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
if (direction == desired_direction) {
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
// Filter on SSRC.
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
float y = total_length;
time_series[parsed_header.ssrc].points.push_back(
TimeSeriesPoint(x, y));
}
}
}
}
// Set labels and put in graph.
for (auto& kv : time_series) {
kv.second.label = SsrcToString(kv.first);
kv.second.style = BAR_GRAPH;
plot->series_list_.push_back(std::move(kv.second));
}
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin,
kTopMargin);
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->SetTitle("Incoming RTP packets");
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->SetTitle("Outgoing RTP packets");
}
}
// For each SSRC, plot the time between the consecutive playouts.
void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) {
std::map<uint32_t, TimeSeries> time_series;
std::map<uint32_t, uint64_t> last_playout;
uint32_t ssrc;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) {
parsed_log_.GetAudioPlayout(i, &ssrc);
uint64_t timestamp = parsed_log_.GetTimestamp(i);
if (MatchingSsrc(ssrc, desired_ssrc_)) {
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
float y = static_cast<float>(timestamp - last_playout[ssrc]) / 1000;
if (time_series[ssrc].points.size() == 0) {
// There were no previusly logged playout for this SSRC.
// Generate a point, but place it on the x-axis.
y = 0;
}
time_series[ssrc].points.push_back(TimeSeriesPoint(x, y));
last_playout[ssrc] = timestamp;
}
}
}
// Set labels and put in graph.
for (auto& kv : time_series) {
kv.second.label = SsrcToString(kv.first);
kv.second.style = BAR_GRAPH;
plot->series_list_.push_back(std::move(kv.second));
}
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin,
kTopMargin);
plot->SetTitle("Audio playout");
}
// For each SSRC, plot the time between the consecutive playouts.
void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
std::map<uint32_t, TimeSeries> time_series;
std::map<uint32_t, uint16_t> last_seqno;
PacketDirection direction;
MediaType media_type;
uint8_t header[IP_PACKET_SIZE];
size_t header_length, total_length;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
uint64_t timestamp = parsed_log_.GetTimestamp(i);
if (direction == PacketDirection::kIncomingPacket) {
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
// Filter on SSRC.
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
int y = WrappingDifference(parsed_header.sequenceNumber,
last_seqno[parsed_header.ssrc], 1ul << 16);
if (time_series[parsed_header.ssrc].points.size() == 0) {
// There were no previusly logged playout for this SSRC.
// Generate a point, but place it on the x-axis.
y = 0;
}
time_series[parsed_header.ssrc].points.push_back(
TimeSeriesPoint(x, y));
last_seqno[parsed_header.ssrc] = parsed_header.sequenceNumber;
}
}
}
}
// Set labels and put in graph.
for (auto& kv : time_series) {
kv.second.label = SsrcToString(kv.first);
kv.second.style = BAR_GRAPH;
plot->series_list_.push_back(std::move(kv.second));
}
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin,
kTopMargin);
plot->SetTitle("Sequence number");
}
void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) {
for (auto& kv : rtp_packets_) {
StreamId stream_id = kv.first;
// Filter on direction and SSRC.
if (stream_id.GetDirection() != kIncomingPacket ||
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
continue;
}
TimeSeries time_series;
time_series.label = SsrcToString(stream_id.GetSsrc());
time_series.style = BAR_GRAPH;
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
int64_t last_abs_send_time = 0;
int64_t last_timestamp = 0;
for (const LoggedRtpPacket& packet : packet_stream) {
if (packet.header.extension.hasAbsoluteSendTime) {
int64_t send_time_diff =
WrappingDifference(packet.header.extension.absoluteSendTime,
last_abs_send_time, 1ul << 24);
int64_t recv_time_diff = packet.timestamp - last_timestamp;
last_abs_send_time = packet.header.extension.absoluteSendTime;
last_timestamp = packet.timestamp;
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
double y =
static_cast<double>(recv_time_diff -
AbsSendTimeToMicroseconds(send_time_diff)) /
1000;
if (time_series.points.size() == 0) {
// There were no previously logged packets for this SSRC.
// Generate a point, but place it on the x-axis.
y = 0;
}
time_series.points.emplace_back(x, y);
}
}
// Add the data set to the plot.
plot->series_list_.push_back(std::move(time_series));
}
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin,
kTopMargin);
plot->SetTitle("Network latency change between consecutive packets");
}
void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) {
for (auto& kv : rtp_packets_) {
StreamId stream_id = kv.first;
// Filter on direction and SSRC.
if (stream_id.GetDirection() != kIncomingPacket ||
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
continue;
}
TimeSeries time_series;
time_series.label = SsrcToString(stream_id.GetSsrc());
time_series.style = LINE_GRAPH;
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
int64_t last_abs_send_time = 0;
int64_t last_timestamp = 0;
double accumulated_delay_ms = 0;
for (const LoggedRtpPacket& packet : packet_stream) {
if (packet.header.extension.hasAbsoluteSendTime) {
int64_t send_time_diff =
WrappingDifference(packet.header.extension.absoluteSendTime,
last_abs_send_time, 1ul << 24);
int64_t recv_time_diff = packet.timestamp - last_timestamp;
last_abs_send_time = packet.header.extension.absoluteSendTime;
last_timestamp = packet.timestamp;
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
accumulated_delay_ms +=
static_cast<double>(recv_time_diff -
AbsSendTimeToMicroseconds(send_time_diff)) /
1000;
if (time_series.points.size() == 0) {
// There were no previously logged packets for this SSRC.
// Generate a point, but place it on the x-axis.
accumulated_delay_ms = 0;
}
time_series.points.emplace_back(x, accumulated_delay_ms);
}
}
// Add the data set to the plot.
plot->series_list_.push_back(std::move(time_series));
}
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin,
kTopMargin);
plot->SetTitle("Accumulated network latency change");
}
// Plot the fraction of packets lost (as perceived by the loss-based BWE).
void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) {
plot->series_list_.push_back(TimeSeries());
for (auto& bwe_update : bwe_loss_updates_) {
float x = static_cast<float>(bwe_update.timestamp - begin_time_) / 1000000;
float y = static_cast<float>(bwe_update.fraction_loss) / 255 * 100;
plot->series_list_.back().points.emplace_back(x, y);
}
plot->series_list_.back().label = "Fraction lost";
plot->series_list_.back().style = LINE_DOT_GRAPH;
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin,
kTopMargin);
plot->SetTitle("Reported packet loss");
}
// Plot the total bandwidth used by all RTP streams.
void EventLogAnalyzer::CreateTotalBitrateGraph(
PacketDirection desired_direction,
Plot* plot) {
struct TimestampSize {
TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {}
uint64_t timestamp;
size_t size;
};
std::vector<TimestampSize> packets;
PacketDirection direction;
size_t total_length;
// Extract timestamps and sizes for the relevant packets.
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, nullptr,
&total_length);
if (direction == desired_direction) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
packets.push_back(TimestampSize(timestamp, total_length));
}
}
}
size_t window_index_begin = 0;
size_t window_index_end = 0;
size_t bytes_in_window = 0;
// Calculate a moving average of the bitrate and store in a TimeSeries.
plot->series_list_.push_back(TimeSeries());
for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) {
while (window_index_end < packets.size() &&
packets[window_index_end].timestamp < time) {
bytes_in_window += packets[window_index_end].size;
window_index_end++;
}
while (window_index_begin < packets.size() &&
packets[window_index_begin].timestamp < time - window_duration_) {
RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window);
bytes_in_window -= packets[window_index_begin].size;
window_index_begin++;
}
float window_duration_in_seconds =
static_cast<float>(window_duration_) / 1000000;
float x = static_cast<float>(time - begin_time_) / 1000000;
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y));
}
// Set labels.
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->series_list_.back().label = "Incoming bitrate";
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->series_list_.back().label = "Outgoing bitrate";
}
plot->series_list_.back().style = LINE_GRAPH;
// Overlay the send-side bandwidth estimate over the outgoing bitrate.
if (desired_direction == kOutgoingPacket) {
plot->series_list_.push_back(TimeSeries());
for (auto& bwe_update : bwe_loss_updates_) {
float x =
static_cast<float>(bwe_update.timestamp - begin_time_) / 1000000;
float y = static_cast<float>(bwe_update.new_bitrate) / 1000;
plot->series_list_.back().points.emplace_back(x, y);
}
plot->series_list_.back().label = "Loss-based estimate";
plot->series_list_.back().style = LINE_GRAPH;
}
plot->series_list_.back().style = LINE_GRAPH;
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->SetTitle("Incoming RTP bitrate");
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->SetTitle("Outgoing RTP bitrate");
}
}
// For each SSRC, plot the bandwidth used by that stream.
void EventLogAnalyzer::CreateStreamBitrateGraph(
PacketDirection desired_direction,
Plot* plot) {
struct TimestampSize {
TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {}
uint64_t timestamp;
size_t size;
};
std::map<uint32_t, std::vector<TimestampSize>> packets;
PacketDirection direction;
MediaType media_type;
uint8_t header[IP_PACKET_SIZE];
size_t header_length, total_length;
// Extract timestamps and sizes for the relevant packets.
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
if (direction == desired_direction) {
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
// Filter on SSRC.
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
packets[parsed_header.ssrc].push_back(
TimestampSize(timestamp, total_length));
}
}
}
}
for (auto& kv : packets) {
size_t window_index_begin = 0;
size_t window_index_end = 0;
size_t bytes_in_window = 0;
// Calculate a moving average of the bitrate and store in a TimeSeries.
plot->series_list_.push_back(TimeSeries());
for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) {
while (window_index_end < kv.second.size() &&
kv.second[window_index_end].timestamp < time) {
bytes_in_window += kv.second[window_index_end].size;
window_index_end++;
}
while (window_index_begin < kv.second.size() &&
kv.second[window_index_begin].timestamp <
time - window_duration_) {
RTC_DCHECK_LE(kv.second[window_index_begin].size, bytes_in_window);
bytes_in_window -= kv.second[window_index_begin].size;
window_index_begin++;
}
float window_duration_in_seconds =
static_cast<float>(window_duration_) / 1000000;
float x = static_cast<float>(time - begin_time_) / 1000000;
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y));
}
// Set labels.
plot->series_list_.back().label = SsrcToString(kv.first);
plot->series_list_.back().style = LINE_GRAPH;
}
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->SetTitle("Incoming bitrate per stream");
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->SetTitle("Outgoing bitrate per stream");
}
}
void EventLogAnalyzer::CreateBweGraph(Plot* plot) {
std::map<uint64_t, const LoggedRtpPacket*> outgoing_rtp;
std::map<uint64_t, const LoggedRtcpPacket*> incoming_rtcp;
for (const auto& kv : rtp_packets_) {
if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) {
for (const LoggedRtpPacket& rtp_packet : kv.second)
outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet));
}
}
for (const auto& kv : rtcp_packets_) {
if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) {
for (const LoggedRtcpPacket& rtcp_packet : kv.second)
incoming_rtcp.insert(
std::make_pair(rtcp_packet.timestamp, &rtcp_packet));
}
}
SimulatedClock clock(0);
BitrateObserver observer;
RtcEventLogNullImpl null_event_log;
CongestionController cc(&clock, &observer, &observer, &null_event_log);
// TODO(holmer): Log the call config and use that here instead.
static const uint32_t kDefaultStartBitrateBps = 300000;
cc.SetBweBitrates(0, kDefaultStartBitrateBps, -1);
TimeSeries time_series;
time_series.label = "BWE";
time_series.style = LINE_DOT_GRAPH;
auto rtp_iterator = outgoing_rtp.begin();
auto rtcp_iterator = incoming_rtcp.begin();
auto NextRtpTime = [&]() {
if (rtp_iterator != outgoing_rtp.end())
return static_cast<int64_t>(rtp_iterator->first);
return std::numeric_limits<int64_t>::max();
};
auto NextRtcpTime = [&]() {
if (rtcp_iterator != incoming_rtcp.end())
return static_cast<int64_t>(rtcp_iterator->first);
return std::numeric_limits<int64_t>::max();
};
auto NextProcessTime = [&]() {
if (rtcp_iterator != incoming_rtcp.end() ||
rtp_iterator != outgoing_rtp.end()) {
return clock.TimeInMicroseconds() +
std::max<int64_t>(cc.TimeUntilNextProcess() * 1000, 0);
}
return std::numeric_limits<int64_t>::max();
};
int64_t time_us = std::min(NextRtpTime(), NextRtcpTime());
while (time_us != std::numeric_limits<int64_t>::max()) {
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
const LoggedRtcpPacket& rtcp = *rtcp_iterator->second;
if (rtcp.type == kRtcpTransportFeedback) {
cc.GetTransportFeedbackObserver()->OnTransportFeedback(
*static_cast<rtcp::TransportFeedback*>(rtcp.packet.get()));
}
++rtcp_iterator;
}
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
const LoggedRtpPacket& rtp = *rtp_iterator->second;
if (rtp.header.extension.hasTransportSequenceNumber) {
RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber);
cc.GetTransportFeedbackObserver()->AddPacket(
rtp.header.extension.transportSequenceNumber, rtp.total_length, 0);
rtc::SentPacket sent_packet(
rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000);
cc.OnSentPacket(sent_packet);
}
++rtp_iterator;
}
if (clock.TimeInMicroseconds() >= NextProcessTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime());
cc.Process();
}
if (observer.GetAndResetBitrateUpdated()) {
uint32_t y = observer.last_bitrate_bps() / 1000;
float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
1000000;
time_series.points.emplace_back(x, y);
}
time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
}
// Add the data set to the plot.
plot->series_list_.push_back(std::move(time_series));
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
plot->SetTitle("Simulated BWE behavior");
}
void EventLogAnalyzer::CreateNetworkDelayFeebackGraph(Plot* plot) {
std::map<uint64_t, const LoggedRtpPacket*> outgoing_rtp;
std::map<uint64_t, const LoggedRtcpPacket*> incoming_rtcp;
for (const auto& kv : rtp_packets_) {
if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) {
for (const LoggedRtpPacket& rtp_packet : kv.second)
outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet));
}
}
for (const auto& kv : rtcp_packets_) {
if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) {
for (const LoggedRtcpPacket& rtcp_packet : kv.second)
incoming_rtcp.insert(
std::make_pair(rtcp_packet.timestamp, &rtcp_packet));
}
}
SimulatedClock clock(0);
TransportFeedbackAdapter feedback_adapter(nullptr, &clock);
TimeSeries time_series;
time_series.label = "Network Delay Change";
time_series.style = LINE_DOT_GRAPH;
int64_t estimated_base_delay_ms = std::numeric_limits<int64_t>::max();
auto rtp_iterator = outgoing_rtp.begin();
auto rtcp_iterator = incoming_rtcp.begin();
auto NextRtpTime = [&]() {
if (rtp_iterator != outgoing_rtp.end())
return static_cast<int64_t>(rtp_iterator->first);
return std::numeric_limits<int64_t>::max();
};
auto NextRtcpTime = [&]() {
if (rtcp_iterator != incoming_rtcp.end())
return static_cast<int64_t>(rtcp_iterator->first);
return std::numeric_limits<int64_t>::max();
};
int64_t time_us = std::min(NextRtpTime(), NextRtcpTime());
while (time_us != std::numeric_limits<int64_t>::max()) {
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
const LoggedRtcpPacket& rtcp = *rtcp_iterator->second;
if (rtcp.type == kRtcpTransportFeedback) {
std::vector<PacketInfo> feedback =
feedback_adapter.GetPacketFeedbackVector(
*static_cast<rtcp::TransportFeedback*>(rtcp.packet.get()));
for (const PacketInfo& packet : feedback) {
int64_t y = packet.arrival_time_ms - packet.send_time_ms;
float x =
static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
1000000;
estimated_base_delay_ms = std::min(y, estimated_base_delay_ms);
time_series.points.emplace_back(x, y);
}
}
++rtcp_iterator;
}
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
const LoggedRtpPacket& rtp = *rtp_iterator->second;
if (rtp.header.extension.hasTransportSequenceNumber) {
RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber);
feedback_adapter.AddPacket(rtp.header.extension.transportSequenceNumber,
rtp.total_length, 0);
feedback_adapter.OnSentPacket(
rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000);
}
++rtp_iterator;
}
time_us = std::min(NextRtpTime(), NextRtcpTime());
}
// We assume that the base network delay (w/o queues) is the min delay
// observed during the call.
for (TimeSeriesPoint& point : time_series.points)
point.y -= estimated_base_delay_ms;
// Add the data set to the plot.
plot->series_list_.push_back(std::move(time_series));
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin);
plot->SetTitle("Network Delay Change.");
}
} // namespace plotting
} // namespace webrtc