|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/virtual_socket_server.h" | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/algorithm/container.h" | 
|  | #include "api/sequence_checker.h" | 
|  | #include "api/units/time_delta.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/event.h" | 
|  | #include "rtc_base/fake_clock.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "rtc_base/physical_socket_server.h" | 
|  | #include "rtc_base/socket_address_pair.h" | 
|  | #include "rtc_base/thread.h" | 
|  | #include "rtc_base/time_utils.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | using ::webrtc::MutexLock; | 
|  | using ::webrtc::TaskQueueBase; | 
|  | using ::webrtc::TimeDelta; | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | const in_addr kInitialNextIPv4 = {{{0x01, 0, 0, 0}}}; | 
|  | #else | 
|  | // This value is entirely arbitrary, hence the lack of concern about endianness. | 
|  | const in_addr kInitialNextIPv4 = {0x01000000}; | 
|  | #endif | 
|  | // Starts at ::2 so as to not cause confusion with ::1. | 
|  | const in6_addr kInitialNextIPv6 = { | 
|  | {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}}}; | 
|  |  | 
|  | const uint16_t kFirstEphemeralPort = 49152; | 
|  | const uint16_t kLastEphemeralPort = 65535; | 
|  | const uint16_t kEphemeralPortCount = | 
|  | kLastEphemeralPort - kFirstEphemeralPort + 1; | 
|  | const uint32_t kDefaultNetworkCapacity = 64 * 1024; | 
|  | const uint32_t kDefaultTcpBufferSize = 32 * 1024; | 
|  |  | 
|  | const uint32_t UDP_HEADER_SIZE = 28;  // IP + UDP headers | 
|  | const uint32_t TCP_HEADER_SIZE = 40;  // IP + TCP headers | 
|  | const uint32_t TCP_MSS = 1400;        // Maximum segment size | 
|  |  | 
|  | // Note: The current algorithm doesn't work for sample sizes smaller than this. | 
|  | const int NUM_SAMPLES = 1000; | 
|  |  | 
|  | // Packets are passed between sockets as messages.  We copy the data just like | 
|  | // the kernel does. | 
|  | class Packet { | 
|  | public: | 
|  | Packet(const char* data, size_t size, const SocketAddress& from) | 
|  | : size_(size), consumed_(0), from_(from) { | 
|  | RTC_DCHECK(nullptr != data); | 
|  | data_ = new char[size_]; | 
|  | memcpy(data_, data, size_); | 
|  | } | 
|  |  | 
|  | ~Packet() { delete[] data_; } | 
|  |  | 
|  | const char* data() const { return data_ + consumed_; } | 
|  | size_t size() const { return size_ - consumed_; } | 
|  | const SocketAddress& from() const { return from_; } | 
|  |  | 
|  | // Remove the first size bytes from the data. | 
|  | void Consume(size_t size) { | 
|  | RTC_DCHECK(size + consumed_ < size_); | 
|  | consumed_ += size; | 
|  | } | 
|  |  | 
|  | private: | 
|  | char* data_; | 
|  | size_t size_, consumed_; | 
|  | SocketAddress from_; | 
|  | }; | 
|  |  | 
|  | VirtualSocket::VirtualSocket(VirtualSocketServer* server, int family, int type) | 
|  | : server_(server), | 
|  | type_(type), | 
|  | state_(CS_CLOSED), | 
|  | error_(0), | 
|  | network_size_(0), | 
|  | recv_buffer_size_(0), | 
|  | bound_(false), | 
|  | was_any_(false) { | 
|  | RTC_DCHECK((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM)); | 
|  | server->SignalReadyToSend.connect(this, | 
|  | &VirtualSocket::OnSocketServerReadyToSend); | 
|  | } | 
|  |  | 
|  | VirtualSocket::~VirtualSocket() { | 
|  | Close(); | 
|  | } | 
|  |  | 
|  | SocketAddress VirtualSocket::GetLocalAddress() const { | 
|  | return local_addr_; | 
|  | } | 
|  |  | 
|  | SocketAddress VirtualSocket::GetRemoteAddress() const { | 
|  | return remote_addr_; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SetLocalAddress(const SocketAddress& addr) { | 
|  | local_addr_ = addr; | 
|  | } | 
|  |  | 
|  | int VirtualSocket::Bind(const SocketAddress& addr) { | 
|  | if (!local_addr_.IsNil()) { | 
|  | error_ = EINVAL; | 
|  | return -1; | 
|  | } | 
|  | local_addr_ = server_->AssignBindAddress(addr); | 
|  | int result = server_->Bind(this, local_addr_); | 
|  | if (result != 0) { | 
|  | local_addr_.Clear(); | 
|  | error_ = EADDRINUSE; | 
|  | } else { | 
|  | bound_ = true; | 
|  | was_any_ = addr.IsAnyIP(); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int VirtualSocket::Connect(const SocketAddress& addr) { | 
|  | return InitiateConnect(addr, true); | 
|  | } | 
|  |  | 
|  | VirtualSocket::SafetyBlock::SafetyBlock(VirtualSocket* socket) | 
|  | : socket_(*socket) {} | 
|  |  | 
|  | VirtualSocket::SafetyBlock::~SafetyBlock() { | 
|  | // Ensure `SetNotAlive` was called and there is nothing left to cleanup. | 
|  | RTC_DCHECK(!alive_); | 
|  | RTC_DCHECK(posted_connects_.empty()); | 
|  | RTC_DCHECK(recv_buffer_.empty()); | 
|  | RTC_DCHECK(!listen_queue_.has_value()); | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SafetyBlock::SetNotAlive() { | 
|  | VirtualSocketServer* const server = socket_.server_; | 
|  | const SocketAddress& local_addr = socket_.local_addr_; | 
|  |  | 
|  | MutexLock lock(&mutex_); | 
|  | // Cancel pending sockets | 
|  | if (listen_queue_.has_value()) { | 
|  | for (const SocketAddress& remote_addr : *listen_queue_) { | 
|  | server->Disconnect(remote_addr); | 
|  | } | 
|  | listen_queue_ = std::nullopt; | 
|  | } | 
|  |  | 
|  | // Cancel potential connects | 
|  | for (const SocketAddress& remote_addr : posted_connects_) { | 
|  | // Lookup remote side. | 
|  | VirtualSocket* lookup_socket = | 
|  | server->LookupConnection(local_addr, remote_addr); | 
|  | if (lookup_socket) { | 
|  | // Server socket, remote side is a socket retreived by accept. Accepted | 
|  | // sockets are not bound so we will not find it by looking in the | 
|  | // bindings table. | 
|  | server->Disconnect(lookup_socket); | 
|  | server->RemoveConnection(local_addr, remote_addr); | 
|  | } else { | 
|  | server->Disconnect(remote_addr); | 
|  | } | 
|  | } | 
|  | posted_connects_.clear(); | 
|  |  | 
|  | recv_buffer_.clear(); | 
|  |  | 
|  | alive_ = false; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SafetyBlock::PostSignalReadEvent() { | 
|  | if (pending_read_signal_event_) { | 
|  | // Avoid posting multiple times. | 
|  | return; | 
|  | } | 
|  |  | 
|  | pending_read_signal_event_ = true; | 
|  | rtc::scoped_refptr<SafetyBlock> safety(this); | 
|  | socket_.server_->msg_queue_->PostTask( | 
|  | [safety = std::move(safety)] { safety->MaybeSignalReadEvent(); }); | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SafetyBlock::MaybeSignalReadEvent() { | 
|  | { | 
|  | MutexLock lock(&mutex_); | 
|  | pending_read_signal_event_ = false; | 
|  | if (!alive_ || recv_buffer_.empty()) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | socket_.SignalReadEvent(&socket_); | 
|  | } | 
|  |  | 
|  | int VirtualSocket::Close() { | 
|  | if (!local_addr_.IsNil() && bound_) { | 
|  | // Remove from the binding table. | 
|  | server_->Unbind(local_addr_, this); | 
|  | bound_ = false; | 
|  | } | 
|  |  | 
|  | // Disconnect stream sockets | 
|  | if (state_ == CS_CONNECTED && type_ == SOCK_STREAM) { | 
|  | server_->Disconnect(local_addr_, remote_addr_); | 
|  | } | 
|  |  | 
|  | safety_->SetNotAlive(); | 
|  |  | 
|  | state_ = CS_CLOSED; | 
|  | local_addr_.Clear(); | 
|  | remote_addr_.Clear(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int VirtualSocket::Send(const void* pv, size_t cb) { | 
|  | if (CS_CONNECTED != state_) { | 
|  | error_ = ENOTCONN; | 
|  | return -1; | 
|  | } | 
|  | if (SOCK_DGRAM == type_) { | 
|  | return SendUdp(pv, cb, remote_addr_); | 
|  | } else { | 
|  | return SendTcp(pv, cb); | 
|  | } | 
|  | } | 
|  |  | 
|  | int VirtualSocket::SendTo(const void* pv, | 
|  | size_t cb, | 
|  | const SocketAddress& addr) { | 
|  | if (SOCK_DGRAM == type_) { | 
|  | return SendUdp(pv, cb, addr); | 
|  | } else { | 
|  | if (CS_CONNECTED != state_) { | 
|  | error_ = ENOTCONN; | 
|  | return -1; | 
|  | } | 
|  | return SendTcp(pv, cb); | 
|  | } | 
|  | } | 
|  |  | 
|  | int VirtualSocket::Recv(void* pv, size_t cb, int64_t* timestamp) { | 
|  | SocketAddress addr; | 
|  | return RecvFrom(pv, cb, &addr, timestamp); | 
|  | } | 
|  |  | 
|  | int VirtualSocket::RecvFrom(void* pv, | 
|  | size_t cb, | 
|  | SocketAddress* paddr, | 
|  | int64_t* timestamp) { | 
|  | if (timestamp) { | 
|  | *timestamp = -1; | 
|  | } | 
|  |  | 
|  | int data_read = safety_->RecvFrom(pv, cb, *paddr); | 
|  | if (data_read < 0) { | 
|  | error_ = EAGAIN; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (type_ == SOCK_STREAM) { | 
|  | bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity()); | 
|  | recv_buffer_size_ -= data_read; | 
|  | if (was_full) { | 
|  | server_->SendTcp(remote_addr_); | 
|  | } | 
|  | } | 
|  |  | 
|  | return data_read; | 
|  | } | 
|  |  | 
|  | int VirtualSocket::SafetyBlock::RecvFrom(void* buffer, | 
|  | size_t size, | 
|  | SocketAddress& addr) { | 
|  | MutexLock lock(&mutex_); | 
|  | // If we don't have a packet, then either error or wait for one to arrive. | 
|  | if (recv_buffer_.empty()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Return the packet at the front of the queue. | 
|  | Packet& packet = *recv_buffer_.front(); | 
|  | size_t data_read = std::min(size, packet.size()); | 
|  | memcpy(buffer, packet.data(), data_read); | 
|  | addr = packet.from(); | 
|  |  | 
|  | if (data_read < packet.size()) { | 
|  | packet.Consume(data_read); | 
|  | } else { | 
|  | recv_buffer_.pop_front(); | 
|  | } | 
|  |  | 
|  | // To behave like a real socket, SignalReadEvent should fire if there's still | 
|  | // data buffered. | 
|  | if (!recv_buffer_.empty()) { | 
|  | PostSignalReadEvent(); | 
|  | } | 
|  |  | 
|  | return data_read; | 
|  | } | 
|  |  | 
|  | int VirtualSocket::Listen(int backlog) { | 
|  | RTC_DCHECK(SOCK_STREAM == type_); | 
|  | RTC_DCHECK(CS_CLOSED == state_); | 
|  | if (local_addr_.IsNil()) { | 
|  | error_ = EINVAL; | 
|  | return -1; | 
|  | } | 
|  | safety_->Listen(); | 
|  | state_ = CS_CONNECTING; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SafetyBlock::Listen() { | 
|  | MutexLock lock(&mutex_); | 
|  | RTC_DCHECK(!listen_queue_.has_value()); | 
|  | listen_queue_.emplace(); | 
|  | } | 
|  |  | 
|  | VirtualSocket* VirtualSocket::Accept(SocketAddress* paddr) { | 
|  | SafetyBlock::AcceptResult result = safety_->Accept(); | 
|  | if (result.error != 0) { | 
|  | error_ = result.error; | 
|  | return nullptr; | 
|  | } | 
|  | if (paddr) { | 
|  | *paddr = result.remote_addr; | 
|  | } | 
|  | return result.socket.release(); | 
|  | } | 
|  |  | 
|  | VirtualSocket::SafetyBlock::AcceptResult VirtualSocket::SafetyBlock::Accept() { | 
|  | AcceptResult result; | 
|  | MutexLock lock(&mutex_); | 
|  | RTC_DCHECK(alive_); | 
|  | if (!listen_queue_.has_value()) { | 
|  | result.error = EINVAL; | 
|  | return result; | 
|  | } | 
|  | while (!listen_queue_->empty()) { | 
|  | auto socket = std::make_unique<VirtualSocket>(socket_.server_, AF_INET, | 
|  | socket_.type_); | 
|  |  | 
|  | // Set the new local address to the same as this server socket. | 
|  | socket->SetLocalAddress(socket_.local_addr_); | 
|  | // Sockets made from a socket that 'was Any' need to inherit that. | 
|  | socket->set_was_any(socket_.was_any()); | 
|  | SocketAddress remote_addr = listen_queue_->front(); | 
|  | listen_queue_->pop_front(); | 
|  | if (socket->InitiateConnect(remote_addr, false) != 0) { | 
|  | continue; | 
|  | } | 
|  | socket->CompleteConnect(remote_addr); | 
|  | result.socket = std::move(socket); | 
|  | result.remote_addr = remote_addr; | 
|  | return result; | 
|  | } | 
|  | result.error = EWOULDBLOCK; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int VirtualSocket::GetError() const { | 
|  | return error_; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SetError(int error) { | 
|  | error_ = error; | 
|  | } | 
|  |  | 
|  | Socket::ConnState VirtualSocket::GetState() const { | 
|  | return state_; | 
|  | } | 
|  |  | 
|  | int VirtualSocket::GetOption(Option opt, int* value) { | 
|  | OptionsMap::const_iterator it = options_map_.find(opt); | 
|  | if (it == options_map_.end()) { | 
|  | return -1; | 
|  | } | 
|  | *value = it->second; | 
|  | return 0;  // 0 is success to emulate getsockopt() | 
|  | } | 
|  |  | 
|  | int VirtualSocket::SetOption(Option opt, int value) { | 
|  | options_map_[opt] = value; | 
|  | return 0;  // 0 is success to emulate setsockopt() | 
|  | } | 
|  |  | 
|  | void VirtualSocket::PostPacket(TimeDelta delay, | 
|  | std::unique_ptr<Packet> packet) { | 
|  | rtc::scoped_refptr<SafetyBlock> safety = safety_; | 
|  | VirtualSocket* socket = this; | 
|  | server_->msg_queue_->PostDelayedTask( | 
|  | [safety = std::move(safety), socket, | 
|  | packet = std::move(packet)]() mutable { | 
|  | if (safety->AddPacket(std::move(packet))) { | 
|  | socket->SignalReadEvent(socket); | 
|  | } | 
|  | }, | 
|  | delay); | 
|  | } | 
|  |  | 
|  | bool VirtualSocket::SafetyBlock::AddPacket(std::unique_ptr<Packet> packet) { | 
|  | MutexLock lock(&mutex_); | 
|  | if (alive_) { | 
|  | recv_buffer_.push_back(std::move(packet)); | 
|  | } | 
|  | return alive_; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::PostConnect(TimeDelta delay, | 
|  | const SocketAddress& remote_addr) { | 
|  | safety_->PostConnect(delay, remote_addr); | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SafetyBlock::PostConnect(TimeDelta delay, | 
|  | const SocketAddress& remote_addr) { | 
|  | rtc::scoped_refptr<SafetyBlock> safety(this); | 
|  |  | 
|  | MutexLock lock(&mutex_); | 
|  | RTC_DCHECK(alive_); | 
|  | // Save addresses of the pending connects to allow propertly disconnect them | 
|  | // if socket closes before delayed task below runs. | 
|  | // `posted_connects_` is an std::list, thus its iterators are valid while the | 
|  | // element is in the list. It can be removed either in the `Connect` just | 
|  | // below or by calling SetNotAlive function, thus inside `Connect` `it` should | 
|  | // be valid when alive_ == true. | 
|  | auto it = posted_connects_.insert(posted_connects_.end(), remote_addr); | 
|  | auto task = [safety = std::move(safety), it] { | 
|  | switch (safety->Connect(it)) { | 
|  | case Signal::kNone: | 
|  | break; | 
|  | case Signal::kReadEvent: | 
|  | safety->socket_.SignalReadEvent(&safety->socket_); | 
|  | break; | 
|  | case Signal::kConnectEvent: | 
|  | safety->socket_.SignalConnectEvent(&safety->socket_); | 
|  | break; | 
|  | } | 
|  | }; | 
|  | socket_.server_->msg_queue_->PostDelayedTask(std::move(task), delay); | 
|  | } | 
|  |  | 
|  | VirtualSocket::SafetyBlock::Signal VirtualSocket::SafetyBlock::Connect( | 
|  | VirtualSocket::SafetyBlock::PostedConnects::iterator remote_addr_it) { | 
|  | MutexLock lock(&mutex_); | 
|  | if (!alive_) { | 
|  | return Signal::kNone; | 
|  | } | 
|  | RTC_DCHECK(!posted_connects_.empty()); | 
|  | SocketAddress remote_addr = *remote_addr_it; | 
|  | posted_connects_.erase(remote_addr_it); | 
|  |  | 
|  | if (listen_queue_.has_value()) { | 
|  | listen_queue_->push_back(remote_addr); | 
|  | return Signal::kReadEvent; | 
|  | } | 
|  | if (socket_.type_ == SOCK_STREAM && socket_.state_ == CS_CONNECTING) { | 
|  | socket_.CompleteConnect(remote_addr); | 
|  | return Signal::kConnectEvent; | 
|  | } | 
|  | RTC_LOG(LS_VERBOSE) << "Socket at " << socket_.local_addr_.ToString() | 
|  | << " is not listening"; | 
|  | socket_.server_->Disconnect(remote_addr); | 
|  | return Signal::kNone; | 
|  | } | 
|  |  | 
|  | bool VirtualSocket::SafetyBlock::IsAlive() { | 
|  | MutexLock lock(&mutex_); | 
|  | return alive_; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::PostDisconnect(TimeDelta delay) { | 
|  | // Posted task may outlive this. Use different name for `this` inside the task | 
|  | // to avoid accidental unsafe `this->safety_` instead of safe `safety` | 
|  | VirtualSocket* socket = this; | 
|  | rtc::scoped_refptr<SafetyBlock> safety = safety_; | 
|  | auto task = [safety = std::move(safety), socket] { | 
|  | if (!safety->IsAlive()) { | 
|  | return; | 
|  | } | 
|  | RTC_DCHECK_EQ(socket->type_, SOCK_STREAM); | 
|  | if (socket->state_ == CS_CLOSED) { | 
|  | return; | 
|  | } | 
|  | int error_to_signal = (socket->state_ == CS_CONNECTING) ? ECONNREFUSED : 0; | 
|  | socket->state_ = CS_CLOSED; | 
|  | socket->remote_addr_.Clear(); | 
|  | socket->SignalCloseEvent(socket, error_to_signal); | 
|  | }; | 
|  | server_->msg_queue_->PostDelayedTask(std::move(task), delay); | 
|  | } | 
|  |  | 
|  | int VirtualSocket::InitiateConnect(const SocketAddress& addr, bool use_delay) { | 
|  | if (!remote_addr_.IsNil()) { | 
|  | error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS; | 
|  | return -1; | 
|  | } | 
|  | if (local_addr_.IsNil()) { | 
|  | // If there's no local address set, grab a random one in the correct AF. | 
|  | int result = 0; | 
|  | if (addr.ipaddr().family() == AF_INET) { | 
|  | result = Bind(SocketAddress("0.0.0.0", 0)); | 
|  | } else if (addr.ipaddr().family() == AF_INET6) { | 
|  | result = Bind(SocketAddress("::", 0)); | 
|  | } | 
|  | if (result != 0) { | 
|  | return result; | 
|  | } | 
|  | } | 
|  | if (type_ == SOCK_DGRAM) { | 
|  | remote_addr_ = addr; | 
|  | state_ = CS_CONNECTED; | 
|  | } else { | 
|  | int result = server_->Connect(this, addr, use_delay); | 
|  | if (result != 0) { | 
|  | error_ = EHOSTUNREACH; | 
|  | return -1; | 
|  | } | 
|  | state_ = CS_CONNECTING; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::CompleteConnect(const SocketAddress& addr) { | 
|  | RTC_DCHECK(CS_CONNECTING == state_); | 
|  | remote_addr_ = addr; | 
|  | state_ = CS_CONNECTED; | 
|  | server_->AddConnection(remote_addr_, local_addr_, this); | 
|  | } | 
|  |  | 
|  | int VirtualSocket::SendUdp(const void* pv, | 
|  | size_t cb, | 
|  | const SocketAddress& addr) { | 
|  | // If we have not been assigned a local port, then get one. | 
|  | if (local_addr_.IsNil()) { | 
|  | local_addr_ = server_->AssignBindAddress( | 
|  | EmptySocketAddressWithFamily(addr.ipaddr().family())); | 
|  | int result = server_->Bind(this, local_addr_); | 
|  | if (result != 0) { | 
|  | local_addr_.Clear(); | 
|  | error_ = EADDRINUSE; | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send the data in a message to the appropriate socket. | 
|  | return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr); | 
|  | } | 
|  |  | 
|  | int VirtualSocket::SendTcp(const void* pv, size_t cb) { | 
|  | size_t capacity = server_->send_buffer_capacity() - send_buffer_.size(); | 
|  | if (0 == capacity) { | 
|  | ready_to_send_ = false; | 
|  | error_ = EWOULDBLOCK; | 
|  | return -1; | 
|  | } | 
|  | size_t consumed = std::min(cb, capacity); | 
|  | const char* cpv = static_cast<const char*>(pv); | 
|  | send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed); | 
|  | server_->SendTcp(this); | 
|  | return static_cast<int>(consumed); | 
|  | } | 
|  |  | 
|  | void VirtualSocket::OnSocketServerReadyToSend() { | 
|  | if (ready_to_send_) { | 
|  | // This socket didn't encounter EWOULDBLOCK, so there's nothing to do. | 
|  | return; | 
|  | } | 
|  | if (type_ == SOCK_DGRAM) { | 
|  | ready_to_send_ = true; | 
|  | SignalWriteEvent(this); | 
|  | } else { | 
|  | RTC_DCHECK(type_ == SOCK_STREAM); | 
|  | // This will attempt to empty the full send buffer, and will fire | 
|  | // SignalWriteEvent if successful. | 
|  | server_->SendTcp(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VirtualSocket::SetToBlocked() { | 
|  | ready_to_send_ = false; | 
|  | error_ = EWOULDBLOCK; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::UpdateRecv(size_t data_size) { | 
|  | recv_buffer_size_ += data_size; | 
|  | } | 
|  |  | 
|  | void VirtualSocket::UpdateSend(size_t data_size) { | 
|  | size_t new_buffer_size = send_buffer_.size() - data_size; | 
|  | // Avoid undefined access beyond the last element of the vector. | 
|  | // This only happens when new_buffer_size is 0. | 
|  | if (data_size < send_buffer_.size()) { | 
|  | // memmove is required for potentially overlapping source/destination. | 
|  | memmove(&send_buffer_[0], &send_buffer_[data_size], new_buffer_size); | 
|  | } | 
|  | send_buffer_.resize(new_buffer_size); | 
|  | } | 
|  |  | 
|  | void VirtualSocket::MaybeSignalWriteEvent(size_t capacity) { | 
|  | if (!ready_to_send_ && (send_buffer_.size() < capacity)) { | 
|  | ready_to_send_ = true; | 
|  | SignalWriteEvent(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t VirtualSocket::AddPacket(int64_t cur_time, size_t packet_size) { | 
|  | network_size_ += packet_size; | 
|  | uint32_t send_delay = | 
|  | server_->SendDelay(static_cast<uint32_t>(network_size_)); | 
|  |  | 
|  | NetworkEntry entry; | 
|  | entry.size = packet_size; | 
|  | entry.done_time = cur_time + send_delay; | 
|  | network_.push_back(entry); | 
|  |  | 
|  | return send_delay; | 
|  | } | 
|  |  | 
|  | int64_t VirtualSocket::UpdateOrderedDelivery(int64_t ts) { | 
|  | // Ensure that new packets arrive after previous ones | 
|  | ts = std::max(ts, last_delivery_time_); | 
|  | // A socket should not have both ordered and unordered delivery, so its last | 
|  | // delivery time only needs to be updated when it has ordered delivery. | 
|  | last_delivery_time_ = ts; | 
|  | return ts; | 
|  | } | 
|  |  | 
|  | size_t VirtualSocket::PurgeNetworkPackets(int64_t cur_time) { | 
|  | while (!network_.empty() && (network_.front().done_time <= cur_time)) { | 
|  | RTC_DCHECK(network_size_ >= network_.front().size); | 
|  | network_size_ -= network_.front().size; | 
|  | network_.pop_front(); | 
|  | } | 
|  | return network_size_; | 
|  | } | 
|  |  | 
|  | VirtualSocketServer::VirtualSocketServer() : VirtualSocketServer(nullptr) {} | 
|  |  | 
|  | VirtualSocketServer::VirtualSocketServer(ThreadProcessingFakeClock* fake_clock) | 
|  | : fake_clock_(fake_clock), | 
|  | msg_queue_(nullptr), | 
|  | stop_on_idle_(false), | 
|  | next_ipv4_(kInitialNextIPv4), | 
|  | next_ipv6_(kInitialNextIPv6), | 
|  | next_port_(kFirstEphemeralPort), | 
|  | bindings_(new AddressMap()), | 
|  | connections_(new ConnectionMap()), | 
|  | bandwidth_(0), | 
|  | network_capacity_(kDefaultNetworkCapacity), | 
|  | send_buffer_capacity_(kDefaultTcpBufferSize), | 
|  | recv_buffer_capacity_(kDefaultTcpBufferSize), | 
|  | delay_mean_(0), | 
|  | delay_stddev_(0), | 
|  | delay_samples_(NUM_SAMPLES), | 
|  | drop_prob_(0.0) { | 
|  | UpdateDelayDistribution(); | 
|  | } | 
|  |  | 
|  | VirtualSocketServer::~VirtualSocketServer() { | 
|  | delete bindings_; | 
|  | delete connections_; | 
|  | } | 
|  |  | 
|  | IPAddress VirtualSocketServer::GetNextIP(int family) { | 
|  | if (family == AF_INET) { | 
|  | IPAddress next_ip(next_ipv4_); | 
|  | next_ipv4_.s_addr = HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1); | 
|  | return next_ip; | 
|  | } else if (family == AF_INET6) { | 
|  | IPAddress next_ip(next_ipv6_); | 
|  | uint32_t* as_ints = reinterpret_cast<uint32_t*>(&next_ipv6_.s6_addr); | 
|  | as_ints[3] += 1; | 
|  | return next_ip; | 
|  | } | 
|  | return IPAddress(); | 
|  | } | 
|  |  | 
|  | uint16_t VirtualSocketServer::GetNextPort() { | 
|  | uint16_t port = next_port_; | 
|  | if (next_port_ < kLastEphemeralPort) { | 
|  | ++next_port_; | 
|  | } else { | 
|  | next_port_ = kFirstEphemeralPort; | 
|  | } | 
|  | return port; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SetSendingBlocked(bool blocked) { | 
|  | { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | if (blocked == sending_blocked_) { | 
|  | // Unchanged; nothing to do. | 
|  | return; | 
|  | } | 
|  | sending_blocked_ = blocked; | 
|  | } | 
|  | if (!blocked) { | 
|  | // Sending was blocked, but is now unblocked. This signal gives sockets a | 
|  | // chance to fire SignalWriteEvent, and for TCP, send buffered data. | 
|  | SignalReadyToSend(); | 
|  | } | 
|  | } | 
|  |  | 
|  | VirtualSocket* VirtualSocketServer::CreateSocket(int family, int type) { | 
|  | return new VirtualSocket(this, family, type); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SetMessageQueue(Thread* msg_queue) { | 
|  | msg_queue_ = msg_queue; | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::Wait(webrtc::TimeDelta max_wait_duration, | 
|  | bool process_io) { | 
|  | RTC_DCHECK_RUN_ON(msg_queue_); | 
|  | if (stop_on_idle_ && Thread::Current()->empty()) { | 
|  | return false; | 
|  | } | 
|  | // Note: we don't need to do anything with `process_io` since we don't have | 
|  | // any real I/O. Received packets come in the form of queued messages, so | 
|  | // Thread will ensure WakeUp is called if another thread sends a | 
|  | // packet. | 
|  | wakeup_.Wait(max_wait_duration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::WakeUp() { | 
|  | wakeup_.Set(); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SetAlternativeLocalAddress( | 
|  | const rtc::IPAddress& address, | 
|  | const rtc::IPAddress& alternative) { | 
|  | alternative_address_mapping_[address] = alternative; | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::ProcessMessagesUntilIdle() { | 
|  | RTC_DCHECK_RUN_ON(msg_queue_); | 
|  | stop_on_idle_ = true; | 
|  | while (!msg_queue_->empty()) { | 
|  | if (fake_clock_) { | 
|  | // If using a fake clock, advance it in millisecond increments until the | 
|  | // queue is empty. | 
|  | fake_clock_->AdvanceTime(webrtc::TimeDelta::Millis(1)); | 
|  | } else { | 
|  | // Otherwise, run a normal message loop. | 
|  | msg_queue_->ProcessMessages(Thread::kForever); | 
|  | } | 
|  | } | 
|  | stop_on_idle_ = false; | 
|  | return !msg_queue_->IsQuitting(); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SetNextPortForTesting(uint16_t port) { | 
|  | next_port_ = port; | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::CloseTcpConnections( | 
|  | const SocketAddress& addr_local, | 
|  | const SocketAddress& addr_remote) { | 
|  | VirtualSocket* socket = LookupConnection(addr_local, addr_remote); | 
|  | if (!socket) { | 
|  | return false; | 
|  | } | 
|  | // Signal the close event on the local connection first. | 
|  | socket->SignalCloseEvent(socket, 0); | 
|  |  | 
|  | // Trigger the remote connection's close event. | 
|  | socket->Close(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::Bind(VirtualSocket* socket, | 
|  | const SocketAddress& addr) { | 
|  | RTC_DCHECK(nullptr != socket); | 
|  | // Address must be completely specified at this point | 
|  | RTC_DCHECK(!IPIsUnspec(addr.ipaddr())); | 
|  | RTC_DCHECK(addr.port() != 0); | 
|  |  | 
|  | // Normalize the address (turns v6-mapped addresses into v4-addresses). | 
|  | SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); | 
|  |  | 
|  | AddressMap::value_type entry(normalized, socket); | 
|  | return bindings_->insert(entry).second ? 0 : -1; | 
|  | } | 
|  |  | 
|  | SocketAddress VirtualSocketServer::AssignBindAddress( | 
|  | const SocketAddress& app_addr) { | 
|  | RTC_DCHECK(!IPIsUnspec(app_addr.ipaddr())); | 
|  |  | 
|  | // Normalize the IP. | 
|  | SocketAddress addr; | 
|  | addr.SetIP(app_addr.ipaddr().Normalized()); | 
|  |  | 
|  | // If the IP appears in `alternative_address_mapping_`, meaning the test has | 
|  | // configured sockets bound to this IP to actually use another IP, replace | 
|  | // the IP here. | 
|  | auto alternative = alternative_address_mapping_.find(addr.ipaddr()); | 
|  | if (alternative != alternative_address_mapping_.end()) { | 
|  | addr.SetIP(alternative->second); | 
|  | } | 
|  |  | 
|  | if (app_addr.port() != 0) { | 
|  | addr.SetPort(app_addr.port()); | 
|  | } else { | 
|  | // Assign a port. | 
|  | for (int i = 0; i < kEphemeralPortCount; ++i) { | 
|  | addr.SetPort(GetNextPort()); | 
|  | if (bindings_->find(addr) == bindings_->end()) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) { | 
|  | SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); | 
|  | AddressMap::iterator it = bindings_->find(normalized); | 
|  | if (it != bindings_->end()) { | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | IPAddress default_ip = GetDefaultSourceAddress(addr.ipaddr().family()); | 
|  | if (!IPIsUnspec(default_ip) && addr.ipaddr() == default_ip) { | 
|  | // If we can't find a binding for the packet which is sent to the interface | 
|  | // corresponding to the default route, it should match a binding with the | 
|  | // correct port to the any address. | 
|  | SocketAddress sock_addr = | 
|  | EmptySocketAddressWithFamily(addr.ipaddr().family()); | 
|  | sock_addr.SetPort(addr.port()); | 
|  | return LookupBinding(sock_addr); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::Unbind(const SocketAddress& addr, | 
|  | VirtualSocket* socket) { | 
|  | SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); | 
|  | RTC_DCHECK((*bindings_)[normalized] == socket); | 
|  | bindings_->erase(bindings_->find(normalized)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::AddConnection(const SocketAddress& local, | 
|  | const SocketAddress& remote, | 
|  | VirtualSocket* remote_socket) { | 
|  | // Add this socket pair to our routing table. This will allow | 
|  | // multiple clients to connect to the same server address. | 
|  | SocketAddress local_normalized(local.ipaddr().Normalized(), local.port()); | 
|  | SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port()); | 
|  | SocketAddressPair address_pair(local_normalized, remote_normalized); | 
|  | connections_->insert(std::pair<SocketAddressPair, VirtualSocket*>( | 
|  | address_pair, remote_socket)); | 
|  | } | 
|  |  | 
|  | VirtualSocket* VirtualSocketServer::LookupConnection( | 
|  | const SocketAddress& local, | 
|  | const SocketAddress& remote) { | 
|  | SocketAddress local_normalized(local.ipaddr().Normalized(), local.port()); | 
|  | SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port()); | 
|  | SocketAddressPair address_pair(local_normalized, remote_normalized); | 
|  | ConnectionMap::iterator it = connections_->find(address_pair); | 
|  | return (connections_->end() != it) ? it->second : nullptr; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::RemoveConnection(const SocketAddress& local, | 
|  | const SocketAddress& remote) { | 
|  | SocketAddress local_normalized(local.ipaddr().Normalized(), local.port()); | 
|  | SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port()); | 
|  | SocketAddressPair address_pair(local_normalized, remote_normalized); | 
|  | connections_->erase(address_pair); | 
|  | } | 
|  |  | 
|  | static double Random() { | 
|  | return static_cast<double>(rand()) / RAND_MAX; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::Connect(VirtualSocket* socket, | 
|  | const SocketAddress& remote_addr, | 
|  | bool use_delay) { | 
|  | RTC_DCHECK(msg_queue_); | 
|  |  | 
|  | TimeDelta delay = TimeDelta::Millis(use_delay ? GetTransitDelay(socket) : 0); | 
|  | VirtualSocket* remote = LookupBinding(remote_addr); | 
|  | if (!CanInteractWith(socket, remote)) { | 
|  | RTC_LOG(LS_INFO) << "Address family mismatch between " | 
|  | << socket->GetLocalAddress().ToString() << " and " | 
|  | << remote_addr.ToString(); | 
|  | return -1; | 
|  | } | 
|  | if (remote != nullptr) { | 
|  | remote->PostConnect(delay, socket->GetLocalAddress()); | 
|  | } else { | 
|  | RTC_LOG(LS_INFO) << "No one listening at " << remote_addr.ToString(); | 
|  | socket->PostDisconnect(delay); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::Disconnect(VirtualSocket* socket) { | 
|  | if (!socket || !msg_queue_) | 
|  | return false; | 
|  |  | 
|  | // If we simulate packets being delayed, we should simulate the | 
|  | // equivalent of a FIN being delayed as well. | 
|  | socket->PostDisconnect(TimeDelta::Millis(GetTransitDelay(socket))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::Disconnect(const SocketAddress& addr) { | 
|  | return Disconnect(LookupBinding(addr)); | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::Disconnect(const SocketAddress& local_addr, | 
|  | const SocketAddress& remote_addr) { | 
|  | // Disconnect remote socket, check if it is a child of a server socket. | 
|  | VirtualSocket* socket = LookupConnection(local_addr, remote_addr); | 
|  | if (!socket) { | 
|  | // Not a server socket child, then see if it is bound. | 
|  | // TODO(tbd): If this is indeed a server socket that has no | 
|  | // children this will cause the server socket to be | 
|  | // closed. This might lead to unexpected results, how to fix this? | 
|  | socket = LookupBinding(remote_addr); | 
|  | } | 
|  | Disconnect(socket); | 
|  |  | 
|  | // Remove mapping for both directions. | 
|  | RemoveConnection(remote_addr, local_addr); | 
|  | RemoveConnection(local_addr, remote_addr); | 
|  | return socket != nullptr; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::SendUdp(VirtualSocket* socket, | 
|  | const char* data, | 
|  | size_t data_size, | 
|  | const SocketAddress& remote_addr) { | 
|  | { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | ++sent_packets_; | 
|  | if (sending_blocked_) { | 
|  | socket->SetToBlocked(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // See if we want to drop this packet. | 
|  | if (data_size > max_udp_payload_) { | 
|  | RTC_LOG(LS_VERBOSE) << "Dropping too large UDP payload of size " | 
|  | << data_size << ", UDP payload limit is " | 
|  | << max_udp_payload_; | 
|  | // Return as if send was successful; packet disappears. | 
|  | return data_size; | 
|  | } | 
|  |  | 
|  | if (Random() < drop_prob_) { | 
|  | RTC_LOG(LS_VERBOSE) << "Dropping packet: bad luck"; | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | VirtualSocket* recipient = LookupBinding(remote_addr); | 
|  | if (!recipient) { | 
|  | // Make a fake recipient for address family checking. | 
|  | std::unique_ptr<VirtualSocket> dummy_socket( | 
|  | CreateSocket(AF_INET, SOCK_DGRAM)); | 
|  | dummy_socket->SetLocalAddress(remote_addr); | 
|  | if (!CanInteractWith(socket, dummy_socket.get())) { | 
|  | RTC_LOG(LS_VERBOSE) << "Incompatible address families: " | 
|  | << socket->GetLocalAddress().ToString() << " and " | 
|  | << remote_addr.ToString(); | 
|  | return -1; | 
|  | } | 
|  | RTC_LOG(LS_VERBOSE) << "No one listening at " << remote_addr.ToString(); | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  |  | 
|  | if (!CanInteractWith(socket, recipient)) { | 
|  | RTC_LOG(LS_VERBOSE) << "Incompatible address families: " | 
|  | << socket->GetLocalAddress().ToString() << " and " | 
|  | << remote_addr.ToString(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | { | 
|  | int64_t cur_time = TimeMillis(); | 
|  | size_t network_size = socket->PurgeNetworkPackets(cur_time); | 
|  |  | 
|  | // Determine whether we have enough bandwidth to accept this packet.  To do | 
|  | // this, we need to update the send queue.  Once we know it's current size, | 
|  | // we know whether we can fit this packet. | 
|  | // | 
|  | // NOTE: There are better algorithms for maintaining such a queue (such as | 
|  | // "Derivative Random Drop"); however, this algorithm is a more accurate | 
|  | // simulation of what a normal network would do. | 
|  | { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | size_t packet_size = data_size + UDP_HEADER_SIZE; | 
|  | if (network_size + packet_size > network_capacity_) { | 
|  | RTC_LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded"; | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | AddPacketToNetwork(socket, recipient, cur_time, data, data_size, | 
|  | UDP_HEADER_SIZE, false); | 
|  |  | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SendTcp(VirtualSocket* socket) { | 
|  | { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | ++sent_packets_; | 
|  | if (sending_blocked_) { | 
|  | // Eventually the socket's buffer will fill and VirtualSocket::SendTcp | 
|  | // will set EWOULDBLOCK. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TCP can't send more data than will fill up the receiver's buffer. | 
|  | // We track the data that is in the buffer plus data in flight using the | 
|  | // recipient's recv_buffer_size_.  Anything beyond that must be stored in the | 
|  | // sender's buffer.  We will trigger the buffered data to be sent when data | 
|  | // is read from the recv_buffer. | 
|  |  | 
|  | // Lookup the local/remote pair in the connections table. | 
|  | VirtualSocket* recipient = | 
|  | LookupConnection(socket->GetLocalAddress(), socket->GetRemoteAddress()); | 
|  | if (!recipient) { | 
|  | RTC_LOG(LS_VERBOSE) << "Sending data to no one."; | 
|  | return; | 
|  | } | 
|  |  | 
|  | int64_t cur_time = TimeMillis(); | 
|  | socket->PurgeNetworkPackets(cur_time); | 
|  |  | 
|  | while (true) { | 
|  | size_t available = recv_buffer_capacity() - recipient->recv_buffer_size(); | 
|  | size_t max_data_size = | 
|  | std::min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE); | 
|  | size_t data_size = std::min(socket->send_buffer_size(), max_data_size); | 
|  | if (0 == data_size) | 
|  | break; | 
|  |  | 
|  | AddPacketToNetwork(socket, recipient, cur_time, socket->send_buffer_data(), | 
|  | data_size, TCP_HEADER_SIZE, true); | 
|  | recipient->UpdateRecv(data_size); | 
|  | socket->UpdateSend(data_size); | 
|  | } | 
|  |  | 
|  | socket->MaybeSignalWriteEvent(send_buffer_capacity()); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SendTcp(const SocketAddress& addr) { | 
|  | VirtualSocket* sender = LookupBinding(addr); | 
|  | RTC_DCHECK(nullptr != sender); | 
|  | SendTcp(sender); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender, | 
|  | VirtualSocket* recipient, | 
|  | int64_t cur_time, | 
|  | const char* data, | 
|  | size_t data_size, | 
|  | size_t header_size, | 
|  | bool ordered) { | 
|  | RTC_DCHECK(msg_queue_); | 
|  | uint32_t send_delay = sender->AddPacket(cur_time, data_size + header_size); | 
|  |  | 
|  | // Find the delay for crossing the many virtual hops of the network. | 
|  | uint32_t transit_delay = GetTransitDelay(sender); | 
|  |  | 
|  | // When the incoming packet is from a binding of the any address, translate it | 
|  | // to the default route here such that the recipient will see the default | 
|  | // route. | 
|  | SocketAddress sender_addr = sender->GetLocalAddress(); | 
|  | IPAddress default_ip = GetDefaultSourceAddress(sender_addr.ipaddr().family()); | 
|  | if (sender_addr.IsAnyIP() && !IPIsUnspec(default_ip)) { | 
|  | sender_addr.SetIP(default_ip); | 
|  | } | 
|  |  | 
|  | int64_t ts = cur_time + send_delay + transit_delay; | 
|  | if (ordered) { | 
|  | ts = sender->UpdateOrderedDelivery(ts); | 
|  | } | 
|  | recipient->PostPacket(TimeDelta::Millis(ts - cur_time), | 
|  | std::make_unique<Packet>(data, data_size, sender_addr)); | 
|  | } | 
|  |  | 
|  | uint32_t VirtualSocketServer::SendDelay(uint32_t size) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | if (bandwidth_ == 0) | 
|  | return 0; | 
|  | else | 
|  | return 1000 * size / bandwidth_; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | void PrintFunction(std::vector<std::pair<double, double> >* f) { | 
|  | return; | 
|  | double sum = 0; | 
|  | for (uint32_t i = 0; i < f->size(); ++i) { | 
|  | std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl; | 
|  | sum += (*f)[i].second; | 
|  | } | 
|  | if (!f->empty()) { | 
|  | const double mean = sum / f->size(); | 
|  | double sum_sq_dev = 0; | 
|  | for (uint32_t i = 0; i < f->size(); ++i) { | 
|  | double dev = (*f)[i].second - mean; | 
|  | sum_sq_dev += dev * dev; | 
|  | } | 
|  | std::cout << "Mean = " << mean << " StdDev = " | 
|  | << sqrt(sum_sq_dev / f->size()) << std::endl; | 
|  | } | 
|  | } | 
|  | #endif  // <unused> | 
|  |  | 
|  | void VirtualSocketServer::UpdateDelayDistribution() { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | delay_dist_ = CreateDistribution(delay_mean_, delay_stddev_, delay_samples_); | 
|  | } | 
|  |  | 
|  | static double PI = 4 * atan(1.0); | 
|  |  | 
|  | static double Normal(double x, double mean, double stddev) { | 
|  | double a = (x - mean) * (x - mean) / (2 * stddev * stddev); | 
|  | return exp(-a) / (stddev * sqrt(2 * PI)); | 
|  | } | 
|  |  | 
|  | #if 0  // static unused gives a warning | 
|  | static double Pareto(double x, double min, double k) { | 
|  | if (x < min) | 
|  | return 0; | 
|  | else | 
|  | return k * std::pow(min, k) / std::pow(x, k+1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | std::unique_ptr<VirtualSocketServer::Function> | 
|  | VirtualSocketServer::CreateDistribution(uint32_t mean, | 
|  | uint32_t stddev, | 
|  | uint32_t samples) { | 
|  | auto f = std::make_unique<Function>(); | 
|  |  | 
|  | if (0 == stddev) { | 
|  | f->push_back(Point(mean, 1.0)); | 
|  | } else { | 
|  | double start = 0; | 
|  | if (mean >= 4 * static_cast<double>(stddev)) | 
|  | start = mean - 4 * static_cast<double>(stddev); | 
|  | double end = mean + 4 * static_cast<double>(stddev); | 
|  |  | 
|  | for (uint32_t i = 0; i < samples; i++) { | 
|  | double x = start + (end - start) * i / (samples - 1); | 
|  | double y = Normal(x, mean, stddev); | 
|  | f->push_back(Point(x, y)); | 
|  | } | 
|  | } | 
|  | return Resample(Invert(Accumulate(std::move(f))), 0, 1, samples); | 
|  | } | 
|  |  | 
|  | uint32_t VirtualSocketServer::GetTransitDelay(Socket* socket) { | 
|  | // Use the delay based on the address if it is set. | 
|  | auto iter = delay_by_ip_.find(socket->GetLocalAddress().ipaddr()); | 
|  | if (iter != delay_by_ip_.end()) { | 
|  | return static_cast<uint32_t>(iter->second); | 
|  | } | 
|  | // Otherwise, use the delay from the distribution distribution. | 
|  | size_t index = rand() % delay_dist_->size(); | 
|  | double delay = (*delay_dist_)[index].second; | 
|  | // RTC_LOG_F(LS_INFO) << "random[" << index << "] = " << delay; | 
|  | return static_cast<uint32_t>(delay); | 
|  | } | 
|  |  | 
|  | struct FunctionDomainCmp { | 
|  | bool operator()(const VirtualSocketServer::Point& p1, | 
|  | const VirtualSocketServer::Point& p2) { | 
|  | return p1.first < p2.first; | 
|  | } | 
|  | bool operator()(double v1, const VirtualSocketServer::Point& p2) { | 
|  | return v1 < p2.first; | 
|  | } | 
|  | bool operator()(const VirtualSocketServer::Point& p1, double v2) { | 
|  | return p1.first < v2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | std::unique_ptr<VirtualSocketServer::Function> VirtualSocketServer::Accumulate( | 
|  | std::unique_ptr<Function> f) { | 
|  | RTC_DCHECK(f->size() >= 1); | 
|  | double v = 0; | 
|  | for (Function::size_type i = 0; i < f->size() - 1; ++i) { | 
|  | double dx = (*f)[i + 1].first - (*f)[i].first; | 
|  | double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2; | 
|  | (*f)[i].second = v; | 
|  | v = v + dx * avgy; | 
|  | } | 
|  | (*f)[f->size() - 1].second = v; | 
|  | return f; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<VirtualSocketServer::Function> VirtualSocketServer::Invert( | 
|  | std::unique_ptr<Function> f) { | 
|  | for (Function::size_type i = 0; i < f->size(); ++i) | 
|  | std::swap((*f)[i].first, (*f)[i].second); | 
|  |  | 
|  | absl::c_sort(*f, FunctionDomainCmp()); | 
|  | return f; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<VirtualSocketServer::Function> VirtualSocketServer::Resample( | 
|  | std::unique_ptr<Function> f, | 
|  | double x1, | 
|  | double x2, | 
|  | uint32_t samples) { | 
|  | auto g = std::make_unique<Function>(); | 
|  |  | 
|  | for (size_t i = 0; i < samples; i++) { | 
|  | double x = x1 + (x2 - x1) * i / (samples - 1); | 
|  | double y = Evaluate(f.get(), x); | 
|  | g->push_back(Point(x, y)); | 
|  | } | 
|  |  | 
|  | return g; | 
|  | } | 
|  |  | 
|  | double VirtualSocketServer::Evaluate(const Function* f, double x) { | 
|  | Function::const_iterator iter = | 
|  | absl::c_lower_bound(*f, x, FunctionDomainCmp()); | 
|  | if (iter == f->begin()) { | 
|  | return (*f)[0].second; | 
|  | } else if (iter == f->end()) { | 
|  | RTC_DCHECK(f->size() >= 1); | 
|  | return (*f)[f->size() - 1].second; | 
|  | } else if (iter->first == x) { | 
|  | return iter->second; | 
|  | } else { | 
|  | double x1 = (iter - 1)->first; | 
|  | double y1 = (iter - 1)->second; | 
|  | double x2 = iter->first; | 
|  | double y2 = iter->second; | 
|  | return y1 + (y2 - y1) * (x - x1) / (x2 - x1); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::CanInteractWith(VirtualSocket* local, | 
|  | VirtualSocket* remote) { | 
|  | if (!local || !remote) { | 
|  | return false; | 
|  | } | 
|  | IPAddress local_ip = local->GetLocalAddress().ipaddr(); | 
|  | IPAddress remote_ip = remote->GetLocalAddress().ipaddr(); | 
|  | IPAddress local_normalized = local_ip.Normalized(); | 
|  | IPAddress remote_normalized = remote_ip.Normalized(); | 
|  | // Check if the addresses are the same family after Normalization (turns | 
|  | // mapped IPv6 address into IPv4 addresses). | 
|  | // This will stop unmapped V6 addresses from talking to mapped V6 addresses. | 
|  | if (local_normalized.family() == remote_normalized.family()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY. | 
|  | int remote_v6_only = 0; | 
|  | remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only); | 
|  | if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) { | 
|  | return true; | 
|  | } | 
|  | // Same check, backwards. | 
|  | int local_v6_only = 0; | 
|  | local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only); | 
|  | if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check to see if either socket was explicitly bound to IPv6-any. | 
|  | // These sockets can talk with anyone. | 
|  | if (local_ip.family() == AF_INET6 && local->was_any()) { | 
|  | return true; | 
|  | } | 
|  | if (remote_ip.family() == AF_INET6 && remote->was_any()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | IPAddress VirtualSocketServer::GetDefaultSourceAddress(int family) { | 
|  | if (family == AF_INET) { | 
|  | return default_source_address_v4_; | 
|  | } | 
|  | if (family == AF_INET6) { | 
|  | return default_source_address_v6_; | 
|  | } | 
|  | return IPAddress(); | 
|  | } | 
|  | void VirtualSocketServer::SetDefaultSourceAddress(const IPAddress& from_addr) { | 
|  | RTC_DCHECK(!IPIsAny(from_addr)); | 
|  | if (from_addr.family() == AF_INET) { | 
|  | default_source_address_v4_ = from_addr; | 
|  | } else if (from_addr.family() == AF_INET6) { | 
|  | default_source_address_v6_ = from_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::set_bandwidth(uint32_t bandwidth) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | bandwidth_ = bandwidth; | 
|  | } | 
|  | void VirtualSocketServer::set_network_capacity(uint32_t capacity) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | network_capacity_ = capacity; | 
|  | } | 
|  |  | 
|  | uint32_t VirtualSocketServer::send_buffer_capacity() const { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | return send_buffer_capacity_; | 
|  | } | 
|  | void VirtualSocketServer::set_send_buffer_capacity(uint32_t capacity) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | send_buffer_capacity_ = capacity; | 
|  | } | 
|  |  | 
|  | uint32_t VirtualSocketServer::recv_buffer_capacity() const { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | return recv_buffer_capacity_; | 
|  | } | 
|  | void VirtualSocketServer::set_recv_buffer_capacity(uint32_t capacity) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | recv_buffer_capacity_ = capacity; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::set_delay_mean(uint32_t delay_mean) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | delay_mean_ = delay_mean; | 
|  | } | 
|  | void VirtualSocketServer::set_delay_stddev(uint32_t delay_stddev) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | delay_stddev_ = delay_stddev; | 
|  | } | 
|  | void VirtualSocketServer::set_delay_samples(uint32_t delay_samples) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | delay_samples_ = delay_samples; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::set_drop_probability(double drop_prob) { | 
|  | RTC_DCHECK_GE(drop_prob, 0.0); | 
|  | RTC_DCHECK_LE(drop_prob, 1.0); | 
|  |  | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | drop_prob_ = drop_prob; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::set_max_udp_payload(size_t payload_size) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | max_udp_payload_ = payload_size; | 
|  | } | 
|  |  | 
|  | uint32_t VirtualSocketServer::sent_packets() const { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | return sent_packets_; | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |