blob: dae3151e3b585327be77454ea081bfe2c39fcec7 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_format_vp9.h"
#include <string.h>
#include <cmath>
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "rtc_base/bitbuffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#define RETURN_FALSE_ON_ERROR(x) \
if (!(x)) { \
return false; \
}
namespace webrtc {
namespace {
// Length of VP9 payload descriptors' fixed part.
const size_t kFixedPayloadDescriptorBytes = 1;
const uint32_t kReservedBitValue0 = 0;
uint8_t TemporalIdxField(const RTPVideoHeaderVP9& hdr, uint8_t def) {
return (hdr.temporal_idx == kNoTemporalIdx) ? def : hdr.temporal_idx;
}
uint8_t SpatialIdxField(const RTPVideoHeaderVP9& hdr, uint8_t def) {
return (hdr.spatial_idx == kNoSpatialIdx) ? def : hdr.spatial_idx;
}
int16_t Tl0PicIdxField(const RTPVideoHeaderVP9& hdr, uint8_t def) {
return (hdr.tl0_pic_idx == kNoTl0PicIdx) ? def : hdr.tl0_pic_idx;
}
// Picture ID:
//
// +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | M:0 => picture id is 7 bits.
// +-+-+-+-+-+-+-+-+ M:1 => picture id is 15 bits.
// M: | EXTENDED PID |
// +-+-+-+-+-+-+-+-+
//
size_t PictureIdLength(const RTPVideoHeaderVP9& hdr) {
if (hdr.picture_id == kNoPictureId)
return 0;
return (hdr.max_picture_id == kMaxOneBytePictureId) ? 1 : 2;
}
bool PictureIdPresent(const RTPVideoHeaderVP9& hdr) {
return PictureIdLength(hdr) > 0;
}
// Layer indices:
//
// Flexible mode (F=1): Non-flexible mode (F=0):
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// L: | T |U| S |D| | T |U| S |D|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// | TL0PICIDX |
// +-+-+-+-+-+-+-+-+
//
size_t LayerInfoLength(const RTPVideoHeaderVP9& hdr) {
if (hdr.temporal_idx == kNoTemporalIdx && hdr.spatial_idx == kNoSpatialIdx) {
return 0;
}
return hdr.flexible_mode ? 1 : 2;
}
bool LayerInfoPresent(const RTPVideoHeaderVP9& hdr) {
return LayerInfoLength(hdr) > 0;
}
// Reference indices:
//
// +-+-+-+-+-+-+-+-+ P=1,F=1: At least one reference index
// P,F: | P_DIFF |N| up to 3 times has to be specified.
// +-+-+-+-+-+-+-+-+ N=1: An additional P_DIFF follows
// current P_DIFF.
//
size_t RefIndicesLength(const RTPVideoHeaderVP9& hdr) {
if (!hdr.inter_pic_predicted || !hdr.flexible_mode)
return 0;
RTC_DCHECK_GT(hdr.num_ref_pics, 0U);
RTC_DCHECK_LE(hdr.num_ref_pics, kMaxVp9RefPics);
return hdr.num_ref_pics;
}
// Scalability structure (SS).
//
// +-+-+-+-+-+-+-+-+
// V: | N_S |Y|G|-|-|-|
// +-+-+-+-+-+-+-+-+ -|
// Y: | WIDTH | (OPTIONAL) .
// + + .
// | | (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ . N_S + 1 times
// | HEIGHT | (OPTIONAL) .
// + + .
// | | (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ -|
// G: | N_G | (OPTIONAL)
// +-+-+-+-+-+-+-+-+ -|
// N_G: | T |U| R |-|-| (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ -| . N_G times
// | P_DIFF | (OPTIONAL) . R times .
// +-+-+-+-+-+-+-+-+ -| -|
//
size_t SsDataLength(const RTPVideoHeaderVP9& hdr) {
if (!hdr.ss_data_available)
return 0;
RTC_DCHECK_GT(hdr.num_spatial_layers, 0U);
RTC_DCHECK_LE(hdr.num_spatial_layers, kMaxVp9NumberOfSpatialLayers);
RTC_DCHECK_LE(hdr.gof.num_frames_in_gof, kMaxVp9FramesInGof);
size_t length = 1; // V
if (hdr.spatial_layer_resolution_present) {
length += 4 * hdr.num_spatial_layers; // Y
}
if (hdr.gof.num_frames_in_gof > 0) {
++length; // G
}
// N_G
length += hdr.gof.num_frames_in_gof; // T, U, R
for (size_t i = 0; i < hdr.gof.num_frames_in_gof; ++i) {
RTC_DCHECK_LE(hdr.gof.num_ref_pics[i], kMaxVp9RefPics);
length += hdr.gof.num_ref_pics[i]; // R times
}
return length;
}
size_t PayloadDescriptorLengthMinusSsData(const RTPVideoHeaderVP9& hdr) {
return kFixedPayloadDescriptorBytes + PictureIdLength(hdr) +
LayerInfoLength(hdr) + RefIndicesLength(hdr);
}
// Picture ID:
//
// +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | M:0 => picture id is 7 bits.
// +-+-+-+-+-+-+-+-+ M:1 => picture id is 15 bits.
// M: | EXTENDED PID |
// +-+-+-+-+-+-+-+-+
//
bool WritePictureId(const RTPVideoHeaderVP9& vp9,
rtc::BitBufferWriter* writer) {
bool m_bit = (PictureIdLength(vp9) == 2);
RETURN_FALSE_ON_ERROR(writer->WriteBits(m_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.picture_id, m_bit ? 15 : 7));
return true;
}
// Layer indices:
//
// Flexible mode (F=1):
//
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D|
// +-+-+-+-+-+-+-+-+
//
bool WriteLayerInfoCommon(const RTPVideoHeaderVP9& vp9,
rtc::BitBufferWriter* writer) {
RETURN_FALSE_ON_ERROR(writer->WriteBits(TemporalIdxField(vp9, 0), 3));
RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.temporal_up_switch ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer->WriteBits(SpatialIdxField(vp9, 0), 3));
RETURN_FALSE_ON_ERROR(
writer->WriteBits(vp9.inter_layer_predicted ? 1 : 0, 1));
return true;
}
// Non-flexible mode (F=0):
//
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D|
// +-+-+-+-+-+-+-+-+
// | TL0PICIDX |
// +-+-+-+-+-+-+-+-+
//
bool WriteLayerInfoNonFlexibleMode(const RTPVideoHeaderVP9& vp9,
rtc::BitBufferWriter* writer) {
RETURN_FALSE_ON_ERROR(writer->WriteUInt8(Tl0PicIdxField(vp9, 0)));
return true;
}
bool WriteLayerInfo(const RTPVideoHeaderVP9& vp9,
rtc::BitBufferWriter* writer) {
if (!WriteLayerInfoCommon(vp9, writer))
return false;
if (vp9.flexible_mode)
return true;
return WriteLayerInfoNonFlexibleMode(vp9, writer);
}
// Reference indices:
//
// +-+-+-+-+-+-+-+-+ P=1,F=1: At least one reference index
// P,F: | P_DIFF |N| up to 3 times has to be specified.
// +-+-+-+-+-+-+-+-+ N=1: An additional P_DIFF follows
// current P_DIFF.
//
bool WriteRefIndices(const RTPVideoHeaderVP9& vp9,
rtc::BitBufferWriter* writer) {
if (!PictureIdPresent(vp9) || vp9.num_ref_pics == 0 ||
vp9.num_ref_pics > kMaxVp9RefPics) {
return false;
}
for (uint8_t i = 0; i < vp9.num_ref_pics; ++i) {
bool n_bit = !(i == vp9.num_ref_pics - 1);
RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.pid_diff[i], 7));
RETURN_FALSE_ON_ERROR(writer->WriteBits(n_bit ? 1 : 0, 1));
}
return true;
}
// Scalability structure (SS).
//
// +-+-+-+-+-+-+-+-+
// V: | N_S |Y|G|-|-|-|
// +-+-+-+-+-+-+-+-+ -|
// Y: | WIDTH | (OPTIONAL) .
// + + .
// | | (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ . N_S + 1 times
// | HEIGHT | (OPTIONAL) .
// + + .
// | | (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ -|
// G: | N_G | (OPTIONAL)
// +-+-+-+-+-+-+-+-+ -|
// N_G: | T |U| R |-|-| (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ -| . N_G times
// | P_DIFF | (OPTIONAL) . R times .
// +-+-+-+-+-+-+-+-+ -| -|
//
bool WriteSsData(const RTPVideoHeaderVP9& vp9, rtc::BitBufferWriter* writer) {
RTC_DCHECK_GT(vp9.num_spatial_layers, 0U);
RTC_DCHECK_LE(vp9.num_spatial_layers, kMaxVp9NumberOfSpatialLayers);
RTC_DCHECK_LE(vp9.gof.num_frames_in_gof, kMaxVp9FramesInGof);
bool g_bit = vp9.gof.num_frames_in_gof > 0;
RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.num_spatial_layers - 1, 3));
RETURN_FALSE_ON_ERROR(
writer->WriteBits(vp9.spatial_layer_resolution_present ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer->WriteBits(g_bit ? 1 : 0, 1)); // G
RETURN_FALSE_ON_ERROR(writer->WriteBits(kReservedBitValue0, 3));
if (vp9.spatial_layer_resolution_present) {
for (size_t i = 0; i < vp9.num_spatial_layers; ++i) {
RETURN_FALSE_ON_ERROR(writer->WriteUInt16(vp9.width[i]));
RETURN_FALSE_ON_ERROR(writer->WriteUInt16(vp9.height[i]));
}
}
if (g_bit) {
RETURN_FALSE_ON_ERROR(writer->WriteUInt8(vp9.gof.num_frames_in_gof));
}
for (size_t i = 0; i < vp9.gof.num_frames_in_gof; ++i) {
RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.gof.temporal_idx[i], 3));
RETURN_FALSE_ON_ERROR(
writer->WriteBits(vp9.gof.temporal_up_switch[i] ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.gof.num_ref_pics[i], 2));
RETURN_FALSE_ON_ERROR(writer->WriteBits(kReservedBitValue0, 2));
for (uint8_t r = 0; r < vp9.gof.num_ref_pics[i]; ++r) {
RETURN_FALSE_ON_ERROR(writer->WriteUInt8(vp9.gof.pid_diff[i][r]));
}
}
return true;
}
// Picture ID:
//
// +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | M:0 => picture id is 7 bits.
// +-+-+-+-+-+-+-+-+ M:1 => picture id is 15 bits.
// M: | EXTENDED PID |
// +-+-+-+-+-+-+-+-+
//
bool ParsePictureId(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) {
uint32_t picture_id;
uint32_t m_bit;
RETURN_FALSE_ON_ERROR(parser->ReadBits(&m_bit, 1));
if (m_bit) {
RETURN_FALSE_ON_ERROR(parser->ReadBits(&picture_id, 15));
vp9->max_picture_id = kMaxTwoBytePictureId;
} else {
RETURN_FALSE_ON_ERROR(parser->ReadBits(&picture_id, 7));
vp9->max_picture_id = kMaxOneBytePictureId;
}
vp9->picture_id = picture_id;
return true;
}
// Layer indices (flexible mode):
//
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D|
// +-+-+-+-+-+-+-+-+
//
bool ParseLayerInfoCommon(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) {
uint32_t t, u_bit, s, d_bit;
RETURN_FALSE_ON_ERROR(parser->ReadBits(&t, 3));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&u_bit, 1));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&s, 3));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&d_bit, 1));
vp9->temporal_idx = t;
vp9->temporal_up_switch = u_bit ? true : false;
vp9->spatial_idx = s;
vp9->inter_layer_predicted = d_bit ? true : false;
return true;
}
// Layer indices (non-flexible mode):
//
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D|
// +-+-+-+-+-+-+-+-+
// | TL0PICIDX |
// +-+-+-+-+-+-+-+-+
//
bool ParseLayerInfoNonFlexibleMode(rtc::BitBuffer* parser,
RTPVideoHeaderVP9* vp9) {
uint8_t tl0picidx;
RETURN_FALSE_ON_ERROR(parser->ReadUInt8(&tl0picidx));
vp9->tl0_pic_idx = tl0picidx;
return true;
}
bool ParseLayerInfo(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) {
if (!ParseLayerInfoCommon(parser, vp9))
return false;
if (vp9->flexible_mode)
return true;
return ParseLayerInfoNonFlexibleMode(parser, vp9);
}
// Reference indices:
//
// +-+-+-+-+-+-+-+-+ P=1,F=1: At least one reference index
// P,F: | P_DIFF |N| up to 3 times has to be specified.
// +-+-+-+-+-+-+-+-+ N=1: An additional P_DIFF follows
// current P_DIFF.
//
bool ParseRefIndices(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) {
if (vp9->picture_id == kNoPictureId)
return false;
vp9->num_ref_pics = 0;
uint32_t n_bit;
do {
if (vp9->num_ref_pics == kMaxVp9RefPics)
return false;
uint32_t p_diff;
RETURN_FALSE_ON_ERROR(parser->ReadBits(&p_diff, 7));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&n_bit, 1));
vp9->pid_diff[vp9->num_ref_pics] = p_diff;
uint32_t scaled_pid = vp9->picture_id;
if (p_diff > scaled_pid) {
// TODO(asapersson): Max should correspond to the picture id of last wrap.
scaled_pid += vp9->max_picture_id + 1;
}
vp9->ref_picture_id[vp9->num_ref_pics++] = scaled_pid - p_diff;
} while (n_bit);
return true;
}
// Scalability structure (SS).
//
// +-+-+-+-+-+-+-+-+
// V: | N_S |Y|G|-|-|-|
// +-+-+-+-+-+-+-+-+ -|
// Y: | WIDTH | (OPTIONAL) .
// + + .
// | | (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ . N_S + 1 times
// | HEIGHT | (OPTIONAL) .
// + + .
// | | (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ -|
// G: | N_G | (OPTIONAL)
// +-+-+-+-+-+-+-+-+ -|
// N_G: | T |U| R |-|-| (OPTIONAL) .
// +-+-+-+-+-+-+-+-+ -| . N_G times
// | P_DIFF | (OPTIONAL) . R times .
// +-+-+-+-+-+-+-+-+ -| -|
//
bool ParseSsData(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) {
uint32_t n_s, y_bit, g_bit;
RETURN_FALSE_ON_ERROR(parser->ReadBits(&n_s, 3));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&y_bit, 1));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&g_bit, 1));
RETURN_FALSE_ON_ERROR(parser->ConsumeBits(3));
vp9->num_spatial_layers = n_s + 1;
vp9->spatial_layer_resolution_present = y_bit ? true : false;
vp9->gof.num_frames_in_gof = 0;
if (y_bit) {
for (size_t i = 0; i < vp9->num_spatial_layers; ++i) {
RETURN_FALSE_ON_ERROR(parser->ReadUInt16(&vp9->width[i]));
RETURN_FALSE_ON_ERROR(parser->ReadUInt16(&vp9->height[i]));
}
}
if (g_bit) {
uint8_t n_g;
RETURN_FALSE_ON_ERROR(parser->ReadUInt8(&n_g));
vp9->gof.num_frames_in_gof = n_g;
}
for (size_t i = 0; i < vp9->gof.num_frames_in_gof; ++i) {
uint32_t t, u_bit, r;
RETURN_FALSE_ON_ERROR(parser->ReadBits(&t, 3));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&u_bit, 1));
RETURN_FALSE_ON_ERROR(parser->ReadBits(&r, 2));
RETURN_FALSE_ON_ERROR(parser->ConsumeBits(2));
vp9->gof.temporal_idx[i] = t;
vp9->gof.temporal_up_switch[i] = u_bit ? true : false;
vp9->gof.num_ref_pics[i] = r;
for (uint8_t p = 0; p < vp9->gof.num_ref_pics[i]; ++p) {
uint8_t p_diff;
RETURN_FALSE_ON_ERROR(parser->ReadUInt8(&p_diff));
vp9->gof.pid_diff[i][p] = p_diff;
}
}
return true;
}
} // namespace
RtpPacketizerVp9::RtpPacketizerVp9(rtc::ArrayView<const uint8_t> payload,
PayloadSizeLimits limits,
const RTPVideoHeaderVP9& hdr)
: hdr_(hdr),
header_size_(PayloadDescriptorLengthMinusSsData(hdr_)),
first_packet_extra_header_size_(SsDataLength(hdr_)),
remaining_payload_(payload) {
limits.max_payload_len -= header_size_;
limits.first_packet_reduction_len += first_packet_extra_header_size_;
limits.single_packet_reduction_len += first_packet_extra_header_size_;
payload_sizes_ = SplitAboutEqually(payload.size(), limits);
current_packet_ = payload_sizes_.begin();
}
RtpPacketizerVp9::~RtpPacketizerVp9() = default;
size_t RtpPacketizerVp9::NumPackets() const {
return payload_sizes_.end() - current_packet_;
}
bool RtpPacketizerVp9::NextPacket(RtpPacketToSend* packet) {
RTC_DCHECK(packet);
if (current_packet_ == payload_sizes_.end()) {
return false;
}
bool layer_begin = current_packet_ == payload_sizes_.begin();
int packet_payload_len = *current_packet_;
++current_packet_;
bool layer_end = current_packet_ == payload_sizes_.end();
int header_size = header_size_;
if (layer_begin)
header_size += first_packet_extra_header_size_;
uint8_t* buffer = packet->AllocatePayload(header_size + packet_payload_len);
RTC_CHECK(buffer);
if (!WriteHeader(layer_begin, layer_end,
rtc::MakeArrayView(buffer, header_size)))
return false;
memcpy(buffer + header_size, remaining_payload_.data(), packet_payload_len);
remaining_payload_ = remaining_payload_.subview(packet_payload_len);
// Ensure end_of_picture is always set on top spatial layer when it is not
// dropped.
RTC_DCHECK(hdr_.spatial_idx < hdr_.num_spatial_layers - 1 ||
hdr_.end_of_picture);
packet->SetMarker(layer_end && hdr_.end_of_picture);
return true;
}
// VP9 format:
//
// Payload descriptor for F = 1 (flexible mode)
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |I|P|L|F|B|E|V|Z| (REQUIRED)
// +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// M: | EXTENDED PID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D| (CONDITIONALLY RECOMMENDED)
// +-+-+-+-+-+-+-+-+ -|
// P,F: | P_DIFF |N| (CONDITIONALLY RECOMMENDED) . up to 3 times
// +-+-+-+-+-+-+-+-+ -|
// V: | SS |
// | .. |
// +-+-+-+-+-+-+-+-+
//
// Payload descriptor for F = 0 (non-flexible mode)
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |I|P|L|F|B|E|V|Z| (REQUIRED)
// +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// M: | EXTENDED PID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D| (CONDITIONALLY RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// | TL0PICIDX | (CONDITIONALLY REQUIRED)
// +-+-+-+-+-+-+-+-+
// V: | SS |
// | .. |
// +-+-+-+-+-+-+-+-+
bool RtpPacketizerVp9::WriteHeader(bool layer_begin,
bool layer_end,
rtc::ArrayView<uint8_t> buffer) const {
// Required payload descriptor byte.
bool i_bit = PictureIdPresent(hdr_);
bool p_bit = hdr_.inter_pic_predicted;
bool l_bit = LayerInfoPresent(hdr_);
bool f_bit = hdr_.flexible_mode;
bool b_bit = layer_begin;
bool e_bit = layer_end;
bool v_bit = hdr_.ss_data_available && b_bit;
bool z_bit = hdr_.non_ref_for_inter_layer_pred;
rtc::BitBufferWriter writer(buffer.data(), buffer.size());
RETURN_FALSE_ON_ERROR(writer.WriteBits(i_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer.WriteBits(p_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer.WriteBits(l_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer.WriteBits(f_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer.WriteBits(b_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer.WriteBits(e_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer.WriteBits(v_bit ? 1 : 0, 1));
RETURN_FALSE_ON_ERROR(writer.WriteBits(z_bit ? 1 : 0, 1));
// Add fields that are present.
if (i_bit && !WritePictureId(hdr_, &writer)) {
RTC_LOG(LS_ERROR) << "Failed writing VP9 picture id.";
return false;
}
if (l_bit && !WriteLayerInfo(hdr_, &writer)) {
RTC_LOG(LS_ERROR) << "Failed writing VP9 layer info.";
return false;
}
if (p_bit && f_bit && !WriteRefIndices(hdr_, &writer)) {
RTC_LOG(LS_ERROR) << "Failed writing VP9 ref indices.";
return false;
}
if (v_bit && !WriteSsData(hdr_, &writer)) {
RTC_LOG(LS_ERROR) << "Failed writing VP9 SS data.";
return false;
}
size_t offset_bytes = 0;
size_t offset_bits = 0;
writer.GetCurrentOffset(&offset_bytes, &offset_bits);
RTC_DCHECK_EQ(offset_bits, 0);
RTC_DCHECK_EQ(offset_bytes, buffer.size());
return true;
}
bool RtpDepacketizerVp9::Parse(ParsedPayload* parsed_payload,
const uint8_t* payload,
size_t payload_length) {
RTC_DCHECK(parsed_payload != nullptr);
if (payload_length == 0) {
RTC_LOG(LS_ERROR) << "Payload length is zero.";
return false;
}
// Parse mandatory first byte of payload descriptor.
rtc::BitBuffer parser(payload, payload_length);
uint32_t i_bit, p_bit, l_bit, f_bit, b_bit, e_bit, v_bit, z_bit;
RETURN_FALSE_ON_ERROR(parser.ReadBits(&i_bit, 1));
RETURN_FALSE_ON_ERROR(parser.ReadBits(&p_bit, 1));
RETURN_FALSE_ON_ERROR(parser.ReadBits(&l_bit, 1));
RETURN_FALSE_ON_ERROR(parser.ReadBits(&f_bit, 1));
RETURN_FALSE_ON_ERROR(parser.ReadBits(&b_bit, 1));
RETURN_FALSE_ON_ERROR(parser.ReadBits(&e_bit, 1));
RETURN_FALSE_ON_ERROR(parser.ReadBits(&v_bit, 1));
RETURN_FALSE_ON_ERROR(parser.ReadBits(&z_bit, 1));
// Parsed payload.
parsed_payload->video_header().width = 0;
parsed_payload->video_header().height = 0;
parsed_payload->video_header().simulcastIdx = 0;
parsed_payload->video_header().codec = kVideoCodecVP9;
parsed_payload->frame_type = p_bit ? kVideoFrameDelta : kVideoFrameKey;
auto& vp9_header = parsed_payload->video_header()
.video_type_header.emplace<RTPVideoHeaderVP9>();
vp9_header.InitRTPVideoHeaderVP9();
vp9_header.inter_pic_predicted = p_bit ? true : false;
vp9_header.flexible_mode = f_bit ? true : false;
vp9_header.beginning_of_frame = b_bit ? true : false;
vp9_header.end_of_frame = e_bit ? true : false;
vp9_header.ss_data_available = v_bit ? true : false;
vp9_header.non_ref_for_inter_layer_pred = z_bit ? true : false;
// Parse fields that are present.
if (i_bit && !ParsePictureId(&parser, &vp9_header)) {
RTC_LOG(LS_ERROR) << "Failed parsing VP9 picture id.";
return false;
}
if (l_bit && !ParseLayerInfo(&parser, &vp9_header)) {
RTC_LOG(LS_ERROR) << "Failed parsing VP9 layer info.";
return false;
}
if (p_bit && f_bit && !ParseRefIndices(&parser, &vp9_header)) {
RTC_LOG(LS_ERROR) << "Failed parsing VP9 ref indices.";
return false;
}
if (v_bit) {
if (!ParseSsData(&parser, &vp9_header)) {
RTC_LOG(LS_ERROR) << "Failed parsing VP9 SS data.";
return false;
}
if (vp9_header.spatial_layer_resolution_present) {
// TODO(asapersson): Add support for spatial layers.
parsed_payload->video_header().width = vp9_header.width[0];
parsed_payload->video_header().height = vp9_header.height[0];
}
}
parsed_payload->video_header().is_first_packet_in_frame =
b_bit && (!l_bit || !vp9_header.inter_layer_predicted);
uint64_t rem_bits = parser.RemainingBitCount();
RTC_DCHECK_EQ(rem_bits % 8, 0);
parsed_payload->payload_length = rem_bits / 8;
if (parsed_payload->payload_length == 0) {
RTC_LOG(LS_ERROR) << "Failed parsing VP9 payload data.";
return false;
}
parsed_payload->payload =
payload + payload_length - parsed_payload->payload_length;
return true;
}
} // namespace webrtc