| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "api/neteq/neteq.h" |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> // memset |
| |
| #include <algorithm> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <vector> |
| |
| #include "absl/flags/flag.h" |
| #include "api/audio/audio_frame.h" |
| #include "api/audio_codecs/builtin_audio_decoder_factory.h" |
| #include "api/test/neteq_factory_with_codecs.h" |
| #include "modules/audio_coding/codecs/pcm16b/pcm16b.h" |
| #include "modules/audio_coding/neteq/tools/audio_loop.h" |
| #include "modules/audio_coding/neteq/tools/neteq_packet_source_input.h" |
| #include "modules/audio_coding/neteq/tools/neteq_test.h" |
| #include "modules/audio_coding/neteq/tools/rtp_file_source.h" |
| #include "modules/include/module_common_types_public.h" |
| #include "modules/rtp_rtcp/include/rtcp_statistics.h" |
| #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" |
| #include "rtc_base/ignore_wundef.h" |
| #include "rtc_base/message_digest.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/string_encode.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "rtc_base/system/arch.h" |
| #include "system_wrappers/include/clock.h" |
| #include "test/field_trial.h" |
| #include "test/gtest.h" |
| #include "test/testsupport/file_utils.h" |
| |
| #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT |
| RTC_PUSH_IGNORING_WUNDEF() |
| #ifdef WEBRTC_ANDROID_PLATFORM_BUILD |
| #include "external/webrtc/webrtc/modules/audio_coding/neteq/neteq_unittest.pb.h" |
| #else |
| #include "modules/audio_coding/neteq/neteq_unittest.pb.h" |
| #endif |
| RTC_POP_IGNORING_WUNDEF() |
| #endif |
| |
| ABSL_FLAG(bool, gen_ref, false, "Generate reference files."); |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| const std::string& PlatformChecksum(const std::string& checksum_general, |
| const std::string& checksum_android_32, |
| const std::string& checksum_android_64, |
| const std::string& checksum_win_32, |
| const std::string& checksum_win_64) { |
| #if defined(WEBRTC_ANDROID) |
| #ifdef WEBRTC_ARCH_64_BITS |
| return checksum_android_64; |
| #else |
| return checksum_android_32; |
| #endif // WEBRTC_ARCH_64_BITS |
| #elif defined(WEBRTC_WIN) |
| #ifdef WEBRTC_ARCH_64_BITS |
| return checksum_win_64; |
| #else |
| return checksum_win_32; |
| #endif // WEBRTC_ARCH_64_BITS |
| #else |
| return checksum_general; |
| #endif // WEBRTC_WIN |
| } |
| |
| #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT |
| void Convert(const webrtc::NetEqNetworkStatistics& stats_raw, |
| webrtc::neteq_unittest::NetEqNetworkStatistics* stats) { |
| stats->set_current_buffer_size_ms(stats_raw.current_buffer_size_ms); |
| stats->set_preferred_buffer_size_ms(stats_raw.preferred_buffer_size_ms); |
| stats->set_jitter_peaks_found(stats_raw.jitter_peaks_found); |
| stats->set_packet_loss_rate(stats_raw.packet_loss_rate); |
| stats->set_expand_rate(stats_raw.expand_rate); |
| stats->set_speech_expand_rate(stats_raw.speech_expand_rate); |
| stats->set_preemptive_rate(stats_raw.preemptive_rate); |
| stats->set_accelerate_rate(stats_raw.accelerate_rate); |
| stats->set_secondary_decoded_rate(stats_raw.secondary_decoded_rate); |
| stats->set_secondary_discarded_rate(stats_raw.secondary_discarded_rate); |
| stats->set_added_zero_samples(stats_raw.added_zero_samples); |
| stats->set_mean_waiting_time_ms(stats_raw.mean_waiting_time_ms); |
| stats->set_median_waiting_time_ms(stats_raw.median_waiting_time_ms); |
| stats->set_min_waiting_time_ms(stats_raw.min_waiting_time_ms); |
| stats->set_max_waiting_time_ms(stats_raw.max_waiting_time_ms); |
| } |
| |
| void Convert(const webrtc::RtcpStatistics& stats_raw, |
| webrtc::neteq_unittest::RtcpStatistics* stats) { |
| stats->set_fraction_lost(stats_raw.fraction_lost); |
| stats->set_cumulative_lost(stats_raw.packets_lost); |
| stats->set_extended_max_sequence_number( |
| stats_raw.extended_highest_sequence_number); |
| stats->set_jitter(stats_raw.jitter); |
| } |
| |
| void AddMessage(FILE* file, |
| rtc::MessageDigest* digest, |
| const std::string& message) { |
| int32_t size = message.length(); |
| if (file) |
| ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file)); |
| digest->Update(&size, sizeof(size)); |
| |
| if (file) |
| ASSERT_EQ(static_cast<size_t>(size), |
| fwrite(message.data(), sizeof(char), size, file)); |
| digest->Update(message.data(), sizeof(char) * size); |
| } |
| |
| #endif // WEBRTC_NETEQ_UNITTEST_BITEXACT |
| |
| void LoadDecoders(webrtc::NetEq* neteq) { |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(0, SdpAudioFormat("pcmu", 8000, 1))); |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(8, SdpAudioFormat("pcma", 8000, 1))); |
| #ifdef WEBRTC_CODEC_ILBC |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(102, SdpAudioFormat("ilbc", 8000, 1))); |
| #endif |
| #if defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX) |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(103, SdpAudioFormat("isac", 16000, 1))); |
| #endif |
| #ifdef WEBRTC_CODEC_ISAC |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(104, SdpAudioFormat("isac", 32000, 1))); |
| #endif |
| #ifdef WEBRTC_CODEC_OPUS |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType( |
| 111, SdpAudioFormat("opus", 48000, 2, {{"stereo", "0"}}))); |
| #endif |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(93, SdpAudioFormat("L16", 8000, 1))); |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(94, SdpAudioFormat("L16", 16000, 1))); |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(95, SdpAudioFormat("L16", 32000, 1))); |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(13, SdpAudioFormat("cn", 8000, 1))); |
| ASSERT_EQ(true, |
| neteq->RegisterPayloadType(98, SdpAudioFormat("cn", 16000, 1))); |
| } |
| } // namespace |
| |
| class ResultSink { |
| public: |
| explicit ResultSink(const std::string& output_file); |
| ~ResultSink(); |
| |
| template <typename T> |
| void AddResult(const T* test_results, size_t length); |
| |
| void AddResult(const NetEqNetworkStatistics& stats); |
| void AddResult(const RtcpStatistics& stats); |
| |
| void VerifyChecksum(const std::string& ref_check_sum); |
| |
| private: |
| FILE* output_fp_; |
| std::unique_ptr<rtc::MessageDigest> digest_; |
| }; |
| |
| ResultSink::ResultSink(const std::string& output_file) |
| : output_fp_(nullptr), |
| digest_(rtc::MessageDigestFactory::Create(rtc::DIGEST_SHA_1)) { |
| if (!output_file.empty()) { |
| output_fp_ = fopen(output_file.c_str(), "wb"); |
| EXPECT_TRUE(output_fp_ != NULL); |
| } |
| } |
| |
| ResultSink::~ResultSink() { |
| if (output_fp_) |
| fclose(output_fp_); |
| } |
| |
| template <typename T> |
| void ResultSink::AddResult(const T* test_results, size_t length) { |
| if (output_fp_) { |
| ASSERT_EQ(length, fwrite(test_results, sizeof(T), length, output_fp_)); |
| } |
| digest_->Update(test_results, sizeof(T) * length); |
| } |
| |
| void ResultSink::AddResult(const NetEqNetworkStatistics& stats_raw) { |
| #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT |
| neteq_unittest::NetEqNetworkStatistics stats; |
| Convert(stats_raw, &stats); |
| |
| std::string stats_string; |
| ASSERT_TRUE(stats.SerializeToString(&stats_string)); |
| AddMessage(output_fp_, digest_.get(), stats_string); |
| #else |
| FAIL() << "Writing to reference file requires Proto Buffer."; |
| #endif // WEBRTC_NETEQ_UNITTEST_BITEXACT |
| } |
| |
| void ResultSink::AddResult(const RtcpStatistics& stats_raw) { |
| #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT |
| neteq_unittest::RtcpStatistics stats; |
| Convert(stats_raw, &stats); |
| |
| std::string stats_string; |
| ASSERT_TRUE(stats.SerializeToString(&stats_string)); |
| AddMessage(output_fp_, digest_.get(), stats_string); |
| #else |
| FAIL() << "Writing to reference file requires Proto Buffer."; |
| #endif // WEBRTC_NETEQ_UNITTEST_BITEXACT |
| } |
| |
| void ResultSink::VerifyChecksum(const std::string& checksum) { |
| std::vector<char> buffer; |
| buffer.resize(digest_->Size()); |
| digest_->Finish(&buffer[0], buffer.size()); |
| const std::string result = rtc::hex_encode(&buffer[0], digest_->Size()); |
| if (checksum.size() == result.size()) { |
| EXPECT_EQ(checksum, result); |
| } else { |
| // Check result is one the '|'-separated checksums. |
| EXPECT_NE(checksum.find(result), std::string::npos) |
| << result << " should be one of these:\n" |
| << checksum; |
| } |
| } |
| |
| class NetEqDecodingTest : public ::testing::Test { |
| protected: |
| // NetEQ must be polled for data once every 10 ms. Thus, neither of the |
| // constants below can be changed. |
| static const int kTimeStepMs = 10; |
| static const size_t kBlockSize8kHz = kTimeStepMs * 8; |
| static const size_t kBlockSize16kHz = kTimeStepMs * 16; |
| static const size_t kBlockSize32kHz = kTimeStepMs * 32; |
| static const size_t kBlockSize48kHz = kTimeStepMs * 48; |
| static const int kInitSampleRateHz = 8000; |
| |
| NetEqDecodingTest(); |
| virtual void SetUp(); |
| virtual void TearDown(); |
| void OpenInputFile(const std::string& rtp_file); |
| void Process(); |
| |
| void DecodeAndCompare(const std::string& rtp_file, |
| const std::string& output_checksum, |
| const std::string& network_stats_checksum, |
| bool gen_ref); |
| |
| static void PopulateRtpInfo(int frame_index, |
| int timestamp, |
| RTPHeader* rtp_info); |
| static void PopulateCng(int frame_index, |
| int timestamp, |
| RTPHeader* rtp_info, |
| uint8_t* payload, |
| size_t* payload_len); |
| |
| void WrapTest(uint16_t start_seq_no, |
| uint32_t start_timestamp, |
| const std::set<uint16_t>& drop_seq_numbers, |
| bool expect_seq_no_wrap, |
| bool expect_timestamp_wrap); |
| |
| void LongCngWithClockDrift(double drift_factor, |
| double network_freeze_ms, |
| bool pull_audio_during_freeze, |
| int delay_tolerance_ms, |
| int max_time_to_speech_ms); |
| |
| void DuplicateCng(); |
| |
| SimulatedClock clock_; |
| std::unique_ptr<NetEq> neteq_; |
| NetEq::Config config_; |
| std::unique_ptr<test::RtpFileSource> rtp_source_; |
| std::unique_ptr<test::Packet> packet_; |
| AudioFrame out_frame_; |
| int output_sample_rate_; |
| int algorithmic_delay_ms_; |
| }; |
| |
| // Allocating the static const so that it can be passed by reference. |
| const int NetEqDecodingTest::kTimeStepMs; |
| const size_t NetEqDecodingTest::kBlockSize8kHz; |
| const size_t NetEqDecodingTest::kBlockSize16kHz; |
| const size_t NetEqDecodingTest::kBlockSize32kHz; |
| const int NetEqDecodingTest::kInitSampleRateHz; |
| |
| NetEqDecodingTest::NetEqDecodingTest() |
| : clock_(0), |
| config_(), |
| output_sample_rate_(kInitSampleRateHz), |
| algorithmic_delay_ms_(0) { |
| config_.sample_rate_hz = kInitSampleRateHz; |
| } |
| |
| void NetEqDecodingTest::SetUp() { |
| std::unique_ptr<NetEqFactory> neteq_factory = CreateNetEqFactoryWithCodecs(); |
| neteq_ = neteq_factory->CreateNetEq(config_, &clock_); |
| NetEqNetworkStatistics stat; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&stat)); |
| algorithmic_delay_ms_ = stat.current_buffer_size_ms; |
| ASSERT_TRUE(neteq_); |
| LoadDecoders(neteq_.get()); |
| } |
| |
| void NetEqDecodingTest::TearDown() {} |
| |
| void NetEqDecodingTest::OpenInputFile(const std::string& rtp_file) { |
| rtp_source_.reset(test::RtpFileSource::Create(rtp_file)); |
| } |
| |
| void NetEqDecodingTest::Process() { |
| // Check if time to receive. |
| while (packet_ && clock_.TimeInMilliseconds() >= packet_->time_ms()) { |
| if (packet_->payload_length_bytes() > 0) { |
| #ifndef WEBRTC_CODEC_ISAC |
| // Ignore payload type 104 (iSAC-swb) if ISAC is not supported. |
| if (packet_->header().payloadType != 104) |
| #endif |
| ASSERT_EQ( |
| 0, neteq_->InsertPacket( |
| packet_->header(), |
| rtc::ArrayView<const uint8_t>( |
| packet_->payload(), packet_->payload_length_bytes()))); |
| } |
| // Get next packet. |
| packet_ = rtp_source_->NextPacket(); |
| } |
| |
| // Get audio from NetEq. |
| bool muted; |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_FALSE(muted); |
| ASSERT_TRUE((out_frame_.samples_per_channel_ == kBlockSize8kHz) || |
| (out_frame_.samples_per_channel_ == kBlockSize16kHz) || |
| (out_frame_.samples_per_channel_ == kBlockSize32kHz) || |
| (out_frame_.samples_per_channel_ == kBlockSize48kHz)); |
| output_sample_rate_ = out_frame_.sample_rate_hz_; |
| EXPECT_EQ(output_sample_rate_, neteq_->last_output_sample_rate_hz()); |
| |
| // Increase time. |
| clock_.AdvanceTimeMilliseconds(kTimeStepMs); |
| } |
| |
| void NetEqDecodingTest::DecodeAndCompare( |
| const std::string& rtp_file, |
| const std::string& output_checksum, |
| const std::string& network_stats_checksum, |
| bool gen_ref) { |
| OpenInputFile(rtp_file); |
| |
| std::string ref_out_file = |
| gen_ref ? webrtc::test::OutputPath() + "neteq_universal_ref.pcm" : ""; |
| ResultSink output(ref_out_file); |
| |
| std::string stat_out_file = |
| gen_ref ? webrtc::test::OutputPath() + "neteq_network_stats.dat" : ""; |
| ResultSink network_stats(stat_out_file); |
| |
| packet_ = rtp_source_->NextPacket(); |
| int i = 0; |
| uint64_t last_concealed_samples = 0; |
| uint64_t last_total_samples_received = 0; |
| while (packet_) { |
| rtc::StringBuilder ss; |
| ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; |
| SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| ASSERT_NO_FATAL_FAILURE(Process()); |
| ASSERT_NO_FATAL_FAILURE( |
| output.AddResult(out_frame_.data(), out_frame_.samples_per_channel_)); |
| |
| // Query the network statistics API once per second |
| if (clock_.TimeInMilliseconds() % 1000 == 0) { |
| // Process NetworkStatistics. |
| NetEqNetworkStatistics current_network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(¤t_network_stats)); |
| ASSERT_NO_FATAL_FAILURE(network_stats.AddResult(current_network_stats)); |
| |
| // Verify that liftime stats and network stats report similar loss |
| // concealment rates. |
| auto lifetime_stats = neteq_->GetLifetimeStatistics(); |
| const uint64_t delta_concealed_samples = |
| lifetime_stats.concealed_samples - last_concealed_samples; |
| last_concealed_samples = lifetime_stats.concealed_samples; |
| const uint64_t delta_total_samples_received = |
| lifetime_stats.total_samples_received - last_total_samples_received; |
| last_total_samples_received = lifetime_stats.total_samples_received; |
| // The tolerance is 1% but expressed in Q14. |
| EXPECT_NEAR( |
| (delta_concealed_samples << 14) / delta_total_samples_received, |
| current_network_stats.expand_rate, (2 << 14) / 100.0); |
| } |
| } |
| |
| SCOPED_TRACE("Check output audio."); |
| output.VerifyChecksum(output_checksum); |
| SCOPED_TRACE("Check network stats."); |
| network_stats.VerifyChecksum(network_stats_checksum); |
| } |
| |
| void NetEqDecodingTest::PopulateRtpInfo(int frame_index, |
| int timestamp, |
| RTPHeader* rtp_info) { |
| rtp_info->sequenceNumber = frame_index; |
| rtp_info->timestamp = timestamp; |
| rtp_info->ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info->payloadType = 94; // PCM16b WB codec. |
| rtp_info->markerBit = 0; |
| } |
| |
| void NetEqDecodingTest::PopulateCng(int frame_index, |
| int timestamp, |
| RTPHeader* rtp_info, |
| uint8_t* payload, |
| size_t* payload_len) { |
| rtp_info->sequenceNumber = frame_index; |
| rtp_info->timestamp = timestamp; |
| rtp_info->ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info->payloadType = 98; // WB CNG. |
| rtp_info->markerBit = 0; |
| payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen. |
| *payload_len = 1; // Only noise level, no spectral parameters. |
| } |
| |
| #if !defined(WEBRTC_IOS) && defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) && \ |
| (defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX)) && \ |
| defined(WEBRTC_CODEC_ILBC) && !defined(WEBRTC_ARCH_ARM64) |
| #define MAYBE_TestBitExactness TestBitExactness |
| #else |
| #define MAYBE_TestBitExactness DISABLED_TestBitExactness |
| #endif |
| TEST_F(NetEqDecodingTest, MAYBE_TestBitExactness) { |
| const std::string input_rtp_file = |
| webrtc::test::ResourcePath("audio_coding/neteq_universal_new", "rtp"); |
| |
| const std::string output_checksum = |
| PlatformChecksum("6ae9f643dc3e5f3452d28a772eef7e00e74158bc", |
| "f4374430e870d66268c1b8e22fb700eb072d567e", "not used", |
| "6ae9f643dc3e5f3452d28a772eef7e00e74158bc", |
| "8d73c98645917cdeaaa01c20cf095ccc5a10b2b5"); |
| |
| const std::string network_stats_checksum = |
| PlatformChecksum("3d186ea7e243abfdbd3d39b8ebf8f02a318117e4", |
| "0b725774133da5dd823f2046663c12a76e0dbd79", "not used", |
| "3d186ea7e243abfdbd3d39b8ebf8f02a318117e4", |
| "3d186ea7e243abfdbd3d39b8ebf8f02a318117e4"); |
| |
| DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum, |
| absl::GetFlag(FLAGS_gen_ref)); |
| } |
| |
| #if !defined(WEBRTC_IOS) && defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) && \ |
| defined(WEBRTC_CODEC_OPUS) |
| #define MAYBE_TestOpusBitExactness TestOpusBitExactness |
| #else |
| #define MAYBE_TestOpusBitExactness DISABLED_TestOpusBitExactness |
| #endif |
| TEST_F(NetEqDecodingTest, MAYBE_TestOpusBitExactness) { |
| const std::string input_rtp_file = |
| webrtc::test::ResourcePath("audio_coding/neteq_opus", "rtp"); |
| |
| // Checksum depends on libopus being compiled with or without SSE. |
| const std::string maybe_sse = |
| "6b602683ca7285a98118b4824d72f4257952c18f|" |
| "eb0b68bddcac00fc85403df64f83126f8ea9bc93"; |
| const std::string output_checksum = PlatformChecksum( |
| maybe_sse, "f95f2a220c9ca5d60b81c4653d46e0de2bee159f", |
| "6f288a03d34958f62496f18fa85655593eef4dbe", maybe_sse, maybe_sse); |
| |
| const std::string network_stats_checksum = |
| PlatformChecksum("87d2d3e5ca7f1b3fb7a501ffaa51ae29aea74544", |
| "6b8c29e39c82f5479f59726744d0cf3e88e725d3", |
| "c876f2a04c4f0a91da7f084f80e87871b7c5a4a1", |
| "87d2d3e5ca7f1b3fb7a501ffaa51ae29aea74544", |
| "87d2d3e5ca7f1b3fb7a501ffaa51ae29aea74544"); |
| |
| DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum, |
| absl::GetFlag(FLAGS_gen_ref)); |
| } |
| |
| #if !defined(WEBRTC_IOS) && defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) && \ |
| defined(WEBRTC_CODEC_OPUS) |
| #define MAYBE_TestOpusDtxBitExactness TestOpusDtxBitExactness |
| #else |
| #define MAYBE_TestOpusDtxBitExactness DISABLED_TestOpusDtxBitExactness |
| #endif |
| TEST_F(NetEqDecodingTest, MAYBE_TestOpusDtxBitExactness) { |
| const std::string input_rtp_file = |
| webrtc::test::ResourcePath("audio_coding/neteq_opus_dtx", "rtp"); |
| |
| const std::string maybe_sse = |
| "0bdeb4ccf95a2577e38274360903ad099fc46787|" |
| "f7bbf5d92a0595a2a3445ffbaddfb20e98b6e94e"; |
| const std::string output_checksum = PlatformChecksum( |
| maybe_sse, "6d200cc51a001b6137abf67db2bb8eeb0375cdee", |
| "36d43761de86b12520cf2e63f97372a2b7c6f939", maybe_sse, maybe_sse); |
| |
| const std::string network_stats_checksum = |
| "8caf49765f35b6862066d3f17531ce44d8e25f60"; |
| |
| DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum, |
| absl::GetFlag(FLAGS_gen_ref)); |
| } |
| |
| // Use fax mode to avoid time-scaling. This is to simplify the testing of |
| // packet waiting times in the packet buffer. |
| class NetEqDecodingTestFaxMode : public NetEqDecodingTest { |
| protected: |
| NetEqDecodingTestFaxMode() : NetEqDecodingTest() { |
| config_.for_test_no_time_stretching = true; |
| } |
| void TestJitterBufferDelay(bool apply_packet_loss); |
| }; |
| |
| TEST_F(NetEqDecodingTestFaxMode, TestFrameWaitingTimeStatistics) { |
| // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio. |
| size_t num_frames = 30; |
| const size_t kSamples = 10 * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| for (size_t i = 0; i < num_frames; ++i) { |
| const uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| rtp_info.sequenceNumber = rtc::checked_cast<uint16_t>(i); |
| rtp_info.timestamp = rtc::checked_cast<uint32_t>(i * kSamples); |
| rtp_info.ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info.payloadType = 94; // PCM16b WB codec. |
| rtp_info.markerBit = 0; |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| } |
| // Pull out all data. |
| for (size_t i = 0; i < num_frames; ++i) { |
| bool muted; |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| } |
| |
| NetEqNetworkStatistics stats; |
| EXPECT_EQ(0, neteq_->NetworkStatistics(&stats)); |
| // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms |
| // spacing (per definition), we expect the delay to increase with 10 ms for |
| // each packet. Thus, we are calculating the statistics for a series from 10 |
| // to 300, in steps of 10 ms. |
| EXPECT_EQ(155, stats.mean_waiting_time_ms); |
| EXPECT_EQ(155, stats.median_waiting_time_ms); |
| EXPECT_EQ(10, stats.min_waiting_time_ms); |
| EXPECT_EQ(300, stats.max_waiting_time_ms); |
| |
| // Check statistics again and make sure it's been reset. |
| EXPECT_EQ(0, neteq_->NetworkStatistics(&stats)); |
| EXPECT_EQ(-1, stats.mean_waiting_time_ms); |
| EXPECT_EQ(-1, stats.median_waiting_time_ms); |
| EXPECT_EQ(-1, stats.min_waiting_time_ms); |
| EXPECT_EQ(-1, stats.max_waiting_time_ms); |
| } |
| |
| void NetEqDecodingTest::LongCngWithClockDrift(double drift_factor, |
| double network_freeze_ms, |
| bool pull_audio_during_freeze, |
| int delay_tolerance_ms, |
| int max_time_to_speech_ms) { |
| uint16_t seq_no = 0; |
| uint32_t timestamp = 0; |
| const int kFrameSizeMs = 30; |
| const size_t kSamples = kFrameSizeMs * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| double next_input_time_ms = 0.0; |
| double t_ms; |
| bool muted; |
| |
| // Insert speech for 5 seconds. |
| const int kSpeechDurationMs = 5000; |
| for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one 30 ms speech frame. |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| ++seq_no; |
| timestamp += kSamples; |
| next_input_time_ms += static_cast<double>(kFrameSizeMs) * drift_factor; |
| } |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| } |
| |
| EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); |
| absl::optional<uint32_t> playout_timestamp = neteq_->GetPlayoutTimestamp(); |
| ASSERT_TRUE(playout_timestamp); |
| int32_t delay_before = timestamp - *playout_timestamp; |
| |
| // Insert CNG for 1 minute (= 60000 ms). |
| const int kCngPeriodMs = 100; |
| const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples. |
| const int kCngDurationMs = 60000; |
| for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one CNG frame each 100 ms. |
| uint8_t payload[kPayloadBytes]; |
| size_t payload_len; |
| RTPHeader rtp_info; |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>( |
| payload, payload_len))); |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| next_input_time_ms += static_cast<double>(kCngPeriodMs) * drift_factor; |
| } |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| } |
| |
| EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); |
| |
| if (network_freeze_ms > 0) { |
| // First keep pulling audio for |network_freeze_ms| without inserting |
| // any data, then insert CNG data corresponding to |network_freeze_ms| |
| // without pulling any output audio. |
| const double loop_end_time = t_ms + network_freeze_ms; |
| for (; t_ms < loop_end_time; t_ms += 10) { |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); |
| } |
| bool pull_once = pull_audio_during_freeze; |
| // If |pull_once| is true, GetAudio will be called once half-way through |
| // the network recovery period. |
| double pull_time_ms = (t_ms + next_input_time_ms) / 2; |
| while (next_input_time_ms <= t_ms) { |
| if (pull_once && next_input_time_ms >= pull_time_ms) { |
| pull_once = false; |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); |
| t_ms += 10; |
| } |
| // Insert one CNG frame each 100 ms. |
| uint8_t payload[kPayloadBytes]; |
| size_t payload_len; |
| RTPHeader rtp_info; |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>( |
| payload, payload_len))); |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| next_input_time_ms += kCngPeriodMs * drift_factor; |
| } |
| } |
| |
| // Insert speech again until output type is speech. |
| double speech_restart_time_ms = t_ms; |
| while (out_frame_.speech_type_ != AudioFrame::kNormalSpeech) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one 30 ms speech frame. |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| ++seq_no; |
| timestamp += kSamples; |
| next_input_time_ms += kFrameSizeMs * drift_factor; |
| } |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| // Increase clock. |
| t_ms += 10; |
| } |
| |
| // Check that the speech starts again within reasonable time. |
| double time_until_speech_returns_ms = t_ms - speech_restart_time_ms; |
| EXPECT_LT(time_until_speech_returns_ms, max_time_to_speech_ms); |
| playout_timestamp = neteq_->GetPlayoutTimestamp(); |
| ASSERT_TRUE(playout_timestamp); |
| int32_t delay_after = timestamp - *playout_timestamp; |
| // Compare delay before and after, and make sure it differs less than 20 ms. |
| EXPECT_LE(delay_after, delay_before + delay_tolerance_ms * 16); |
| EXPECT_GE(delay_after, delay_before - delay_tolerance_ms * 16); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDrift) { |
| // Apply a clock drift of -25 ms / s (sender faster than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 + 25.0); |
| const double kNetworkFreezeTimeMs = 0.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 20; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDrift) { |
| // Apply a clock drift of +25 ms / s (sender slower than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 - 25.0); |
| const double kNetworkFreezeTimeMs = 0.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 40; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDriftNetworkFreeze) { |
| // Apply a clock drift of -25 ms / s (sender faster than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 + 25.0); |
| const double kNetworkFreezeTimeMs = 5000.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 60; |
| const int kMaxTimeToSpeechMs = 200; |
| LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreeze) { |
| // Apply a clock drift of +25 ms / s (sender slower than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 - 25.0); |
| const double kNetworkFreezeTimeMs = 5000.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 40; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreezeExtraPull) { |
| // Apply a clock drift of +25 ms / s (sender slower than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 - 25.0); |
| const double kNetworkFreezeTimeMs = 5000.0; |
| const bool kGetAudioDuringFreezeRecovery = true; |
| const int kDelayToleranceMs = 40; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithoutClockDrift) { |
| const double kDriftFactor = 1.0; // No drift. |
| const double kNetworkFreezeTimeMs = 0.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 10; |
| const int kMaxTimeToSpeechMs = 50; |
| LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, UnknownPayloadType) { |
| const size_t kPayloadBytes = 100; |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| rtp_info.payloadType = 1; // Not registered as a decoder. |
| EXPECT_EQ(NetEq::kFail, neteq_->InsertPacket(rtp_info, payload)); |
| } |
| |
| #if defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX) |
| #define MAYBE_DecoderError DecoderError |
| #else |
| #define MAYBE_DecoderError DISABLED_DecoderError |
| #endif |
| |
| TEST_F(NetEqDecodingTest, MAYBE_DecoderError) { |
| const size_t kPayloadBytes = 100; |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| rtp_info.payloadType = 103; // iSAC, but the payload is invalid. |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| // Set all of |out_data_| to 1, and verify that it was set to 0 by the call |
| // to GetAudio. |
| int16_t* out_frame_data = out_frame_.mutable_data(); |
| for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; ++i) { |
| out_frame_data[i] = 1; |
| } |
| bool muted; |
| EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_FALSE(muted); |
| |
| // Verify that the first 160 samples are set to 0. |
| static const int kExpectedOutputLength = 160; // 10 ms at 16 kHz sample rate. |
| const int16_t* const_out_frame_data = out_frame_.data(); |
| for (int i = 0; i < kExpectedOutputLength; ++i) { |
| rtc::StringBuilder ss; |
| ss << "i = " << i; |
| SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| EXPECT_EQ(0, const_out_frame_data[i]); |
| } |
| } |
| |
| TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) { |
| // Set all of |out_data_| to 1, and verify that it was set to 0 by the call |
| // to GetAudio. |
| int16_t* out_frame_data = out_frame_.mutable_data(); |
| for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; ++i) { |
| out_frame_data[i] = 1; |
| } |
| bool muted; |
| EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_FALSE(muted); |
| // Verify that the first block of samples is set to 0. |
| static const int kExpectedOutputLength = |
| kInitSampleRateHz / 100; // 10 ms at initial sample rate. |
| const int16_t* const_out_frame_data = out_frame_.data(); |
| for (int i = 0; i < kExpectedOutputLength; ++i) { |
| rtc::StringBuilder ss; |
| ss << "i = " << i; |
| SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| EXPECT_EQ(0, const_out_frame_data[i]); |
| } |
| // Verify that the sample rate did not change from the initial configuration. |
| EXPECT_EQ(config_.sample_rate_hz, neteq_->last_output_sample_rate_hz()); |
| } |
| |
| class NetEqBgnTest : public NetEqDecodingTest { |
| protected: |
| void CheckBgn(int sampling_rate_hz) { |
| size_t expected_samples_per_channel = 0; |
| uint8_t payload_type = 0xFF; // Invalid. |
| if (sampling_rate_hz == 8000) { |
| expected_samples_per_channel = kBlockSize8kHz; |
| payload_type = 93; // PCM 16, 8 kHz. |
| } else if (sampling_rate_hz == 16000) { |
| expected_samples_per_channel = kBlockSize16kHz; |
| payload_type = 94; // PCM 16, 16 kHZ. |
| } else if (sampling_rate_hz == 32000) { |
| expected_samples_per_channel = kBlockSize32kHz; |
| payload_type = 95; // PCM 16, 32 kHz. |
| } else { |
| ASSERT_TRUE(false); // Unsupported test case. |
| } |
| |
| AudioFrame output; |
| test::AudioLoop input; |
| // We are using the same 32 kHz input file for all tests, regardless of |
| // |sampling_rate_hz|. The output may sound weird, but the test is still |
| // valid. |
| ASSERT_TRUE(input.Init( |
| webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"), |
| 10 * sampling_rate_hz, // Max 10 seconds loop length. |
| expected_samples_per_channel)); |
| |
| // Payload of 10 ms of PCM16 32 kHz. |
| uint8_t payload[kBlockSize32kHz * sizeof(int16_t)]; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| rtp_info.payloadType = payload_type; |
| |
| uint32_t receive_timestamp = 0; |
| bool muted; |
| for (int n = 0; n < 10; ++n) { // Insert few packets and get audio. |
| auto block = input.GetNextBlock(); |
| ASSERT_EQ(expected_samples_per_channel, block.size()); |
| size_t enc_len_bytes = |
| WebRtcPcm16b_Encode(block.data(), block.size(), payload); |
| ASSERT_EQ(enc_len_bytes, expected_samples_per_channel * 2); |
| |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>( |
| payload, enc_len_bytes))); |
| output.Reset(); |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(1u, output.num_channels_); |
| ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_); |
| ASSERT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Next packet. |
| rtp_info.timestamp += |
| rtc::checked_cast<uint32_t>(expected_samples_per_channel); |
| rtp_info.sequenceNumber++; |
| receive_timestamp += |
| rtc::checked_cast<uint32_t>(expected_samples_per_channel); |
| } |
| |
| output.Reset(); |
| |
| // Get audio without inserting packets, expecting PLC and PLC-to-CNG. Pull |
| // one frame without checking speech-type. This is the first frame pulled |
| // without inserting any packet, and might not be labeled as PLC. |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(1u, output.num_channels_); |
| ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_); |
| |
| // To be able to test the fading of background noise we need at lease to |
| // pull 611 frames. |
| const int kFadingThreshold = 611; |
| |
| // Test several CNG-to-PLC packet for the expected behavior. The number 20 |
| // is arbitrary, but sufficiently large to test enough number of frames. |
| const int kNumPlcToCngTestFrames = 20; |
| bool plc_to_cng = false; |
| for (int n = 0; n < kFadingThreshold + kNumPlcToCngTestFrames; ++n) { |
| output.Reset(); |
| // Set to non-zero. |
| memset(output.mutable_data(), 1, AudioFrame::kMaxDataSizeBytes); |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| ASSERT_FALSE(muted); |
| ASSERT_EQ(1u, output.num_channels_); |
| ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_); |
| if (output.speech_type_ == AudioFrame::kPLCCNG) { |
| plc_to_cng = true; |
| double sum_squared = 0; |
| const int16_t* output_data = output.data(); |
| for (size_t k = 0; |
| k < output.num_channels_ * output.samples_per_channel_; ++k) |
| sum_squared += output_data[k] * output_data[k]; |
| EXPECT_EQ(0, sum_squared); |
| } else { |
| EXPECT_EQ(AudioFrame::kPLC, output.speech_type_); |
| } |
| } |
| EXPECT_TRUE(plc_to_cng); // Just to be sure that PLC-to-CNG has occurred. |
| } |
| }; |
| |
| TEST_F(NetEqBgnTest, RunTest) { |
| CheckBgn(8000); |
| CheckBgn(16000); |
| CheckBgn(32000); |
| } |
| |
| void NetEqDecodingTest::WrapTest(uint16_t start_seq_no, |
| uint32_t start_timestamp, |
| const std::set<uint16_t>& drop_seq_numbers, |
| bool expect_seq_no_wrap, |
| bool expect_timestamp_wrap) { |
| uint16_t seq_no = start_seq_no; |
| uint32_t timestamp = start_timestamp; |
| const int kBlocksPerFrame = 3; // Number of 10 ms blocks per frame. |
| const int kFrameSizeMs = kBlocksPerFrame * kTimeStepMs; |
| const int kSamples = kBlockSize16kHz * kBlocksPerFrame; |
| const size_t kPayloadBytes = kSamples * sizeof(int16_t); |
| double next_input_time_ms = 0.0; |
| uint32_t receive_timestamp = 0; |
| |
| // Insert speech for 2 seconds. |
| const int kSpeechDurationMs = 2000; |
| int packets_inserted = 0; |
| uint16_t last_seq_no; |
| uint32_t last_timestamp; |
| bool timestamp_wrapped = false; |
| bool seq_no_wrapped = false; |
| for (double t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one 30 ms speech frame. |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| if (drop_seq_numbers.find(seq_no) == drop_seq_numbers.end()) { |
| // This sequence number was not in the set to drop. Insert it. |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| ++packets_inserted; |
| } |
| NetEqNetworkStatistics network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| |
| // Due to internal NetEq logic, preferred buffer-size is about 4 times the |
| // packet size for first few packets. Therefore we refrain from checking |
| // the criteria. |
| if (packets_inserted > 4) { |
| // Expect preferred and actual buffer size to be no more than 2 frames. |
| EXPECT_LE(network_stats.preferred_buffer_size_ms, kFrameSizeMs * 2); |
| EXPECT_LE(network_stats.current_buffer_size_ms, |
| kFrameSizeMs * 2 + algorithmic_delay_ms_); |
| } |
| last_seq_no = seq_no; |
| last_timestamp = timestamp; |
| |
| ++seq_no; |
| timestamp += kSamples; |
| receive_timestamp += kSamples; |
| next_input_time_ms += static_cast<double>(kFrameSizeMs); |
| |
| seq_no_wrapped |= seq_no < last_seq_no; |
| timestamp_wrapped |= timestamp < last_timestamp; |
| } |
| // Pull out data once. |
| AudioFrame output; |
| bool muted; |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, output.samples_per_channel_); |
| ASSERT_EQ(1u, output.num_channels_); |
| |
| // Expect delay (in samples) to be less than 2 packets. |
| absl::optional<uint32_t> playout_timestamp = neteq_->GetPlayoutTimestamp(); |
| ASSERT_TRUE(playout_timestamp); |
| EXPECT_LE(timestamp - *playout_timestamp, |
| static_cast<uint32_t>(kSamples * 2)); |
| } |
| // Make sure we have actually tested wrap-around. |
| ASSERT_EQ(expect_seq_no_wrap, seq_no_wrapped); |
| ASSERT_EQ(expect_timestamp_wrap, timestamp_wrapped); |
| } |
| |
| TEST_F(NetEqDecodingTest, SequenceNumberWrap) { |
| // Start with a sequence number that will soon wrap. |
| std::set<uint16_t> drop_seq_numbers; // Don't drop any packets. |
| WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); |
| } |
| |
| TEST_F(NetEqDecodingTest, SequenceNumberWrapAndDrop) { |
| // Start with a sequence number that will soon wrap. |
| std::set<uint16_t> drop_seq_numbers; |
| drop_seq_numbers.insert(0xFFFF); |
| drop_seq_numbers.insert(0x0); |
| WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); |
| } |
| |
| TEST_F(NetEqDecodingTest, TimestampWrap) { |
| // Start with a timestamp that will soon wrap. |
| std::set<uint16_t> drop_seq_numbers; |
| WrapTest(0, 0xFFFFFFFF - 3000, drop_seq_numbers, false, true); |
| } |
| |
| TEST_F(NetEqDecodingTest, TimestampAndSequenceNumberWrap) { |
| // Start with a timestamp and a sequence number that will wrap at the same |
| // time. |
| std::set<uint16_t> drop_seq_numbers; |
| WrapTest(0xFFFF - 10, 0xFFFFFFFF - 5000, drop_seq_numbers, true, true); |
| } |
| |
| void NetEqDecodingTest::DuplicateCng() { |
| uint16_t seq_no = 0; |
| uint32_t timestamp = 0; |
| const int kFrameSizeMs = 10; |
| const int kSampleRateKhz = 16; |
| const int kSamples = kFrameSizeMs * kSampleRateKhz; |
| const size_t kPayloadBytes = kSamples * 2; |
| |
| const int algorithmic_delay_samples = |
| std::max(algorithmic_delay_ms_ * kSampleRateKhz, 5 * kSampleRateKhz / 8); |
| // Insert three speech packets. Three are needed to get the frame length |
| // correct. |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| bool muted; |
| for (int i = 0; i < 3; ++i) { |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| ++seq_no; |
| timestamp += kSamples; |
| |
| // Pull audio once. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| } |
| // Verify speech output. |
| EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); |
| |
| // Insert same CNG packet twice. |
| const int kCngPeriodMs = 100; |
| const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; |
| size_t payload_len; |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| // This is the first time this CNG packet is inserted. |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>( |
| payload, payload_len))); |
| |
| // Pull audio once and make sure CNG is played. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); |
| EXPECT_FALSE( |
| neteq_->GetPlayoutTimestamp()); // Returns empty value during CNG. |
| EXPECT_EQ(timestamp - algorithmic_delay_samples, |
| out_frame_.timestamp_ + out_frame_.samples_per_channel_); |
| |
| // Insert the same CNG packet again. Note that at this point it is old, since |
| // we have already decoded the first copy of it. |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>( |
| payload, payload_len))); |
| |
| // Pull audio until we have played |kCngPeriodMs| of CNG. Start at 10 ms since |
| // we have already pulled out CNG once. |
| for (int cng_time_ms = 10; cng_time_ms < kCngPeriodMs; cng_time_ms += 10) { |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); |
| EXPECT_FALSE( |
| neteq_->GetPlayoutTimestamp()); // Returns empty value during CNG. |
| EXPECT_EQ(timestamp - algorithmic_delay_samples, |
| out_frame_.timestamp_ + out_frame_.samples_per_channel_); |
| } |
| |
| // Insert speech again. |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| |
| // Pull audio once and verify that the output is speech again. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); |
| absl::optional<uint32_t> playout_timestamp = neteq_->GetPlayoutTimestamp(); |
| ASSERT_TRUE(playout_timestamp); |
| EXPECT_EQ(timestamp + kSamples - algorithmic_delay_samples, |
| *playout_timestamp); |
| } |
| |
| TEST_F(NetEqDecodingTest, DiscardDuplicateCng) { |
| DuplicateCng(); |
| } |
| |
| TEST_F(NetEqDecodingTest, CngFirst) { |
| uint16_t seq_no = 0; |
| uint32_t timestamp = 0; |
| const int kFrameSizeMs = 10; |
| const int kSampleRateKhz = 16; |
| const int kSamples = kFrameSizeMs * kSampleRateKhz; |
| const int kPayloadBytes = kSamples * 2; |
| const int kCngPeriodMs = 100; |
| const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; |
| size_t payload_len; |
| |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| ASSERT_EQ(NetEq::kOK, |
| neteq_->InsertPacket( |
| rtp_info, rtc::ArrayView<const uint8_t>(payload, payload_len))); |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| |
| // Pull audio once and make sure CNG is played. |
| bool muted; |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); |
| |
| // Insert some speech packets. |
| const uint32_t first_speech_timestamp = timestamp; |
| int timeout_counter = 0; |
| do { |
| ASSERT_LT(timeout_counter++, 20) << "Test timed out"; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| ++seq_no; |
| timestamp += kSamples; |
| |
| // Pull audio once. |
| ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); |
| } while (!IsNewerTimestamp(out_frame_.timestamp_, first_speech_timestamp)); |
| // Verify speech output. |
| EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); |
| } |
| |
| class NetEqDecodingTestWithMutedState : public NetEqDecodingTest { |
| public: |
| NetEqDecodingTestWithMutedState() : NetEqDecodingTest() { |
| config_.enable_muted_state = true; |
| } |
| |
| protected: |
| static constexpr size_t kSamples = 10 * 16; |
| static constexpr size_t kPayloadBytes = kSamples * 2; |
| |
| void InsertPacket(uint32_t rtp_timestamp) { |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(0, rtp_timestamp, &rtp_info); |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| } |
| |
| void InsertCngPacket(uint32_t rtp_timestamp) { |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| size_t payload_len; |
| PopulateCng(0, rtp_timestamp, &rtp_info, payload, &payload_len); |
| EXPECT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>( |
| payload, payload_len))); |
| } |
| |
| bool GetAudioReturnMuted() { |
| bool muted; |
| EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| return muted; |
| } |
| |
| void GetAudioUntilMuted() { |
| while (!GetAudioReturnMuted()) { |
| ASSERT_LT(counter_++, 1000) << "Test timed out"; |
| } |
| } |
| |
| void GetAudioUntilNormal() { |
| bool muted = false; |
| while (out_frame_.speech_type_ != AudioFrame::kNormalSpeech) { |
| EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_LT(counter_++, 1000) << "Test timed out"; |
| } |
| EXPECT_FALSE(muted); |
| } |
| |
| int counter_ = 0; |
| }; |
| |
| // Verifies that NetEq goes in and out of muted state as expected. |
| TEST_F(NetEqDecodingTestWithMutedState, MutedState) { |
| // Insert one speech packet. |
| InsertPacket(0); |
| // Pull out audio once and expect it not to be muted. |
| EXPECT_FALSE(GetAudioReturnMuted()); |
| // Pull data until faded out. |
| GetAudioUntilMuted(); |
| EXPECT_TRUE(out_frame_.muted()); |
| |
| // Verify that output audio is not written during muted mode. Other parameters |
| // should be correct, though. |
| AudioFrame new_frame; |
| int16_t* frame_data = new_frame.mutable_data(); |
| for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; i++) { |
| frame_data[i] = 17; |
| } |
| bool muted; |
| EXPECT_EQ(0, neteq_->GetAudio(&new_frame, &muted)); |
| EXPECT_TRUE(muted); |
| EXPECT_TRUE(out_frame_.muted()); |
| for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; i++) { |
| EXPECT_EQ(17, frame_data[i]); |
| } |
| EXPECT_EQ(out_frame_.timestamp_ + out_frame_.samples_per_channel_, |
| new_frame.timestamp_); |
| EXPECT_EQ(out_frame_.samples_per_channel_, new_frame.samples_per_channel_); |
| EXPECT_EQ(out_frame_.sample_rate_hz_, new_frame.sample_rate_hz_); |
| EXPECT_EQ(out_frame_.num_channels_, new_frame.num_channels_); |
| EXPECT_EQ(out_frame_.speech_type_, new_frame.speech_type_); |
| EXPECT_EQ(out_frame_.vad_activity_, new_frame.vad_activity_); |
| |
| // Insert new data. Timestamp is corrected for the time elapsed since the last |
| // packet. Verify that normal operation resumes. |
| InsertPacket(kSamples * counter_); |
| GetAudioUntilNormal(); |
| EXPECT_FALSE(out_frame_.muted()); |
| |
| NetEqNetworkStatistics stats; |
| EXPECT_EQ(0, neteq_->NetworkStatistics(&stats)); |
| // NetEqNetworkStatistics::expand_rate tells the fraction of samples that were |
| // concealment samples, in Q14 (16384 = 100%) .The vast majority should be |
| // concealment samples in this test. |
| EXPECT_GT(stats.expand_rate, 14000); |
| // And, it should be greater than the speech_expand_rate. |
| EXPECT_GT(stats.expand_rate, stats.speech_expand_rate); |
| } |
| |
| // Verifies that NetEq goes out of muted state when given a delayed packet. |
| TEST_F(NetEqDecodingTestWithMutedState, MutedStateDelayedPacket) { |
| // Insert one speech packet. |
| InsertPacket(0); |
| // Pull out audio once and expect it not to be muted. |
| EXPECT_FALSE(GetAudioReturnMuted()); |
| // Pull data until faded out. |
| GetAudioUntilMuted(); |
| // Insert new data. Timestamp is only corrected for the half of the time |
| // elapsed since the last packet. That is, the new packet is delayed. Verify |
| // that normal operation resumes. |
| InsertPacket(kSamples * counter_ / 2); |
| GetAudioUntilNormal(); |
| } |
| |
| // Verifies that NetEq goes out of muted state when given a future packet. |
| TEST_F(NetEqDecodingTestWithMutedState, MutedStateFuturePacket) { |
| // Insert one speech packet. |
| InsertPacket(0); |
| // Pull out audio once and expect it not to be muted. |
| EXPECT_FALSE(GetAudioReturnMuted()); |
| // Pull data until faded out. |
| GetAudioUntilMuted(); |
| // Insert new data. Timestamp is over-corrected for the time elapsed since the |
| // last packet. That is, the new packet is too early. Verify that normal |
| // operation resumes. |
| InsertPacket(kSamples * counter_ * 2); |
| GetAudioUntilNormal(); |
| } |
| |
| // Verifies that NetEq goes out of muted state when given an old packet. |
| TEST_F(NetEqDecodingTestWithMutedState, MutedStateOldPacket) { |
| // Insert one speech packet. |
| InsertPacket(0); |
| // Pull out audio once and expect it not to be muted. |
| EXPECT_FALSE(GetAudioReturnMuted()); |
| // Pull data until faded out. |
| GetAudioUntilMuted(); |
| |
| EXPECT_NE(AudioFrame::kNormalSpeech, out_frame_.speech_type_); |
| // Insert packet which is older than the first packet. |
| InsertPacket(kSamples * (counter_ - 1000)); |
| EXPECT_FALSE(GetAudioReturnMuted()); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); |
| } |
| |
| // Verifies that NetEq doesn't enter muted state when CNG mode is active and the |
| // packet stream is suspended for a long time. |
| TEST_F(NetEqDecodingTestWithMutedState, DoNotMuteExtendedCngWithoutPackets) { |
| // Insert one CNG packet. |
| InsertCngPacket(0); |
| |
| // Pull 10 seconds of audio (10 ms audio generated per lap). |
| for (int i = 0; i < 1000; ++i) { |
| bool muted; |
| EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| ASSERT_FALSE(muted); |
| } |
| EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); |
| } |
| |
| // Verifies that NetEq goes back to normal after a long CNG period with the |
| // packet stream suspended. |
| TEST_F(NetEqDecodingTestWithMutedState, RecoverAfterExtendedCngWithoutPackets) { |
| // Insert one CNG packet. |
| InsertCngPacket(0); |
| |
| // Pull 10 seconds of audio (10 ms audio generated per lap). |
| for (int i = 0; i < 1000; ++i) { |
| bool muted; |
| EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); |
| } |
| |
| // Insert new data. Timestamp is corrected for the time elapsed since the last |
| // packet. Verify that normal operation resumes. |
| InsertPacket(kSamples * counter_); |
| GetAudioUntilNormal(); |
| } |
| |
| class NetEqDecodingTestTwoInstances : public NetEqDecodingTest { |
| public: |
| NetEqDecodingTestTwoInstances() : NetEqDecodingTest() {} |
| |
| void SetUp() override { |
| NetEqDecodingTest::SetUp(); |
| config2_ = config_; |
| } |
| |
| void CreateSecondInstance() { |
| std::unique_ptr<NetEqFactory> neteq_factory = |
| CreateNetEqFactoryWithCodecs(); |
| neteq2_ = neteq_factory->CreateNetEq(config2_, &clock_); |
| ASSERT_TRUE(neteq2_); |
| LoadDecoders(neteq2_.get()); |
| } |
| |
| protected: |
| std::unique_ptr<NetEq> neteq2_; |
| NetEq::Config config2_; |
| }; |
| |
| namespace { |
| ::testing::AssertionResult AudioFramesEqualExceptData(const AudioFrame& a, |
| const AudioFrame& b) { |
| if (a.timestamp_ != b.timestamp_) |
| return ::testing::AssertionFailure() << "timestamp_ diff (" << a.timestamp_ |
| << " != " << b.timestamp_ << ")"; |
| if (a.sample_rate_hz_ != b.sample_rate_hz_) |
| return ::testing::AssertionFailure() |
| << "sample_rate_hz_ diff (" << a.sample_rate_hz_ |
| << " != " << b.sample_rate_hz_ << ")"; |
| if (a.samples_per_channel_ != b.samples_per_channel_) |
| return ::testing::AssertionFailure() |
| << "samples_per_channel_ diff (" << a.samples_per_channel_ |
| << " != " << b.samples_per_channel_ << ")"; |
| if (a.num_channels_ != b.num_channels_) |
| return ::testing::AssertionFailure() |
| << "num_channels_ diff (" << a.num_channels_ |
| << " != " << b.num_channels_ << ")"; |
| if (a.speech_type_ != b.speech_type_) |
| return ::testing::AssertionFailure() |
| << "speech_type_ diff (" << a.speech_type_ |
| << " != " << b.speech_type_ << ")"; |
| if (a.vad_activity_ != b.vad_activity_) |
| return ::testing::AssertionFailure() |
| << "vad_activity_ diff (" << a.vad_activity_ |
| << " != " << b.vad_activity_ << ")"; |
| return ::testing::AssertionSuccess(); |
| } |
| |
| ::testing::AssertionResult AudioFramesEqual(const AudioFrame& a, |
| const AudioFrame& b) { |
| ::testing::AssertionResult res = AudioFramesEqualExceptData(a, b); |
| if (!res) |
| return res; |
| if (memcmp(a.data(), b.data(), |
| a.samples_per_channel_ * a.num_channels_ * sizeof(*a.data())) != |
| 0) { |
| return ::testing::AssertionFailure() << "data_ diff"; |
| } |
| return ::testing::AssertionSuccess(); |
| } |
| |
| } // namespace |
| |
| TEST_F(NetEqDecodingTestTwoInstances, CompareMutedStateOnOff) { |
| ASSERT_FALSE(config_.enable_muted_state); |
| config2_.enable_muted_state = true; |
| CreateSecondInstance(); |
| |
| // Insert one speech packet into both NetEqs. |
| const size_t kSamples = 10 * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| uint8_t payload[kPayloadBytes] = {0}; |
| RTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| EXPECT_EQ(0, neteq2_->InsertPacket(rtp_info, payload)); |
| |
| AudioFrame out_frame1, out_frame2; |
| bool muted; |
| for (int i = 0; i < 1000; ++i) { |
| rtc::StringBuilder ss; |
| ss << "i = " << i; |
| SCOPED_TRACE(ss.str()); // Print out the loop iterator on failure. |
| EXPECT_EQ(0, neteq_->GetAudio(&out_frame1, &muted)); |
| EXPECT_FALSE(muted); |
| EXPECT_EQ(0, neteq2_->GetAudio(&out_frame2, &muted)); |
| if (muted) { |
| EXPECT_TRUE(AudioFramesEqualExceptData(out_frame1, out_frame2)); |
| } else { |
| EXPECT_TRUE(AudioFramesEqual(out_frame1, out_frame2)); |
| } |
| } |
| EXPECT_TRUE(muted); |
| |
| // Insert new data. Timestamp is corrected for the time elapsed since the last |
| // packet. |
| PopulateRtpInfo(0, kSamples * 1000, &rtp_info); |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| EXPECT_EQ(0, neteq2_->InsertPacket(rtp_info, payload)); |
| |
| int counter = 0; |
| while (out_frame1.speech_type_ != AudioFrame::kNormalSpeech) { |
| ASSERT_LT(counter++, 1000) << "Test timed out"; |
| rtc::StringBuilder ss; |
| ss << "counter = " << counter; |
| SCOPED_TRACE(ss.str()); // Print out the loop iterator on failure. |
| EXPECT_EQ(0, neteq_->GetAudio(&out_frame1, &muted)); |
| EXPECT_FALSE(muted); |
| EXPECT_EQ(0, neteq2_->GetAudio(&out_frame2, &muted)); |
| if (muted) { |
| EXPECT_TRUE(AudioFramesEqualExceptData(out_frame1, out_frame2)); |
| } else { |
| EXPECT_TRUE(AudioFramesEqual(out_frame1, out_frame2)); |
| } |
| } |
| EXPECT_FALSE(muted); |
| } |
| |
| TEST_F(NetEqDecodingTest, LastDecodedTimestampsEmpty) { |
| EXPECT_TRUE(neteq_->LastDecodedTimestamps().empty()); |
| |
| // Pull out data once. |
| AudioFrame output; |
| bool muted; |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| |
| EXPECT_TRUE(neteq_->LastDecodedTimestamps().empty()); |
| } |
| |
| TEST_F(NetEqDecodingTest, LastDecodedTimestampsOneDecoded) { |
| // Insert one packet with PCM16b WB data (this is what PopulateRtpInfo does by |
| // default). Make the length 10 ms. |
| constexpr size_t kPayloadSamples = 16 * 10; |
| constexpr size_t kPayloadBytes = 2 * kPayloadSamples; |
| uint8_t payload[kPayloadBytes] = {0}; |
| |
| RTPHeader rtp_info; |
| constexpr uint32_t kRtpTimestamp = 0x1234; |
| PopulateRtpInfo(0, kRtpTimestamp, &rtp_info); |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| |
| // Pull out data once. |
| AudioFrame output; |
| bool muted; |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| |
| EXPECT_EQ(std::vector<uint32_t>({kRtpTimestamp}), |
| neteq_->LastDecodedTimestamps()); |
| |
| // Nothing decoded on the second call. |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| EXPECT_TRUE(neteq_->LastDecodedTimestamps().empty()); |
| } |
| |
| TEST_F(NetEqDecodingTest, LastDecodedTimestampsTwoDecoded) { |
| // Insert two packets with PCM16b WB data (this is what PopulateRtpInfo does |
| // by default). Make the length 5 ms so that NetEq must decode them both in |
| // the same GetAudio call. |
| constexpr size_t kPayloadSamples = 16 * 5; |
| constexpr size_t kPayloadBytes = 2 * kPayloadSamples; |
| uint8_t payload[kPayloadBytes] = {0}; |
| |
| RTPHeader rtp_info; |
| constexpr uint32_t kRtpTimestamp1 = 0x1234; |
| PopulateRtpInfo(0, kRtpTimestamp1, &rtp_info); |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| constexpr uint32_t kRtpTimestamp2 = kRtpTimestamp1 + kPayloadSamples; |
| PopulateRtpInfo(1, kRtpTimestamp2, &rtp_info); |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); |
| |
| // Pull out data once. |
| AudioFrame output; |
| bool muted; |
| ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); |
| |
| EXPECT_EQ(std::vector<uint32_t>({kRtpTimestamp1, kRtpTimestamp2}), |
| neteq_->LastDecodedTimestamps()); |
| } |
| |
| TEST_F(NetEqDecodingTest, TestConcealmentEvents) { |
| const int kNumConcealmentEvents = 19; |
| const size_t kSamples = 10 * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| int seq_no = 0; |
| RTPHeader rtp_info; |
| rtp_info.ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info.payloadType = 94; // PCM16b WB codec. |
| rtp_info.markerBit = 0; |
| const uint8_t payload[kPayloadBytes] = {0}; |
| bool muted; |
| |
| for (int i = 0; i < kNumConcealmentEvents; i++) { |
| // Insert some packets of 10 ms size. |
| for (int j = 0; j < 10; j++) { |
| rtp_info.sequenceNumber = seq_no++; |
| rtp_info.timestamp = rtp_info.sequenceNumber * kSamples; |
| neteq_->InsertPacket(rtp_info, payload); |
| neteq_->GetAudio(&out_frame_, &muted); |
| } |
| |
| // Lose a number of packets. |
| int num_lost = 1 + i; |
| for (int j = 0; j < num_lost; j++) { |
| seq_no++; |
| neteq_->GetAudio(&out_frame_, &muted); |
| } |
| } |
| |
| // Check number of concealment events. |
| NetEqLifetimeStatistics stats = neteq_->GetLifetimeStatistics(); |
| EXPECT_EQ(kNumConcealmentEvents, static_cast<int>(stats.concealment_events)); |
| } |
| |
| // Test that the jitter buffer delay stat is computed correctly. |
| void NetEqDecodingTestFaxMode::TestJitterBufferDelay(bool apply_packet_loss) { |
| const int kNumPackets = 10; |
| const int kDelayInNumPackets = 2; |
| const int kPacketLenMs = 10; // All packets are of 10 ms size. |
| const size_t kSamples = kPacketLenMs * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| RTPHeader rtp_info; |
| rtp_info.ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info.payloadType = 94; // PCM16b WB codec. |
| rtp_info.markerBit = 0; |
| const uint8_t payload[kPayloadBytes] = {0}; |
| bool muted; |
| int packets_sent = 0; |
| int packets_received = 0; |
| int expected_delay = 0; |
| uint64_t expected_emitted_count = 0; |
| while (packets_received < kNumPackets) { |
| // Insert packet. |
| if (packets_sent < kNumPackets) { |
| rtp_info.sequenceNumber = packets_sent++; |
| rtp_info.timestamp = rtp_info.sequenceNumber * kSamples; |
| neteq_->InsertPacket(rtp_info, payload); |
| } |
| |
| // Get packet. |
| if (packets_sent > kDelayInNumPackets) { |
| neteq_->GetAudio(&out_frame_, &muted); |
| packets_received++; |
| |
| // The delay reported by the jitter buffer never exceeds |
| // the number of samples previously fetched with GetAudio |
| // (hence the min()). |
| int packets_delay = std::min(packets_received, kDelayInNumPackets + 1); |
| |
| // The increase of the expected delay is the product of |
| // the current delay of the jitter buffer in ms * the |
| // number of samples that are sent for play out. |
| int current_delay_ms = packets_delay * kPacketLenMs; |
| expected_delay += current_delay_ms * kSamples; |
| expected_emitted_count += kSamples; |
| } |
| } |
| |
| if (apply_packet_loss) { |
| // Extra call to GetAudio to cause concealment. |
| neteq_->GetAudio(&out_frame_, &muted); |
| } |
| |
| // Check jitter buffer delay. |
| NetEqLifetimeStatistics stats = neteq_->GetLifetimeStatistics(); |
| EXPECT_EQ(expected_delay, static_cast<int>(stats.jitter_buffer_delay_ms)); |
| EXPECT_EQ(expected_emitted_count, stats.jitter_buffer_emitted_count); |
| } |
| |
| TEST_F(NetEqDecodingTestFaxMode, TestJitterBufferDelayWithoutLoss) { |
| TestJitterBufferDelay(false); |
| } |
| |
| TEST_F(NetEqDecodingTestFaxMode, TestJitterBufferDelayWithLoss) { |
| TestJitterBufferDelay(true); |
| } |
| |
| TEST_F(NetEqDecodingTestFaxMode, TestJitterBufferDelayWithAcceleration) { |
| const int kPacketLenMs = 10; // All packets are of 10 ms size. |
| const size_t kSamples = kPacketLenMs * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| RTPHeader rtp_info; |
| rtp_info.ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info.payloadType = 94; // PCM16b WB codec. |
| rtp_info.markerBit = 0; |
| const uint8_t payload[kPayloadBytes] = {0}; |
| |
| neteq_->InsertPacket(rtp_info, payload); |
| |
| bool muted; |
| neteq_->GetAudio(&out_frame_, &muted); |
| |
| rtp_info.sequenceNumber += 1; |
| rtp_info.timestamp += kSamples; |
| neteq_->InsertPacket(rtp_info, payload); |
| rtp_info.sequenceNumber += 1; |
| rtp_info.timestamp += kSamples; |
| neteq_->InsertPacket(rtp_info, payload); |
| |
| // We have two packets in the buffer and kAccelerate operation will |
| // extract 20 ms of data. |
| neteq_->GetAudio(&out_frame_, &muted, NetEq::Operation::kAccelerate); |
| |
| // Check jitter buffer delay. |
| NetEqLifetimeStatistics stats = neteq_->GetLifetimeStatistics(); |
| EXPECT_EQ(10 * kSamples * 3, stats.jitter_buffer_delay_ms); |
| EXPECT_EQ(kSamples * 3, stats.jitter_buffer_emitted_count); |
| } |
| |
| namespace test { |
| TEST(NetEqNoTimeStretchingMode, RunTest) { |
| NetEq::Config config; |
| config.for_test_no_time_stretching = true; |
| auto codecs = NetEqTest::StandardDecoderMap(); |
| NetEqPacketSourceInput::RtpHeaderExtensionMap rtp_ext_map = { |
| {1, kRtpExtensionAudioLevel}, |
| {3, kRtpExtensionAbsoluteSendTime}, |
| {5, kRtpExtensionTransportSequenceNumber}, |
| {7, kRtpExtensionVideoContentType}, |
| {8, kRtpExtensionVideoTiming}}; |
| std::unique_ptr<NetEqInput> input(new NetEqRtpDumpInput( |
| webrtc::test::ResourcePath("audio_coding/neteq_universal_new", "rtp"), |
| rtp_ext_map, absl::nullopt /*No SSRC filter*/)); |
| std::unique_ptr<TimeLimitedNetEqInput> input_time_limit( |
| new TimeLimitedNetEqInput(std::move(input), 20000)); |
| std::unique_ptr<AudioSink> output(new VoidAudioSink); |
| NetEqTest::Callbacks callbacks; |
| NetEqTest test(config, CreateBuiltinAudioDecoderFactory(), codecs, nullptr, |
| std::move(input_time_limit), std::move(output), callbacks); |
| test.Run(); |
| const auto stats = test.SimulationStats(); |
| EXPECT_EQ(0, stats.accelerate_rate); |
| EXPECT_EQ(0, stats.preemptive_rate); |
| } |
| |
| } // namespace test |
| } // namespace webrtc |