blob: 44c126b3d0b6339dd6f4513f74802f1da72790c9 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/video_stream_encoder.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include "absl/memory/memory.h"
#include "api/task_queue/default_task_queue_factory.h"
#include "api/video/builtin_video_bitrate_allocator_factory.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video_codecs/video_encoder.h"
#include "api/video_codecs/vp8_temporal_layers.h"
#include "api/video_codecs/vp8_temporal_layers_factory.h"
#include "common_video/h264/h264_common.h"
#include "common_video/include/video_frame_buffer.h"
#include "media/base/video_adapter.h"
#include "modules/video_coding/codecs/vp9/include/vp9_globals.h"
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/logging.h"
#include "rtc_base/ref_counted_object.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
#include "system_wrappers/include/sleep.h"
#include "test/encoder_settings.h"
#include "test/fake_encoder.h"
#include "test/field_trial.h"
#include "test/frame_generator.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/video_encoder_proxy_factory.h"
#include "video/send_statistics_proxy.h"
namespace webrtc {
using ScaleReason = AdaptationObserverInterface::AdaptReason;
using ::testing::_;
namespace {
const int kMinPixelsPerFrame = 320 * 180;
const int kMinFramerateFps = 2;
const int kMinBalancedFramerateFps = 7;
const int64_t kFrameTimeoutMs = 100;
const size_t kMaxPayloadLength = 1440;
const uint32_t kTargetBitrateBps = 1000000;
const uint32_t kSimulcastTargetBitrateBps = 3150000;
const uint32_t kLowTargetBitrateBps = kTargetBitrateBps / 10;
const int kMaxInitialFramedrop = 4;
const int kDefaultFramerate = 30;
const int64_t kFrameIntervalMs = rtc::kNumMillisecsPerSec / kDefaultFramerate;
uint8_t optimal_sps[] = {0, 0, 0, 1, H264::NaluType::kSps,
0x00, 0x00, 0x03, 0x03, 0xF4,
0x05, 0x03, 0xC7, 0xE0, 0x1B,
0x41, 0x10, 0x8D, 0x00};
class TestBuffer : public webrtc::I420Buffer {
public:
TestBuffer(rtc::Event* event, int width, int height)
: I420Buffer(width, height), event_(event) {}
private:
friend class rtc::RefCountedObject<TestBuffer>;
~TestBuffer() override {
if (event_)
event_->Set();
}
rtc::Event* const event_;
};
// A fake native buffer that can't be converted to I420.
class FakeNativeBuffer : public webrtc::VideoFrameBuffer {
public:
FakeNativeBuffer(rtc::Event* event, int width, int height)
: event_(event), width_(width), height_(height) {}
webrtc::VideoFrameBuffer::Type type() const override { return Type::kNative; }
int width() const override { return width_; }
int height() const override { return height_; }
rtc::scoped_refptr<webrtc::I420BufferInterface> ToI420() override {
return nullptr;
}
private:
friend class rtc::RefCountedObject<FakeNativeBuffer>;
~FakeNativeBuffer() override {
if (event_)
event_->Set();
}
rtc::Event* const event_;
const int width_;
const int height_;
};
class CpuOveruseDetectorProxy : public OveruseFrameDetector {
public:
explicit CpuOveruseDetectorProxy(CpuOveruseMetricsObserver* metrics_observer)
: OveruseFrameDetector(metrics_observer),
last_target_framerate_fps_(-1) {}
virtual ~CpuOveruseDetectorProxy() {}
void OnTargetFramerateUpdated(int framerate_fps) override {
rtc::CritScope cs(&lock_);
last_target_framerate_fps_ = framerate_fps;
OveruseFrameDetector::OnTargetFramerateUpdated(framerate_fps);
}
int GetLastTargetFramerate() {
rtc::CritScope cs(&lock_);
return last_target_framerate_fps_;
}
CpuOveruseOptions GetOptions() { return options_; }
private:
rtc::CriticalSection lock_;
int last_target_framerate_fps_ RTC_GUARDED_BY(lock_);
};
class VideoStreamEncoderUnderTest : public VideoStreamEncoder {
public:
VideoStreamEncoderUnderTest(SendStatisticsProxy* stats_proxy,
const VideoStreamEncoderSettings& settings,
TaskQueueFactory* task_queue_factory)
: VideoStreamEncoder(Clock::GetRealTimeClock(),
1 /* number_of_cores */,
stats_proxy,
settings,
std::unique_ptr<OveruseFrameDetector>(
overuse_detector_proxy_ =
new CpuOveruseDetectorProxy(stats_proxy)),
task_queue_factory) {}
void PostTaskAndWait(bool down, AdaptReason reason) {
rtc::Event event;
encoder_queue()->PostTask([this, &event, reason, down] {
down ? AdaptDown(reason) : AdaptUp(reason);
event.Set();
});
ASSERT_TRUE(event.Wait(5000));
}
// This is used as a synchronisation mechanism, to make sure that the
// encoder queue is not blocked before we start sending it frames.
void WaitUntilTaskQueueIsIdle() {
rtc::Event event;
encoder_queue()->PostTask([&event] { event.Set(); });
ASSERT_TRUE(event.Wait(5000));
}
void TriggerCpuOveruse() { PostTaskAndWait(true, AdaptReason::kCpu); }
void TriggerCpuNormalUsage() { PostTaskAndWait(false, AdaptReason::kCpu); }
void TriggerQualityLow() { PostTaskAndWait(true, AdaptReason::kQuality); }
void TriggerQualityHigh() { PostTaskAndWait(false, AdaptReason::kQuality); }
CpuOveruseDetectorProxy* overuse_detector_proxy_;
};
class VideoStreamFactory
: public VideoEncoderConfig::VideoStreamFactoryInterface {
public:
explicit VideoStreamFactory(size_t num_temporal_layers, int framerate)
: num_temporal_layers_(num_temporal_layers), framerate_(framerate) {
EXPECT_GT(num_temporal_layers, 0u);
EXPECT_GT(framerate, 0);
}
private:
std::vector<VideoStream> CreateEncoderStreams(
int width,
int height,
const VideoEncoderConfig& encoder_config) override {
std::vector<VideoStream> streams =
test::CreateVideoStreams(width, height, encoder_config);
for (VideoStream& stream : streams) {
stream.num_temporal_layers = num_temporal_layers_;
stream.max_framerate = framerate_;
}
return streams;
}
const size_t num_temporal_layers_;
const int framerate_;
};
// Simulates simulcast behavior and makes highest stream resolutions divisible
// by 4.
class CroppingVideoStreamFactory
: public VideoEncoderConfig::VideoStreamFactoryInterface {
public:
explicit CroppingVideoStreamFactory(size_t num_temporal_layers, int framerate)
: num_temporal_layers_(num_temporal_layers), framerate_(framerate) {
EXPECT_GT(num_temporal_layers, 0u);
EXPECT_GT(framerate, 0);
}
private:
std::vector<VideoStream> CreateEncoderStreams(
int width,
int height,
const VideoEncoderConfig& encoder_config) override {
std::vector<VideoStream> streams = test::CreateVideoStreams(
width - width % 4, height - height % 4, encoder_config);
for (VideoStream& stream : streams) {
stream.num_temporal_layers = num_temporal_layers_;
stream.max_framerate = framerate_;
}
return streams;
}
const size_t num_temporal_layers_;
const int framerate_;
};
class AdaptingFrameForwarder : public test::FrameForwarder {
public:
AdaptingFrameForwarder() : adaptation_enabled_(false) {}
~AdaptingFrameForwarder() override {}
void set_adaptation_enabled(bool enabled) {
rtc::CritScope cs(&crit_);
adaptation_enabled_ = enabled;
}
bool adaption_enabled() const {
rtc::CritScope cs(&crit_);
return adaptation_enabled_;
}
rtc::VideoSinkWants last_wants() const {
rtc::CritScope cs(&crit_);
return last_wants_;
}
absl::optional<int> last_sent_width() const { return last_width_; }
absl::optional<int> last_sent_height() const { return last_height_; }
void IncomingCapturedFrame(const VideoFrame& video_frame) override {
int cropped_width = 0;
int cropped_height = 0;
int out_width = 0;
int out_height = 0;
if (adaption_enabled()) {
if (adapter_.AdaptFrameResolution(
video_frame.width(), video_frame.height(),
video_frame.timestamp_us() * 1000, &cropped_width,
&cropped_height, &out_width, &out_height)) {
VideoFrame adapted_frame =
VideoFrame::Builder()
.set_video_frame_buffer(new rtc::RefCountedObject<TestBuffer>(
nullptr, out_width, out_height))
.set_timestamp_rtp(99)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
adapted_frame.set_ntp_time_ms(video_frame.ntp_time_ms());
test::FrameForwarder::IncomingCapturedFrame(adapted_frame);
last_width_.emplace(adapted_frame.width());
last_height_.emplace(adapted_frame.height());
} else {
last_width_ = absl::nullopt;
last_height_ = absl::nullopt;
}
} else {
test::FrameForwarder::IncomingCapturedFrame(video_frame);
last_width_.emplace(video_frame.width());
last_height_.emplace(video_frame.height());
}
}
void AddOrUpdateSink(rtc::VideoSinkInterface<VideoFrame>* sink,
const rtc::VideoSinkWants& wants) override {
rtc::CritScope cs(&crit_);
last_wants_ = sink_wants();
adapter_.OnResolutionFramerateRequest(wants.target_pixel_count,
wants.max_pixel_count,
wants.max_framerate_fps);
test::FrameForwarder::AddOrUpdateSink(sink, wants);
}
cricket::VideoAdapter adapter_;
bool adaptation_enabled_ RTC_GUARDED_BY(crit_);
rtc::VideoSinkWants last_wants_ RTC_GUARDED_BY(crit_);
absl::optional<int> last_width_;
absl::optional<int> last_height_;
};
// TODO(nisse): Mock only VideoStreamEncoderObserver.
class MockableSendStatisticsProxy : public SendStatisticsProxy {
public:
MockableSendStatisticsProxy(Clock* clock,
const VideoSendStream::Config& config,
VideoEncoderConfig::ContentType content_type)
: SendStatisticsProxy(clock, config, content_type) {}
VideoSendStream::Stats GetStats() override {
rtc::CritScope cs(&lock_);
if (mock_stats_)
return *mock_stats_;
return SendStatisticsProxy::GetStats();
}
int GetInputFrameRate() const override {
rtc::CritScope cs(&lock_);
if (mock_stats_)
return mock_stats_->input_frame_rate;
return SendStatisticsProxy::GetInputFrameRate();
}
void SetMockStats(const VideoSendStream::Stats& stats) {
rtc::CritScope cs(&lock_);
mock_stats_.emplace(stats);
}
void ResetMockStats() {
rtc::CritScope cs(&lock_);
mock_stats_.reset();
}
private:
rtc::CriticalSection lock_;
absl::optional<VideoSendStream::Stats> mock_stats_ RTC_GUARDED_BY(lock_);
};
class MockBitrateObserver : public VideoBitrateAllocationObserver {
public:
MOCK_METHOD1(OnBitrateAllocationUpdated, void(const VideoBitrateAllocation&));
};
} // namespace
class VideoStreamEncoderTest : public ::testing::Test {
public:
static const int kDefaultTimeoutMs = 30 * 1000;
VideoStreamEncoderTest()
: video_send_config_(VideoSendStream::Config(nullptr)),
codec_width_(320),
codec_height_(240),
max_framerate_(kDefaultFramerate),
task_queue_factory_(CreateDefaultTaskQueueFactory()),
fake_encoder_(),
encoder_factory_(&fake_encoder_),
bitrate_allocator_factory_(CreateBuiltinVideoBitrateAllocatorFactory()),
stats_proxy_(new MockableSendStatisticsProxy(
Clock::GetRealTimeClock(),
video_send_config_,
webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo)),
sink_(&fake_encoder_) {}
void SetUp() override {
metrics::Reset();
video_send_config_ = VideoSendStream::Config(nullptr);
video_send_config_.encoder_settings.encoder_factory = &encoder_factory_;
video_send_config_.encoder_settings.bitrate_allocator_factory =
bitrate_allocator_factory_.get();
video_send_config_.rtp.payload_name = "FAKE";
video_send_config_.rtp.payload_type = 125;
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(1, max_framerate_);
video_encoder_config_ = video_encoder_config.Copy();
// Framerate limit is specified by the VideoStreamFactory.
std::vector<VideoStream> streams =
video_encoder_config.video_stream_factory->CreateEncoderStreams(
codec_width_, codec_height_, video_encoder_config);
max_framerate_ = streams[0].max_framerate;
fake_clock_.SetTime(Timestamp::us(1234));
ConfigureEncoder(std::move(video_encoder_config));
}
void ConfigureEncoder(VideoEncoderConfig video_encoder_config) {
if (video_stream_encoder_)
video_stream_encoder_->Stop();
video_stream_encoder_.reset(new VideoStreamEncoderUnderTest(
stats_proxy_.get(), video_send_config_.encoder_settings,
task_queue_factory_.get()));
video_stream_encoder_->SetSink(&sink_, false /* rotation_applied */);
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
video_stream_encoder_->SetStartBitrate(kTargetBitrateBps);
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
}
void ResetEncoder(const std::string& payload_name,
size_t num_streams,
size_t num_temporal_layers,
unsigned char num_spatial_layers,
bool screenshare) {
video_send_config_.rtp.payload_name = payload_name;
VideoEncoderConfig video_encoder_config;
video_encoder_config.codec_type = PayloadStringToCodecType(payload_name);
video_encoder_config.number_of_streams = num_streams;
video_encoder_config.max_bitrate_bps =
num_streams == 1 ? kTargetBitrateBps : kSimulcastTargetBitrateBps;
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(num_temporal_layers,
kDefaultFramerate);
video_encoder_config.content_type =
screenshare ? VideoEncoderConfig::ContentType::kScreen
: VideoEncoderConfig::ContentType::kRealtimeVideo;
if (payload_name == "VP9") {
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = num_spatial_layers;
video_encoder_config.encoder_specific_settings =
new rtc::RefCountedObject<
VideoEncoderConfig::Vp9EncoderSpecificSettings>(vp9_settings);
}
ConfigureEncoder(std::move(video_encoder_config));
}
VideoFrame CreateFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event) const {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(new rtc::RefCountedObject<TestBuffer>(
destruction_event, codec_width_, codec_height_))
.set_timestamp_rtp(99)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
frame.set_ntp_time_ms(ntp_time_ms);
return frame;
}
VideoFrame CreateFrameWithUpdatedPixel(int64_t ntp_time_ms,
rtc::Event* destruction_event,
int offset_x) const {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(new rtc::RefCountedObject<TestBuffer>(
destruction_event, codec_width_, codec_height_))
.set_timestamp_rtp(99)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.set_update_rect({offset_x, 0, 1, 1})
.build();
frame.set_ntp_time_ms(ntp_time_ms);
return frame;
}
VideoFrame CreateFrame(int64_t ntp_time_ms, int width, int height) const {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(
new rtc::RefCountedObject<TestBuffer>(nullptr, width, height))
.set_timestamp_rtp(99)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
frame.set_ntp_time_ms(ntp_time_ms);
frame.set_timestamp_us(ntp_time_ms * 1000);
return frame;
}
VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event,
int width,
int height) const {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(new rtc::RefCountedObject<FakeNativeBuffer>(
destruction_event, width, height))
.set_timestamp_rtp(99)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
frame.set_ntp_time_ms(ntp_time_ms);
return frame;
}
VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event) const {
return CreateFakeNativeFrame(ntp_time_ms, destruction_event, codec_width_,
codec_height_);
}
void VerifyAllocatedBitrate(const VideoBitrateAllocation& expected_bitrate) {
MockBitrateObserver bitrate_observer;
video_stream_encoder_->SetBitrateAllocationObserver(&bitrate_observer);
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate))
.Times(1);
video_stream_encoder_->OnBitrateUpdated(DataRate::bps(kTargetBitrateBps),
DataRate::bps(kTargetBitrateBps), 0,
0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, codec_width_, codec_height_));
WaitForEncodedFrame(1);
}
void VerifyNoLimitation(const rtc::VideoSinkWants& wants) {
EXPECT_EQ(std::numeric_limits<int>::max(), wants.max_framerate_fps);
EXPECT_EQ(std::numeric_limits<int>::max(), wants.max_pixel_count);
EXPECT_FALSE(wants.target_pixel_count);
}
void VerifyFpsEqResolutionEq(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_EQ(wants1.max_framerate_fps, wants2.max_framerate_fps);
EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count);
}
void VerifyFpsMaxResolutionMax(const rtc::VideoSinkWants& wants) {
EXPECT_EQ(kDefaultFramerate, wants.max_framerate_fps);
EXPECT_EQ(std::numeric_limits<int>::max(), wants.max_pixel_count);
EXPECT_FALSE(wants.target_pixel_count);
}
void VerifyFpsMaxResolutionLt(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_EQ(kDefaultFramerate, wants1.max_framerate_fps);
EXPECT_LT(wants1.max_pixel_count, wants2.max_pixel_count);
EXPECT_GT(wants1.max_pixel_count, 0);
}
void VerifyFpsMaxResolutionGt(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_EQ(kDefaultFramerate, wants1.max_framerate_fps);
EXPECT_GT(wants1.max_pixel_count, wants2.max_pixel_count);
}
void VerifyFpsMaxResolutionEq(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_EQ(kDefaultFramerate, wants1.max_framerate_fps);
EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count);
}
void VerifyFpsLtResolutionEq(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_LT(wants1.max_framerate_fps, wants2.max_framerate_fps);
EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count);
}
void VerifyFpsGtResolutionEq(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_GT(wants1.max_framerate_fps, wants2.max_framerate_fps);
EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count);
}
void VerifyFpsEqResolutionLt(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_EQ(wants1.max_framerate_fps, wants2.max_framerate_fps);
EXPECT_LT(wants1.max_pixel_count, wants2.max_pixel_count);
EXPECT_GT(wants1.max_pixel_count, 0);
}
void VerifyFpsEqResolutionGt(const rtc::VideoSinkWants& wants1,
const rtc::VideoSinkWants& wants2) {
EXPECT_EQ(wants1.max_framerate_fps, wants2.max_framerate_fps);
EXPECT_GT(wants1.max_pixel_count, wants2.max_pixel_count);
}
void VerifyFpsMaxResolutionLt(const rtc::VideoSinkWants& wants,
int pixel_count) {
EXPECT_EQ(kDefaultFramerate, wants.max_framerate_fps);
EXPECT_LT(wants.max_pixel_count, pixel_count);
EXPECT_GT(wants.max_pixel_count, 0);
}
void VerifyFpsLtResolutionMax(const rtc::VideoSinkWants& wants, int fps) {
EXPECT_LT(wants.max_framerate_fps, fps);
EXPECT_EQ(std::numeric_limits<int>::max(), wants.max_pixel_count);
EXPECT_FALSE(wants.target_pixel_count);
}
void VerifyFpsEqResolutionMax(const rtc::VideoSinkWants& wants,
int expected_fps) {
EXPECT_EQ(expected_fps, wants.max_framerate_fps);
EXPECT_EQ(std::numeric_limits<int>::max(), wants.max_pixel_count);
EXPECT_FALSE(wants.target_pixel_count);
}
void VerifyBalancedModeFpsRange(const rtc::VideoSinkWants& wants,
int last_frame_pixels) {
// Balanced mode should always scale FPS to the desired range before
// attempting to scale resolution.
int fps_limit = wants.max_framerate_fps;
if (last_frame_pixels <= 320 * 240) {
EXPECT_TRUE(7 <= fps_limit && fps_limit <= 10);
} else if (last_frame_pixels <= 480 * 270) {
EXPECT_TRUE(10 <= fps_limit && fps_limit <= 15);
} else if (last_frame_pixels <= 640 * 480) {
EXPECT_LE(15, fps_limit);
} else {
EXPECT_EQ(kDefaultFramerate, fps_limit);
}
}
void WaitForEncodedFrame(int64_t expected_ntp_time) {
sink_.WaitForEncodedFrame(expected_ntp_time);
fake_clock_.AdvanceTime(TimeDelta::seconds(1) / max_framerate_);
}
bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) {
bool ok = sink_.TimedWaitForEncodedFrame(expected_ntp_time, timeout_ms);
fake_clock_.AdvanceTime(TimeDelta::seconds(1) / max_framerate_);
return ok;
}
void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) {
sink_.WaitForEncodedFrame(expected_width, expected_height);
fake_clock_.AdvanceTime(TimeDelta::seconds(1) / max_framerate_);
}
void ExpectDroppedFrame() {
sink_.ExpectDroppedFrame();
fake_clock_.AdvanceTime(TimeDelta::seconds(1) / max_framerate_);
}
bool WaitForFrame(int64_t timeout_ms) {
bool ok = sink_.WaitForFrame(timeout_ms);
fake_clock_.AdvanceTime(TimeDelta::seconds(1) / max_framerate_);
return ok;
}
class TestEncoder : public test::FakeEncoder {
public:
TestEncoder() : FakeEncoder(Clock::GetRealTimeClock()) {}
VideoCodec codec_config() const {
rtc::CritScope lock(&crit_sect_);
return config_;
}
void BlockNextEncode() {
rtc::CritScope lock(&local_crit_sect_);
block_next_encode_ = true;
}
VideoEncoder::EncoderInfo GetEncoderInfo() const override {
rtc::CritScope lock(&local_crit_sect_);
EncoderInfo info;
if (initialized_ == EncoderState::kInitialized) {
if (quality_scaling_) {
info.scaling_settings =
VideoEncoder::ScalingSettings(1, 2, kMinPixelsPerFrame);
}
info.is_hardware_accelerated = is_hardware_accelerated_;
for (int i = 0; i < kMaxSpatialLayers; ++i) {
if (temporal_layers_supported_[i]) {
int num_layers = temporal_layers_supported_[i].value() ? 2 : 1;
info.fps_allocation[i].resize(num_layers);
}
}
}
return info;
}
int32_t RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) override {
rtc::CritScope lock(&local_crit_sect_);
encoded_image_callback_ = callback;
return FakeEncoder::RegisterEncodeCompleteCallback(callback);
}
void ContinueEncode() { continue_encode_event_.Set(); }
void CheckLastTimeStampsMatch(int64_t ntp_time_ms,
uint32_t timestamp) const {
rtc::CritScope lock(&local_crit_sect_);
EXPECT_EQ(timestamp_, timestamp);
EXPECT_EQ(ntp_time_ms_, ntp_time_ms);
}
void SetQualityScaling(bool b) {
rtc::CritScope lock(&local_crit_sect_);
quality_scaling_ = b;
}
void SetIsHardwareAccelerated(bool is_hardware_accelerated) {
rtc::CritScope lock(&local_crit_sect_);
is_hardware_accelerated_ = is_hardware_accelerated;
}
void SetTemporalLayersSupported(size_t spatial_idx, bool supported) {
RTC_DCHECK_LT(spatial_idx, kMaxSpatialLayers);
rtc::CritScope lock(&local_crit_sect_);
temporal_layers_supported_[spatial_idx] = supported;
}
void ForceInitEncodeFailure(bool force_failure) {
rtc::CritScope lock(&local_crit_sect_);
force_init_encode_failed_ = force_failure;
}
void SimulateOvershoot(double rate_factor) {
rtc::CritScope lock(&local_crit_sect_);
rate_factor_ = rate_factor;
}
uint32_t GetLastFramerate() const {
rtc::CritScope lock(&local_crit_sect_);
return last_framerate_;
}
VideoFrame::UpdateRect GetLastUpdateRect() const {
rtc::CritScope lock(&local_crit_sect_);
return last_update_rect_;
}
const std::vector<VideoFrameType>& LastFrameTypes() const {
rtc::CritScope lock(&local_crit_sect_);
return last_frame_types_;
}
void InjectFrame(const VideoFrame& input_image, bool keyframe) {
const std::vector<VideoFrameType> frame_type = {
keyframe ? VideoFrameType::kVideoFrameKey
: VideoFrameType::kVideoFrameDelta};
{
rtc::CritScope lock(&local_crit_sect_);
last_frame_types_ = frame_type;
}
FakeEncoder::Encode(input_image, &frame_type);
}
void InjectEncodedImage(const EncodedImage& image) {
rtc::CritScope lock(&local_crit_sect_);
encoded_image_callback_->OnEncodedImage(image, nullptr, nullptr);
}
void InjectEncodedImage(const EncodedImage& image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
rtc::CritScope lock(&local_crit_sect_);
encoded_image_callback_->OnEncodedImage(image, codec_specific_info,
fragmentation);
}
void ExpectNullFrame() {
rtc::CritScope lock(&local_crit_sect_);
expect_null_frame_ = true;
}
absl::optional<VideoBitrateAllocation> GetAndResetLastBitrateAllocation() {
auto allocation = last_bitrate_allocation_;
last_bitrate_allocation_.reset();
return allocation;
}
private:
int32_t Encode(const VideoFrame& input_image,
const std::vector<VideoFrameType>* frame_types) override {
bool block_encode;
{
rtc::CritScope lock(&local_crit_sect_);
if (expect_null_frame_) {
EXPECT_EQ(input_image.timestamp(), 0u);
EXPECT_EQ(input_image.width(), 1);
last_frame_types_ = *frame_types;
expect_null_frame_ = false;
} else {
EXPECT_GT(input_image.timestamp(), timestamp_);
EXPECT_GT(input_image.ntp_time_ms(), ntp_time_ms_);
EXPECT_EQ(input_image.timestamp(), input_image.ntp_time_ms() * 90);
}
timestamp_ = input_image.timestamp();
ntp_time_ms_ = input_image.ntp_time_ms();
last_input_width_ = input_image.width();
last_input_height_ = input_image.height();
block_encode = block_next_encode_;
block_next_encode_ = false;
last_update_rect_ = input_image.update_rect();
last_frame_types_ = *frame_types;
}
int32_t result = FakeEncoder::Encode(input_image, frame_types);
if (block_encode)
EXPECT_TRUE(continue_encode_event_.Wait(kDefaultTimeoutMs));
return result;
}
int32_t InitEncode(const VideoCodec* config,
const Settings& settings) override {
int res = FakeEncoder::InitEncode(config, settings);
rtc::CritScope lock(&local_crit_sect_);
EXPECT_EQ(initialized_, EncoderState::kUninitialized);
if (config->codecType == kVideoCodecVP8) {
// Simulate setting up temporal layers, in order to validate the life
// cycle of these objects.
Vp8TemporalLayersFactory factory;
frame_buffer_controller_ = factory.Create(*config, settings);
}
if (force_init_encode_failed_) {
initialized_ = EncoderState::kInitializationFailed;
return -1;
}
initialized_ = EncoderState::kInitialized;
return res;
}
int32_t Release() override {
rtc::CritScope lock(&local_crit_sect_);
EXPECT_NE(initialized_, EncoderState::kUninitialized);
initialized_ = EncoderState::kUninitialized;
return FakeEncoder::Release();
}
void SetRates(const RateControlParameters& parameters) {
rtc::CritScope lock(&local_crit_sect_);
VideoBitrateAllocation adjusted_rate_allocation;
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (parameters.bitrate.HasBitrate(si, ti)) {
adjusted_rate_allocation.SetBitrate(
si, ti,
static_cast<uint32_t>(parameters.bitrate.GetBitrate(si, ti) *
rate_factor_));
}
}
}
last_framerate_ = static_cast<uint32_t>(parameters.framerate_fps + 0.5);
last_bitrate_allocation_ = parameters.bitrate;
RateControlParameters adjusted_paramters = parameters;
adjusted_paramters.bitrate = adjusted_rate_allocation;
FakeEncoder::SetRates(adjusted_paramters);
}
rtc::CriticalSection local_crit_sect_;
enum class EncoderState {
kUninitialized,
kInitializationFailed,
kInitialized
} initialized_ RTC_GUARDED_BY(local_crit_sect_) =
EncoderState::kUninitialized;
bool block_next_encode_ RTC_GUARDED_BY(local_crit_sect_) = false;
rtc::Event continue_encode_event_;
uint32_t timestamp_ RTC_GUARDED_BY(local_crit_sect_) = 0;
int64_t ntp_time_ms_ RTC_GUARDED_BY(local_crit_sect_) = 0;
int last_input_width_ RTC_GUARDED_BY(local_crit_sect_) = 0;
int last_input_height_ RTC_GUARDED_BY(local_crit_sect_) = 0;
bool quality_scaling_ RTC_GUARDED_BY(local_crit_sect_) = true;
bool is_hardware_accelerated_ RTC_GUARDED_BY(local_crit_sect_) = false;
std::unique_ptr<Vp8FrameBufferController> frame_buffer_controller_
RTC_GUARDED_BY(local_crit_sect_);
absl::optional<bool>
temporal_layers_supported_[kMaxSpatialLayers] RTC_GUARDED_BY(
local_crit_sect_);
bool force_init_encode_failed_ RTC_GUARDED_BY(local_crit_sect_) = false;
double rate_factor_ RTC_GUARDED_BY(local_crit_sect_) = 1.0;
uint32_t last_framerate_ RTC_GUARDED_BY(local_crit_sect_) = 0;
absl::optional<VideoBitrateAllocation> last_bitrate_allocation_;
VideoFrame::UpdateRect last_update_rect_
RTC_GUARDED_BY(local_crit_sect_) = {0, 0, 0, 0};
std::vector<VideoFrameType> last_frame_types_;
bool expect_null_frame_ = false;
EncodedImageCallback* encoded_image_callback_
RTC_GUARDED_BY(local_crit_sect_) = nullptr;
};
class TestSink : public VideoStreamEncoder::EncoderSink {
public:
explicit TestSink(TestEncoder* test_encoder)
: test_encoder_(test_encoder) {}
void WaitForEncodedFrame(int64_t expected_ntp_time) {
EXPECT_TRUE(
TimedWaitForEncodedFrame(expected_ntp_time, kDefaultTimeoutMs));
}
bool TimedWaitForEncodedFrame(int64_t expected_ntp_time,
int64_t timeout_ms) {
uint32_t timestamp = 0;
if (!encoded_frame_event_.Wait(timeout_ms))
return false;
{
rtc::CritScope lock(&crit_);
timestamp = last_timestamp_;
}
test_encoder_->CheckLastTimeStampsMatch(expected_ntp_time, timestamp);
return true;
}
void WaitForEncodedFrame(uint32_t expected_width,
uint32_t expected_height) {
EXPECT_TRUE(encoded_frame_event_.Wait(kDefaultTimeoutMs));
CheckLastFrameSizeMatches(expected_width, expected_height);
}
void CheckLastFrameSizeMatches(uint32_t expected_width,
uint32_t expected_height) {
uint32_t width = 0;
uint32_t height = 0;
{
rtc::CritScope lock(&crit_);
width = last_width_;
height = last_height_;
}
EXPECT_EQ(expected_height, height);
EXPECT_EQ(expected_width, width);
}
void CheckLastFrameRotationMatches(VideoRotation expected_rotation) {
VideoRotation rotation;
{
rtc::CritScope lock(&crit_);
rotation = last_rotation_;
}
EXPECT_EQ(expected_rotation, rotation);
}
void ExpectDroppedFrame() { EXPECT_FALSE(encoded_frame_event_.Wait(100)); }
bool WaitForFrame(int64_t timeout_ms) {
return encoded_frame_event_.Wait(timeout_ms);
}
void SetExpectNoFrames() {
rtc::CritScope lock(&crit_);
expect_frames_ = false;
}
int number_of_reconfigurations() const {
rtc::CritScope lock(&crit_);
return number_of_reconfigurations_;
}
int last_min_transmit_bitrate() const {
rtc::CritScope lock(&crit_);
return min_transmit_bitrate_bps_;
}
void SetNumExpectedLayers(size_t num_layers) {
rtc::CritScope lock(&crit_);
num_expected_layers_ = num_layers;
}
int64_t GetLastCaptureTimeMs() const {
rtc::CritScope lock(&crit_);
return last_capture_time_ms_;
}
std::vector<uint8_t> GetLastEncodedImageData() {
rtc::CritScope lock(&crit_);
return std::move(last_encoded_image_data_);
}
RTPFragmentationHeader GetLastFragmentation() {
rtc::CritScope lock(&crit_);
return std::move(last_fragmentation_);
}
private:
Result OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
rtc::CritScope lock(&crit_);
EXPECT_TRUE(expect_frames_);
last_encoded_image_data_ = std::vector<uint8_t>(
encoded_image.data(), encoded_image.data() + encoded_image.size());
if (fragmentation) {
last_fragmentation_.CopyFrom(*fragmentation);
}
uint32_t timestamp = encoded_image.Timestamp();
if (last_timestamp_ != timestamp) {
num_received_layers_ = 1;
} else {
++num_received_layers_;
}
last_timestamp_ = timestamp;
last_capture_time_ms_ = encoded_image.capture_time_ms_;
last_width_ = encoded_image._encodedWidth;
last_height_ = encoded_image._encodedHeight;
last_rotation_ = encoded_image.rotation_;
if (num_received_layers_ == num_expected_layers_) {
encoded_frame_event_.Set();
}
return Result(Result::OK, last_timestamp_);
}
void OnEncoderConfigurationChanged(
std::vector<VideoStream> streams,
VideoEncoderConfig::ContentType content_type,
int min_transmit_bitrate_bps) override {
rtc::CriticalSection crit_;
++number_of_reconfigurations_;
min_transmit_bitrate_bps_ = min_transmit_bitrate_bps;
}
rtc::CriticalSection crit_;
TestEncoder* test_encoder_;
rtc::Event encoded_frame_event_;
std::vector<uint8_t> last_encoded_image_data_;
RTPFragmentationHeader last_fragmentation_;
uint32_t last_timestamp_ = 0;
int64_t last_capture_time_ms_ = 0;
uint32_t last_height_ = 0;
uint32_t last_width_ = 0;
VideoRotation last_rotation_ = kVideoRotation_0;
size_t num_expected_layers_ = 1;
size_t num_received_layers_ = 0;
bool expect_frames_ = true;
int number_of_reconfigurations_ = 0;
int min_transmit_bitrate_bps_ = 0;
};
VideoSendStream::Config video_send_config_;
VideoEncoderConfig video_encoder_config_;
int codec_width_;
int codec_height_;
int max_framerate_;
const std::unique_ptr<TaskQueueFactory> task_queue_factory_;
TestEncoder fake_encoder_;
test::VideoEncoderProxyFactory encoder_factory_;
std::unique_ptr<VideoBitrateAllocatorFactory> bitrate_allocator_factory_;
std::unique_ptr<MockableSendStatisticsProxy> stats_proxy_;
TestSink sink_;
AdaptingFrameForwarder video_source_;
std::unique_ptr<VideoStreamEncoderUnderTest> video_stream_encoder_;
rtc::ScopedFakeClock fake_clock_;
};
TEST_F(VideoStreamEncoderTest, EncodeOneFrame) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event));
WaitForEncodedFrame(1);
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesBeforeFirstOnBitrateUpdated) {
// Dropped since no target bitrate has been set.
rtc::Event frame_destroyed_event;
// The encoder will cache up to one frame for a short duration. Adding two
// frames means that the first frame will be dropped and the second frame will
// be sent when the encoder is enabled.
video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event));
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// The pending frame should be received.
WaitForEncodedFrame(2);
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
WaitForEncodedFrame(3);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesWhenRateSetToZero) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
video_stream_encoder_->OnBitrateUpdated(DataRate::bps(0), DataRate::bps(0), 0,
0);
// The encoder will cache up to one frame for a short duration. Adding two
// frames means that the first frame will be dropped and the second frame will
// be sent when the encoder is resumed.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
WaitForEncodedFrame(3);
video_source_.IncomingCapturedFrame(CreateFrame(4, nullptr));
WaitForEncodedFrame(4);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesWithSameOrOldNtpTimestamp) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// This frame will be dropped since it has the same ntp timestamp.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFrameAfterStop) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
video_stream_encoder_->Stop();
sink_.SetExpectNoFrames();
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFrame(2, &frame_destroyed_event));
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
}
TEST_F(VideoStreamEncoderTest, DropsPendingFramesOnSlowEncode) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
fake_encoder_.BlockNextEncode();
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// Here, the encoder thread will be blocked in the TestEncoder waiting for a
// call to ContinueEncode.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
fake_encoder_.ContinueEncode();
WaitForEncodedFrame(3);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropFrameWithFailedI420Conversion) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(
CreateFakeNativeFrame(1, &frame_destroyed_event));
ExpectDroppedFrame();
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropFrameWithFailedI420ConversionWithCrop) {
// Use the cropping factory.
video_encoder_config_.video_stream_factory =
new rtc::RefCountedObject<CroppingVideoStreamFactory>(1, 30);
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config_),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Capture a frame at codec_width_/codec_height_.
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// The encoder will have been configured once.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width);
EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height);
// Now send in a fake frame that needs to be cropped as the width/height
// aren't divisible by 4 (see CreateEncoderStreams above).
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFakeNativeFrame(
2, &frame_destroyed_event, codec_width_ + 1, codec_height_ + 1));
ExpectDroppedFrame();
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ConfigureEncoderTriggersOnEncoderConfigurationChanged) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
EXPECT_EQ(0, sink_.number_of_reconfigurations());
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// The encoder will have been configured once when the first frame is
// received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.min_transmit_bitrate_bps = 9999;
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
EXPECT_EQ(9999, sink_.last_min_transmit_bitrate());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, FrameResolutionChangeReconfigureEncoder) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// The encoder will have been configured once.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width);
EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height);
codec_width_ *= 2;
codec_height_ *= 2;
// Capture a frame with a higher resolution and wait for it to synchronize
// with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width);
EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SwitchSourceDeregisterEncoderAsSink) {
EXPECT_TRUE(video_source_.has_sinks());
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_FALSE(video_source_.has_sinks());
EXPECT_TRUE(new_video_source.has_sinks());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SinkWantsRotationApplied) {
EXPECT_FALSE(video_source_.sink_wants().rotation_applied);
video_stream_encoder_->SetSink(&sink_, true /*rotation_applied*/);
EXPECT_TRUE(video_source_.sink_wants().rotation_applied);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, TestCpuDowngrades_BalancedMode) {
const int kFramerateFps = 30;
const int kWidth = 1280;
const int kHeight = 720;
// We rely on the automatic resolution adaptation, but we handle framerate
// adaptation manually by mocking the stats proxy.
video_source_.set_adaptation_enabled(true);
// Enable BALANCED preference, no initial limitation.
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_stream_encoder_->SetSource(&video_source_,
webrtc::DegradationPreference::BALANCED);
VerifyNoLimitation(video_source_.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Adapt down as far as possible.
rtc::VideoSinkWants last_wants;
int64_t t = 1;
int loop_count = 0;
do {
++loop_count;
last_wants = video_source_.sink_wants();
// Simulate the framerate we've been asked to adapt to.
const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps);
const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps;
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = fps;
stats_proxy_->SetMockStats(mock_stats);
video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight));
sink_.WaitForEncodedFrame(t);
t += frame_interval_ms;
video_stream_encoder_->TriggerCpuOveruse();
VerifyBalancedModeFpsRange(
video_source_.sink_wants(),
*video_source_.last_sent_width() * *video_source_.last_sent_height());
} while (video_source_.sink_wants().max_pixel_count <
last_wants.max_pixel_count ||
video_source_.sink_wants().max_framerate_fps <
last_wants.max_framerate_fps);
// Verify that we've adapted all the way down.
stats_proxy_->ResetMockStats();
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(loop_count - 1,
stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(kMinPixelsPerFrame, *video_source_.last_sent_width() *
*video_source_.last_sent_height());
EXPECT_EQ(kMinBalancedFramerateFps,
video_source_.sink_wants().max_framerate_fps);
// Adapt back up the same number of times we adapted down.
for (int i = 0; i < loop_count - 1; ++i) {
last_wants = video_source_.sink_wants();
// Simulate the framerate we've been asked to adapt to.
const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps);
const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps;
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = fps;
stats_proxy_->SetMockStats(mock_stats);
video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight));
sink_.WaitForEncodedFrame(t);
t += frame_interval_ms;
video_stream_encoder_->TriggerCpuNormalUsage();
VerifyBalancedModeFpsRange(
video_source_.sink_wants(),
*video_source_.last_sent_width() * *video_source_.last_sent_height());
EXPECT_TRUE(video_source_.sink_wants().max_pixel_count >
last_wants.max_pixel_count ||
video_source_.sink_wants().max_framerate_fps >
last_wants.max_framerate_fps);
}
VerifyFpsMaxResolutionMax(video_source_.sink_wants());
stats_proxy_->ResetMockStats();
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ((loop_count - 1) * 2,
stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SinkWantsStoredByDegradationPreference) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
VerifyNoLimitation(video_source_.sink_wants());
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
int64_t frame_timestamp = 1;
video_source_.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Trigger CPU overuse.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Default degradation preference is maintain-framerate, so will lower max
// wanted resolution.
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count,
kFrameWidth * kFrameHeight);
EXPECT_EQ(kDefaultFramerate, video_source_.sink_wants().max_framerate_fps);
// Set new source, switch to maintain-resolution.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Initially no degradation registered.
VerifyFpsMaxResolutionMax(new_video_source.sink_wants());
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt form.
const int kInputFps = 30;
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kInputFps;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Some framerate constraint should be set.
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps);
// Turn off degradation completely.
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::DISABLED);
VerifyFpsMaxResolutionMax(new_video_source.sink_wants());
video_stream_encoder_->TriggerCpuOveruse();
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Still no degradation.
VerifyFpsMaxResolutionMax(new_video_source.sink_wants());
// Calling SetSource with resolution scaling enabled apply the old SinkWants.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_LT(new_video_source.sink_wants().max_pixel_count,
kFrameWidth * kFrameHeight);
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(kDefaultFramerate, new_video_source.sink_wants().max_framerate_fps);
// Calling SetSource with framerate scaling enabled apply the old SinkWants.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, StatsTracksQualityAdaptationStats) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
// Trigger adapt down.
video_stream_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.bw_limited_resolution);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
// Trigger adapt up.
video_stream_encoder_->TriggerQualityHigh();
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_EQ(2, stats.number_of_quality_adapt_changes);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStats) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal use.
video_stream_encoder_->TriggerCpuNormalUsage();
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsCpuAdaptation) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set adaptation disabled.
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::DISABLED);
new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight));
WaitForEncodedFrame(4);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set adaptation back to enabled.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight));
WaitForEncodedFrame(5);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal use.
video_stream_encoder_->TriggerCpuNormalUsage();
new_video_source.IncomingCapturedFrame(CreateFrame(6, kWidth, kHeight));
WaitForEncodedFrame(6);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsQualityAdaptation) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::BALANCED);
new_video_source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
// Trigger adapt down.
video_stream_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
// Set new source with adaptation still enabled.
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::BALANCED);
new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight));
WaitForEncodedFrame(4);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
// Disable resolution scaling.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight));
WaitForEncodedFrame(5);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityAdaptationStatsAreResetWhenScalerIsDisabled) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
int64_t timestamp_ms = kFrameIntervalMs;
video_source_.set_adaptation_enabled(true);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger overuse.
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Leave source unchanged, but disable quality scaler.
fake_encoder_.SetQualityScaling(false);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
// Make format different, to force recreation of encoder.
video_encoder_config.video_format.parameters["foo"] = "foo";
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
StatsTracksCpuAdaptationStatsWhenSwitchingSource) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
int sequence = 1;
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse, should now adapt down.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set cpu adaptation by frame dropping.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
// Not adapted at first.
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt from.
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = 30;
stats_proxy_->SetMockStats(mock_stats);
video_stream_encoder_->TriggerCpuOveruse();
stats_proxy_->ResetMockStats();
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
// Framerate now adapted.
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Disable CPU adaptation.
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::DISABLED);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Try to trigger overuse. Should not succeed.
stats_proxy_->SetMockStats(mock_stats);
video_stream_encoder_->TriggerCpuOveruse();
stats_proxy_->ResetMockStats();
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Switch back the source with resolution adaptation enabled.
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal usage.
video_stream_encoder_->TriggerCpuNormalUsage();
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(3, stats.number_of_cpu_adapt_changes);
// Back to the source with adaptation off, set it back to maintain-resolution.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
// Disabled, since we previously switched the source to disabled.
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_framerate);
EXPECT_EQ(3, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal usage.
video_stream_encoder_->TriggerCpuNormalUsage();
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(4, stats.number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ScalingUpAndDownDoesNothingWithMaintainResolution) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Expect no scaling to begin with.
VerifyNoLimitation(video_source_.sink_wants());
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
// Trigger scale down.
video_stream_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
// Expect a scale down.
EXPECT_TRUE(video_source_.sink_wants().max_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight);
// Set resolution scaling disabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Trigger scale down.
video_stream_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
// Expect no scaling.
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
// Trigger scale up.
video_stream_encoder_->TriggerQualityHigh();
new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight));
WaitForEncodedFrame(4);
// Expect nothing to change, still no scaling.
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
SkipsSameAdaptDownRequest_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerCpuOveruse();
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
const int kLastMaxPixelCount = source.sink_wants().max_pixel_count;
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down for same input resolution, expect no change.
video_stream_encoder_->TriggerCpuOveruse();
EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SkipsSameOrLargerAdaptDownRequest_BalancedMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable BALANCED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(1);
VerifyFpsMaxResolutionMax(source.sink_wants());
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
const int kLastMaxPixelCount = source.sink_wants().max_pixel_count;
// Trigger adapt down for same input resolution, expect no change.
source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
sink_.WaitForEncodedFrame(2);
video_stream_encoder_->TriggerQualityLow();
EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down for larger input resolution, expect no change.
source.IncomingCapturedFrame(CreateFrame(3, kWidth + 1, kHeight + 1));
sink_.WaitForEncodedFrame(3);
video_stream_encoder_->TriggerQualityLow();
EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NoChangeForInitialNormalUsage_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerCpuNormalUsage();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NoChangeForInitialNormalUsage_MaintainResolutionMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable MAINTAIN_RESOLUTION preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerCpuNormalUsage();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_BalancedMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable BALANCED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_DisabledMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable DISABLED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::DISABLED);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionForLowQuality_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source;
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsFramerateForLowQuality_MaintainResolutionMode) {
const int kWidth = 1280;
const int kHeight = 720;
const int kInputFps = 30;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kInputFps;
stats_proxy_->SetMockStats(stats);
// Expect no scaling to begin with (preference: MAINTAIN_FRAMERATE).
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(1);
VerifyFpsMaxResolutionMax(video_source_.sink_wants());
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
sink_.WaitForEncodedFrame(2);
VerifyFpsMaxResolutionLt(video_source_.sink_wants(), kWidth * kHeight);
// Enable MAINTAIN_RESOLUTION preference.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
VerifyFpsMaxResolutionMax(new_video_source.sink_wants());
// Trigger adapt down, expect reduced framerate.
video_stream_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
sink_.WaitForEncodedFrame(3);
VerifyFpsLtResolutionMax(new_video_source.sink_wants(), kInputFps);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
VerifyFpsMaxResolutionMax(new_video_source.sink_wants());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesNotScaleBelowSetResolutionLimit) {
const int kWidth = 1280;
const int kHeight = 720;
const size_t kNumFrames = 10;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable adapter, expected input resolutions when downscaling:
// 1280x720 -> 960x540 -> 640x360 -> 480x270 -> 320x180 (kMinPixelsPerFrame)
video_source_.set_adaptation_enabled(true);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
int downscales = 0;
for (size_t i = 1; i <= kNumFrames; i++) {
video_source_.IncomingCapturedFrame(
CreateFrame(i * kFrameIntervalMs, kWidth, kHeight));
WaitForEncodedFrame(i * kFrameIntervalMs);
// Trigger scale down.
rtc::VideoSinkWants last_wants = video_source_.sink_wants();
video_stream_encoder_->TriggerQualityLow();
EXPECT_GE(video_source_.sink_wants().max_pixel_count, kMinPixelsPerFrame);
if (video_source_.sink_wants().max_pixel_count < last_wants.max_pixel_count)
++downscales;
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(downscales,
stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_GT(downscales, 0);
}
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionUpAndDownTwiceOnOveruse_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source;
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionUpAndDownTwiceForLowQuality_BalancedMode_NoFpsLimit) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source;
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionOnOveruseAndLowQuality_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source;
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (960x540).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (640x360).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (480x270).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect scaled down resolution (320x180).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants());
rtc::VideoSinkWants last_wants = source.sink_wants();
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect no change (min resolution reached).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionEq(source.sink_wants(), last_wants);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect upscaled resolution (480x270).
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect upscaled resolution (640x360).
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect upscaled resolution (960x540).
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
last_wants = source.sink_wants();
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, no cpu downgrades, expect no change (960x540).
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionEq(source.sink_wants(), last_wants);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt up, expect no restriction (1280x720).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsReported) {
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
WaitForEncodedFrame(i);
}
video_stream_encoder_->TriggerCpuOveruse();
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(
SendStatisticsProxy::kMinRequiredMetricsSamples + i, kWidth, kHeight));
WaitForEncodedFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i);
}
video_stream_encoder_->Stop();
video_stream_encoder_.reset();
stats_proxy_.reset();
EXPECT_EQ(1,
metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent"));
EXPECT_EQ(
1, metrics::NumEvents("WebRTC.Video.CpuLimitedResolutionInPercent", 50));
}
TEST_F(VideoStreamEncoderTest,
CpuLimitedHistogramIsNotReportedForDisabledDegradation) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->SetSource(&video_source_,
webrtc::DegradationPreference::DISABLED);
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
WaitForEncodedFrame(i);
}
video_stream_encoder_->Stop();
video_stream_encoder_.reset();
stats_proxy_.reset();
EXPECT_EQ(0,
metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent"));
}
TEST_F(VideoStreamEncoderTest, CallsBitrateObserver) {
MockBitrateObserver bitrate_observer;
video_stream_encoder_->SetBitrateAllocationObserver(&bitrate_observer);
const int kDefaultFps = 30;
const VideoBitrateAllocation expected_bitrate =
DefaultVideoBitrateAllocator(fake_encoder_.codec_config())
.GetAllocation(kLowTargetBitrateBps, kDefaultFps);
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate))
.Times(1);
video_stream_encoder_->OnBitrateUpdated(DataRate::bps(kLowTargetBitrateBps),
DataRate::bps(kLowTargetBitrateBps),
0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(rtc::TimeMillis(), codec_width_, codec_height_));
WaitForEncodedFrame(rtc::TimeMillis());
absl::optional<VideoBitrateAllocation> bitrate_allocation =
fake_encoder_.GetAndResetLastBitrateAllocation();
// Check that encoder has been updated too, not just allocation observer.
EXPECT_EQ(bitrate_allocation->get_sum_bps(), kLowTargetBitrateBps);
// TODO(srte): The use of millisecs here looks like an error, but the tests
// fails using seconds, this should be investigated.
fake_clock_.AdvanceTime(TimeDelta::ms(1) / kDefaultFps);
// Not called on second frame.
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate))
.Times(0);
video_source_.IncomingCapturedFrame(
CreateFrame(rtc::TimeMillis(), codec_width_, codec_height_));
WaitForEncodedFrame(rtc::TimeMillis());
fake_clock_.AdvanceTime(TimeDelta::ms(1) / kDefaultFps);
// Called after a process interval.
const int64_t kProcessIntervalMs =
vcm::VCMProcessTimer::kDefaultProcessIntervalMs;
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate))
.Times(1);
const int64_t start_time_ms = rtc::TimeMillis();
while (rtc::TimeMillis() - start_time_ms < kProcessIntervalMs) {
video_source_.IncomingCapturedFrame(
CreateFrame(rtc::TimeMillis(), codec_width_, codec_height_));
WaitForEncodedFrame(rtc::TimeMillis());
fake_clock_.AdvanceTime(TimeDelta::ms(1) / kDefaultFps);
}
// Since rates are unchanged, encoder should not be reconfigured.
EXPECT_FALSE(fake_encoder_.GetAndResetLastBitrateAllocation().has_value());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, TemporalLayersNotDisabledIfSupported) {
// 2 TLs configured, temporal layers supported by encoder.
const int kNumTemporalLayers = 2;
ResetEncoder("VP8", 1, kNumTemporalLayers, 1, /*screenshare*/ false);
fake_encoder_.SetTemporalLayersSupported(0, true);
// Bitrate allocated across temporal layers.
const int kTl0Bps = kTargetBitrateBps *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
kNumTemporalLayers, /*temporal_id*/ 0);
const int kTl1Bps = kTargetBitrateBps *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
kNumTemporalLayers, /*temporal_id*/ 1);
VideoBitrateAllocation expected_bitrate;
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTl0Bps);
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kTl1Bps - kTl0Bps);
VerifyAllocatedBitrate(expected_bitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, TemporalLayersDisabledIfNotSupported) {
// 2 TLs configured, temporal layers not supported by encoder.
ResetEncoder("VP8", 1, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false);
fake_encoder_.SetTemporalLayersSupported(0, false);
// Temporal layers not supported by the encoder.
// Total bitrate should be at ti:0.
VideoBitrateAllocation expected_bitrate;
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTargetBitrateBps);
VerifyAllocatedBitrate(expected_bitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, VerifyBitrateAllocationForTwoStreams) {
// 2 TLs configured, temporal layers only supported for first stream.
ResetEncoder("VP8", 2, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false);
fake_encoder_.SetTemporalLayersSupported(0, true);
fake_encoder_.SetTemporalLayersSupported(1, false);
const int kS0Bps = 150000;
const int kS0Tl0Bps =
kS0Bps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
/*num_layers*/ 2, /*temporal_id*/ 0);
const int kS0Tl1Bps =
kS0Bps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
/*num_layers*/ 2, /*temporal_id*/ 1);
const int kS1Bps = kTargetBitrateBps - kS0Tl1Bps;
// Temporal layers not supported by si:1.
VideoBitrateAllocation expected_bitrate;
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kS0Tl0Bps);
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kS0Tl1Bps - kS0Tl0Bps);
expected_bitrate.SetBitrate(/*si*/ 1, /*ti*/ 0, kS1Bps);
VerifyAllocatedBitrate(expected_bitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnReconfigureAndAdaption) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kFramerate = 24;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Insert a single frame, triggering initial configuration.
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kDefaultFramerate);
// Trigger reconfigure encoder (without resetting the entire instance).
VideoEncoderConfig video_encoder_config;
video_encoder_config.codec_type = kVideoCodecVP8;
video_encoder_config.max_bitrate_bps = kTargetBitrateBps;
video_encoder_config.number_of_streams = 1;
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(1, kFramerate);
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Detector should be updated with fps limit from codec config.
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
// Trigger overuse, max framerate should be reduced.
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kFramerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
int adapted_framerate =
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate();
EXPECT_LT(adapted_framerate, kFramerate);
// Trigger underuse, max framerate should go back to codec configured fps.
// Set extra low fps, to make sure it's actually reset, not just incremented.
stats = stats_proxy_->GetStats();
stats.input_frame_rate = adapted_framerate / 2;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuNormalUsage();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
OveruseDetectorUpdatedRespectsFramerateAfterUnderuse) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kLowFramerate = 15;
const int kHighFramerate = 25;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Trigger initial configuration.
VideoEncoderConfig video_encoder_config;
video_encoder_config.codec_type = kVideoCodecVP8;
video_encoder_config.max_bitrate_bps = kTargetBitrateBps;
video_encoder_config.number_of_streams = 1;
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(1, kLowFramerate);
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kLowFramerate);
// Trigger overuse, max framerate should be reduced.
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kLowFramerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
int adapted_framerate =
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate();
EXPECT_LT(adapted_framerate, kLowFramerate);
// Reconfigure the encoder with a new (higher max framerate), max fps should
// still respect the adaptation.
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(1, kHighFramerate);
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
adapted_framerate);
// Trigger underuse, max framerate should go back to codec configured fps.
stats = stats_proxy_->GetStats();
stats.input_frame_rate = adapted_framerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuNormalUsage();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kHighFramerate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
OveruseDetectorUpdatedOnDegradationPreferenceChange) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kFramerate = 24;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Trigger initial configuration.
VideoEncoderConfig video_encoder_config;
video_encoder_config.codec_type = kVideoCodecVP8;
video_encoder_config.max_bitrate_bps = kTargetBitrateBps;
video_encoder_config.number_of_streams = 1;
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(1, kFramerate);
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
// Trigger overuse, max framerate should be reduced.
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kFramerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
int adapted_framerate =
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate();
EXPECT_LT(adapted_framerate, kFramerate);
// Change degradation preference to not enable framerate scaling. Target
// framerate should be changed to codec defined limit.
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesAndScalesWhenBitrateIsTooLow) {
const int kTooLowBitrateForFrameSizeBps = 10000;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTooLowBitrateForFrameSizeBps),
DataRate::bps(kTooLowBitrateForFrameSizeBps), 0, 0);
const int kWidth = 640;
const int kHeight = 360;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Expect to drop this frame, the wait should time out.
ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight);
int last_pixel_count = video_source_.sink_wants().max_pixel_count;
// Next frame is scaled.
video_source_.IncomingCapturedFrame(
CreateFrame(2, kWidth * 3 / 4, kHeight * 3 / 4));
// Expect to drop this frame, the wait should time out.
ExpectDroppedFrame();
EXPECT_LT(video_source_.sink_wants().max_pixel_count, last_pixel_count);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NumberOfDroppedFramesLimitedWhenBitrateIsTooLow) {
const int kTooLowBitrateForFrameSizeBps = 10000;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTooLowBitrateForFrameSizeBps),
DataRate::bps(kTooLowBitrateForFrameSizeBps), 0, 0);
const int kWidth = 640;
const int kHeight = 360;
// We expect the n initial frames to get dropped.
int i;
for (i = 1; i <= kMaxInitialFramedrop; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
ExpectDroppedFrame();
}
// The n+1th frame should not be dropped, even though it's size is too large.
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
WaitForEncodedFrame(i);
// Expect the sink_wants to specify a scaled frame.
EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
InitialFrameDropOffWithMaintainResolutionPreference) {
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdated(DataRate::bps(kLowTargetBitrateBps),
DataRate::bps(kLowTargetBitrateBps),
0, 0);
// Set degradation preference.
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped, even if it's too large.
WaitForEncodedFrame(1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWhenEncoderDisabledScaling) {
const int kWidth = 640;
const int kHeight = 360;
fake_encoder_.SetQualityScaling(false);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
// Make format different, to force recreation of encoder.
video_encoder_config.video_format.parameters["foo"] = "foo";
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->OnBitrateUpdated(DataRate::bps(kLowTargetBitrateBps),
DataRate::bps(kLowTargetBitrateBps),
0, 0);
// Force quality scaler reconfiguration by resetting the source.
video_stream_encoder_->SetSource(&video_source_,
webrtc::DegradationPreference::BALANCED);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped, even if it's too large.
WaitForEncodedFrame(1);
video_stream_encoder_->Stop();
fake_encoder_.SetQualityScaling(true);
}
TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenBWEstimateReady) {
webrtc::test::ScopedFieldTrials field_trials(
"WebRTC-InitialFramedrop/Enabled/");
// Reset encoder for field trials to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
const int kTooLowBitrateForFrameSizeBps = 10000;
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(1);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTooLowBitrateForFrameSizeBps),
DataRate::bps(kTooLowBitrateForFrameSizeBps), 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
// Expect to drop this frame, the wait should time out.
ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ResolutionNotAdaptedForTooSmallFrame_MaintainFramerateMode) {
const int kTooSmallWidth = 10;
const int kTooSmallHeight = 10;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
VerifyNoLimitation(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
// Trigger adapt down, too small frame, expect no change.
source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerCpuOveruse();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ResolutionNotAdaptedForTooSmallFrame_BalancedMode) {
const int kTooSmallWidth = 10;
const int kTooSmallHeight = 10;
const int kFpsLimit = 7;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable BALANCED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
VerifyNoLimitation(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
// Trigger adapt down, expect limited framerate.
source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
VerifyFpsEqResolutionMax(source.sink_wants(), kFpsLimit);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, too small frame, expect no change.
source.IncomingCapturedFrame(CreateFrame(2, kTooSmallWidth, kTooSmallHeight));
WaitForEncodedFrame(2);
video_stream_encoder_->TriggerQualityLow();
VerifyFpsEqResolutionMax(source.sink_wants(), kFpsLimit);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, FailingInitEncodeDoesntCauseCrash) {
fake_encoder_.ForceInitEncodeFailure(true);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
ResetEncoder("VP8", 2, 1, 1, false);
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
ExpectDroppedFrame();
video_stream_encoder_->Stop();
}
// TODO(sprang): Extend this with fps throttling and any "balanced" extensions.
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionOnOveruse_MaintainFramerateMode) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
// Enabled default VideoAdapter downscaling. First step is 3/4, not 3/5 as
// requested by
// VideoStreamEncoder::VideoSourceProxy::RequestResolutionLowerThan().
video_source_.set_adaptation_enabled(true);
video_source_.IncomingCapturedFrame(
CreateFrame(1 * kFrameIntervalMs, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kFrameWidth, kFrameHeight);
// Trigger CPU overuse, downscale by 3/4.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(2 * kFrameIntervalMs, kFrameWidth, kFrameHeight));
WaitForEncodedFrame((kFrameWidth * 3) / 4, (kFrameHeight * 3) / 4);
// Trigger CPU normal use, return to original resolution.
video_stream_encoder_->TriggerCpuNormalUsage();
video_source_.IncomingCapturedFrame(
CreateFrame(3 * kFrameIntervalMs, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kFrameWidth, kFrameHeight);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsFramerateOnOveruse_MaintainResolutionMode) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
video_source_.set_adaptation_enabled(true);
int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
// Try to trigger overuse. No fps estimate available => no effect.
video_stream_encoder_->TriggerCpuOveruse();
// Insert frames for one second to get a stable estimate.
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
}
// Trigger CPU overuse, reduce framerate by 2/3.
video_stream_encoder_->TriggerCpuOveruse();
int num_frames_dropped = 0;
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
// Add some slack to account for frames dropped by the frame dropper.
const int kErrorMargin = 1;
EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3),
kErrorMargin);
// Trigger CPU overuse, reduce framerate by 2/3 again.
video_stream_encoder_->TriggerCpuOveruse();
num_frames_dropped = 0;
for (int i = 0; i <= max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 4 / 9),
kErrorMargin);
// Go back up one step.
video_stream_encoder_->TriggerCpuNormalUsage();
num_frames_dropped = 0;
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3),
kErrorMargin);
// Go back up to original mode.
video_stream_encoder_->TriggerCpuNormalUsage();
num_frames_dropped = 0;
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped, 0, kErrorMargin);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesntAdaptDownPastMinFramerate) {
const int kFramerateFps = 5;
const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kFramerateFps;
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
// Reconfigure encoder with two temporal layers and screensharing, which will
// disable frame dropping and make testing easier.
ResetEncoder("VP8", 1, 2, 1, true);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
video_source_.set_adaptation_enabled(true);
int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
// Trigger overuse as much as we can.
rtc::VideoSinkWants last_wants;
do {
last_wants = video_source_.sink_wants();
// Insert frames to get a new fps estimate...
for (int j = 0; j < kFramerateFps; ++j) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (video_source_.last_sent_width()) {
sink_.WaitForEncodedFrame(timestamp_ms);
}
timestamp_ms += kFrameIntervalMs;
fake_clock_.AdvanceTime(TimeDelta::ms(kFrameIntervalMs));
}
// ...and then try to adapt again.
video_stream_encoder_->TriggerCpuOveruse();
} while (video_source_.sink_wants().max_framerate_fps <
last_wants.max_framerate_fps);
VerifyFpsEqResolutionMax(video_source_.sink_wants(), kMinFramerateFps);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionAndFramerateForLowQuality_BalancedMode) {
const int kWidth = 1280;
const int kHeight = 720;
const int64_t kFrameIntervalMs = 150;
int64_t timestamp_ms = kFrameIntervalMs;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source;
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (960x540@30fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (640x360@30fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (640x360@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (480x270@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionLt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Restrict bitrate, trigger adapt down, expect reduced fps (480x270@10fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (320x180@10fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionLt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (320x180@7fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants());
rtc::VideoSinkWants last_wants = source.sink_wants();
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, min resolution reached, expect no change.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionEq(source.sink_wants(), last_wants);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect expect increased fps (320x180@10fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsGtResolutionEq(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(8, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled resolution (480x270@10fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionGt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(9, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Increase bitrate, trigger adapt up, expect increased fps (480x270@15fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsGtResolutionEq(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(10, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled resolution (640x360@15fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionGt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(11, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect increased fps (640x360@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionEq(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(12, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled resolution (960x540@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(13, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction (1280x720fps@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Framerate) {
const int kWidth = 1280;
const int kHeight = 720;
const int64_t kFrameIntervalMs = 150;
int64_t timestamp_ms = kFrameIntervalMs;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source;
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (960x540@30fps).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (640x360@30fps).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect reduced fps (640x360@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect increased fps (640x360@30fps).
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionEq(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt up, expect upscaled resolution (960x540@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect no restriction (1280x720fps@30fps).
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants());
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptWithTwoReasonsAndDifferentOrder_Resolution) {
const int kWidth = 640;
const int kHeight = 360;
const int kFpsLimit = 15;
const int64_t kFrameIntervalMs = 150;
int64_t timestamp_ms = kFrameIntervalMs;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source;
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down framerate (640x360@15fps).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionMax(source.sink_wants(), kFpsLimit);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect scaled down resolution (480x270@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionLt(source.sink_wants(), source.last_wants());
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect upscaled resolution (640x360@15fps).
video_stream_encoder_->TriggerCpuNormalUsage();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsEqResolutionGt(source.sink_wants(), source.last_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt up, expect increased fps (640x360@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
VerifyFpsMaxResolutionMax(source.sink_wants());
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AcceptsFullHdAdaptedDownSimulcastFrames) {
const int kFrameWidth = 1920;
const int kFrameHeight = 1080;
// 3/4 of 1920.
const int kAdaptedFrameWidth = 1440;
// 3/4 of 1080 rounded down to multiple of 4.
const int kAdaptedFrameHeight = 808;
const int kFramerate = 24;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Trigger reconfigure encoder (without resetting the entire instance).
VideoEncoderConfig video_encoder_config;
video_encoder_config.codec_type = kVideoCodecVP8;
video_encoder_config.max_bitrate_bps = kTargetBitrateBps;
video_encoder_config.number_of_streams = 1;
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<CroppingVideoStreamFactory>(1, kFramerate);
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
video_source_.set_adaptation_enabled(true);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kFrameWidth, kFrameHeight);
// Trigger CPU overuse, downscale by 3/4.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(2, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kAdaptedFrameWidth, kAdaptedFrameHeight);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, PeriodicallyUpdatesChannelParameters) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kLowFps = 2;
const int kHighFps = 30;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
max_framerate_ = kLowFps;
// Insert 2 seconds of 2fps video.
for (int i = 0; i < kLowFps * 2; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
timestamp_ms += 1000 / kLowFps;
}
// Make sure encoder is updated with new target.
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
timestamp_ms += 1000 / kLowFps;
EXPECT_EQ(kLowFps, fake_encoder_.GetConfiguredInputFramerate());
// Insert 30fps frames for just a little more than the forced update period.
const int kVcmTimerIntervalFrames =
(vcm::VCMProcessTimer::kDefaultProcessIntervalMs * kHighFps) / 1000;
const int kFrameIntervalMs = 1000 / kHighFps;
max_framerate_ = kHighFps;
for (int i = 0; i < kVcmTimerIntervalFrames + 2; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait for encoded frame, but skip ahead if it doesn't arrive as it might
// be dropped if the encoder hans't been updated with the new higher target
// framerate yet, causing it to overshoot the target bitrate and then
// suffering the wrath of the media optimizer.
TimedWaitForEncodedFrame(timestamp_ms, 2 * kFrameIntervalMs);
timestamp_ms += kFrameIntervalMs;
}
// Don expect correct measurement just yet, but it should be higher than
// before.
EXPECT_GT(fake_encoder_.GetConfiguredInputFramerate(), kLowFps);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesNotUpdateBitrateAllocationWhenSuspended) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kTargetBitrateBps = 1000000;
MockBitrateObserver bitrate_observer;
video_stream_encoder_->SetBitrateAllocationObserver(&bitrate_observer);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Insert a first video frame, causes another bitrate update.
int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(_)).Times(1);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
// Next, simulate video suspension due to pacer queue overrun.
video_stream_encoder_->OnBitrateUpdated(DataRate::bps(0), DataRate::bps(0), 0,
1);
// Skip ahead until a new periodic parameter update should have occured.
timestamp_ms += vcm::VCMProcessTimer::kDefaultProcessIntervalMs;
fake_clock_.AdvanceTime(
TimeDelta::ms(vcm::VCMProcessTimer::kDefaultProcessIntervalMs));
// Bitrate observer should not be called.
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(_)).Times(0);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
ExpectDroppedFrame();
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
DefaultCpuAdaptationThresholdsForSoftwareEncoder) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const CpuOveruseOptions default_options;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(1);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.low_encode_usage_threshold_percent,
default_options.low_encode_usage_threshold_percent);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.high_encode_usage_threshold_percent,
default_options.high_encode_usage_threshold_percent);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
HigherCpuAdaptationThresholdsForHardwareEncoder) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
CpuOveruseOptions hardware_options;
hardware_options.low_encode_usage_threshold_percent = 150;
hardware_options.high_encode_usage_threshold_percent = 200;
fake_encoder_.SetIsHardwareAccelerated(true);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(1);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.low_encode_usage_threshold_percent,
hardware_options.low_encode_usage_threshold_percent);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.high_encode_usage_threshold_percent,
hardware_options.high_encode_usage_threshold_percent);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesWhenEncoderOvershoots) {
const int kFrameWidth = 320;
const int kFrameHeight = 240;
const int kFps = 30;
const int kTargetBitrateBps = 120000;
const int kNumFramesInRun = kFps * 5; // Runs of five seconds.
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
max_framerate_ = kFps;
// Insert 3 seconds of video, verify number of drops with normal bitrate.
fake_encoder_.SimulateOvershoot(1.0);
int num_dropped = 0;
for (int i = 0; i < kNumFramesInRun; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait up to two frame durations for a frame to arrive.
if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) {
++num_dropped;
}
timestamp_ms += 1000 / kFps;
}
// Framerate should be measured to be near the expected target rate.
EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1);
// Frame drops should be within 5% of expected 0%.
EXPECT_NEAR(num_dropped, 0, 5 * kNumFramesInRun / 100);
// Make encoder produce frames at double the expected bitrate during 3 seconds
// of video, verify number of drops. Rate needs to be slightly changed in
// order to force the rate to be reconfigured.
double overshoot_factor = 2.0;
if (RateControlSettings::ParseFromFieldTrials().UseEncoderBitrateAdjuster()) {
// With bitrate adjuster, when need to overshoot even more to trigger
// frame dropping.
overshoot_factor *= 2;
}
fake_encoder_.SimulateOvershoot(overshoot_factor);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps + 1000),
DataRate::bps(kTargetBitrateBps + 1000), 0, 0);
num_dropped = 0;
for (int i = 0; i < kNumFramesInRun; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait up to two frame durations for a frame to arrive.
if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) {
++num_dropped;
}
timestamp_ms += 1000 / kFps;
}
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Target framerate should be still be near the expected target, despite
// the frame drops.
EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1);
// Frame drops should be within 5% of expected 50%.
EXPECT_NEAR(num_dropped, kNumFramesInRun / 2, 5 * kNumFramesInRun / 100);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, ConfiguresCorrectFrameRate) {
const int kFrameWidth = 320;
const int kFrameHeight = 240;
const int kActualInputFps = 24;
const int kTargetBitrateBps = 120000;
ASSERT_GT(max_framerate_, kActualInputFps);
int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
max_framerate_ = kActualInputFps;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Insert 3 seconds of video, with an input fps lower than configured max.
for (int i = 0; i < kActualInputFps * 3; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait up to two frame durations for a frame to arrive.
WaitForEncodedFrame(timestamp_ms);
timestamp_ms += 1000 / kActualInputFps;
}
EXPECT_NEAR(kActualInputFps, fake_encoder_.GetLastFramerate(), 1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AccumulatesUpdateRectOnDroppedFrames) {
VideoFrame::UpdateRect rect;
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
fake_encoder_.BlockNextEncode();
video_source_.IncomingCapturedFrame(
CreateFrameWithUpdatedPixel(1, nullptr, 0));
WaitForEncodedFrame(1);
// On the very first frame full update should be forced.
rect = fake_encoder_.GetLastUpdateRect();
EXPECT_EQ(rect.offset_x, 0);
EXPECT_EQ(rect.offset_y, 0);
EXPECT_EQ(rect.height, codec_height_);
EXPECT_EQ(rect.width, codec_width_);
// Here, the encoder thread will be blocked in the TestEncoder waiting for a
// call to ContinueEncode.
video_source_.IncomingCapturedFrame(
CreateFrameWithUpdatedPixel(2, nullptr, 1));
ExpectDroppedFrame();
video_source_.IncomingCapturedFrame(
CreateFrameWithUpdatedPixel(3, nullptr, 10));
ExpectDroppedFrame();
fake_encoder_.ContinueEncode();
WaitForEncodedFrame(3);
// Updates to pixels 1 and 10 should be accumulated to one 10x1 rect.
rect = fake_encoder_.GetLastUpdateRect();
EXPECT_EQ(rect.offset_x, 1);
EXPECT_EQ(rect.offset_y, 0);
EXPECT_EQ(rect.width, 10);
EXPECT_EQ(rect.height, 1);
video_source_.IncomingCapturedFrame(
CreateFrameWithUpdatedPixel(4, nullptr, 0));
WaitForEncodedFrame(4);
// Previous frame was encoded, so no accumulation should happen.
rect = fake_encoder_.GetLastUpdateRect();
EXPECT_EQ(rect.offset_x, 0);
EXPECT_EQ(rect.offset_y, 0);
EXPECT_EQ(rect.width, 1);
EXPECT_EQ(rect.height, 1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SetsFrameTypes) {
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// First frame is always keyframe.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey}));
// Insert delta frame.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameDelta}));
// Request next frame be a key-frame.
video_stream_encoder_->SendKeyFrame();
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
WaitForEncodedFrame(3);
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SetsFrameTypesSimulcast) {
// Setup simulcast with three streams.
ResetEncoder("VP8", 3, 1, 1, false);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kSimulcastTargetBitrateBps),
DataRate::bps(kSimulcastTargetBitrateBps), 0, 0);
// Wait for all three layers before triggering event.
sink_.SetNumExpectedLayers(3);
// First frame is always keyframe.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey}));
// Insert delta frame.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta}));
// Request next frame be a key-frame.
// Only first stream is configured to produce key-frame.
video_stream_encoder_->SendKeyFrame();
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
WaitForEncodedFrame(3);
// TODO(webrtc:10615): Map keyframe request to spatial layer. Currently
// keyframe request on any layer triggers keyframe on all layers.
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, RequestKeyframeInternalSource) {
// Configure internal source factory and setup test again.
encoder_factory_.SetHasInternalSource(true);
ResetEncoder("VP8", 1, 1, 1, false);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
// Call encoder directly, simulating internal source where encoded frame
// callback in VideoStreamEncoder is called despite no OnFrame().
fake_encoder_.InjectFrame(CreateFrame(1, nullptr), true);
EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs));
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey}));
const std::vector<VideoFrameType> kDeltaFrame = {
VideoFrameType::kVideoFrameDelta};
// Need to set timestamp manually since manually for injected frame.
VideoFrame frame = CreateFrame(101, nullptr);
frame.set_timestamp(101);
fake_encoder_.InjectFrame(frame, false);
EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs));
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameDelta}));
// Request key-frame. The forces a dummy frame down into the encoder.
fake_encoder_.ExpectNullFrame();
video_stream_encoder_->SendKeyFrame();
EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs));
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AdjustsTimestampInternalSource) {
// Configure internal source factory and setup test again.
encoder_factory_.SetHasInternalSource(true);
ResetEncoder("VP8", 1, 1, 1, false);
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
int64_t timestamp = 1;
EncodedImage image;
image.SetEncodedData(
EncodedImageBuffer::Create(kTargetBitrateBps / kDefaultFramerate / 8));
image.capture_time_ms_ = ++timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
const int64_t kEncodeFinishDelayMs = 10;
image.timing_.encode_start_ms = timestamp;
image.timing_.encode_finish_ms = timestamp + kEncodeFinishDelayMs;
fake_encoder_.InjectEncodedImage(image);
// Wait for frame without incrementing clock.
EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs));
// Frame is captured kEncodeFinishDelayMs before it's encoded, so restored
// capture timestamp should be kEncodeFinishDelayMs in the past.
EXPECT_EQ(sink_.GetLastCaptureTimeMs(),
fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec -
kEncodeFinishDelayMs);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesNotRewriteH264BitstreamWithOptimalSps) {
// Configure internal source factory and setup test again.
encoder_factory_.SetHasInternalSource(true);
ResetEncoder("H264", 1, 1, 1, false);
EncodedImage image(optimal_sps, sizeof(optimal_sps), sizeof(optimal_sps));
image._frameType = VideoFrameType::kVideoFrameKey;
CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = kVideoCodecH264;
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(1);
fragmentation.fragmentationOffset[0] = 4;
fragmentation.fragmentationLength[0] = sizeof(optimal_sps) - 4;
fake_encoder_.InjectEncodedImage(image, &codec_specific_info, &fragmentation);
EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs));
EXPECT_THAT(sink_.GetLastEncodedImageData(),
testing::ElementsAreArray(optimal_sps));
RTPFragmentationHeader last_fragmentation = sink_.GetLastFragmentation();
ASSERT_THAT(last_fragmentation.fragmentationVectorSize, 1U);
EXPECT_EQ(last_fragmentation.fragmentationOffset[0], 4U);
EXPECT_EQ(last_fragmentation.fragmentationLength[0], sizeof(optimal_sps) - 4);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, RewritesH264BitstreamWithNonOptimalSps) {
uint8_t original_sps[] = {0, 0, 0, 1, H264::NaluType::kSps,
0x00, 0x00, 0x03, 0x03, 0xF4,
0x05, 0x03, 0xC7, 0xC0};
// Configure internal source factory and setup test again.
encoder_factory_.SetHasInternalSource(true);
ResetEncoder("H264", 1, 1, 1, false);
EncodedImage image(original_sps, sizeof(original_sps), sizeof(original_sps));
image._frameType = VideoFrameType::kVideoFrameKey;
CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = kVideoCodecH264;
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(1);
fragmentation.fragmentationOffset[0] = 4;
fragmentation.fragmentationLength[0] = sizeof(original_sps) - 4;
fake_encoder_.InjectEncodedImage(image, &codec_specific_info, &fragmentation);
EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs));
EXPECT_THAT(sink_.GetLastEncodedImageData(),
testing::ElementsAreArray(optimal_sps));
RTPFragmentationHeader last_fragmentation = sink_.GetLastFragmentation();
ASSERT_THAT(last_fragmentation.fragmentationVectorSize, 1U);
EXPECT_EQ(last_fragmentation.fragmentationOffset[0], 4U);
EXPECT_EQ(last_fragmentation.fragmentationLength[0], sizeof(optimal_sps) - 4);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, CopiesVideoFrameMetadataAfterDownscale) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kTargetBitrateBps = 300000; // To low for HD resolution.
video_stream_encoder_->OnBitrateUpdated(
DataRate::bps(kTargetBitrateBps), DataRate::bps(kTargetBitrateBps), 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Insert a first video frame. It should be dropped because of downscale in
// resolution.
int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight);
frame.set_rotation(kVideoRotation_270);
video_source_.IncomingCapturedFrame(frame);
ExpectDroppedFrame();
// Second frame is downscaled.
timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2);
frame.set_rotation(kVideoRotation_90);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
sink_.CheckLastFrameRotationMatches(kVideoRotation_90);
// Insert another frame, also downscaled.
timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec;
frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2);
frame.set_rotation(kVideoRotation_180);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
sink_.CheckLastFrameRotationMatches(kVideoRotation_180);
video_stream_encoder_->Stop();
}
} // namespace webrtc