| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/timing.h" |
| |
| #include "system_wrappers/include/clock.h" |
| #include "test/field_trial.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace { |
| const int kFps = 25; |
| } // namespace |
| |
| TEST(ReceiverTimingTest, JitterDelay) { |
| SimulatedClock clock(0); |
| VCMTiming timing(&clock); |
| timing.Reset(); |
| |
| uint32_t timestamp = 0; |
| timing.UpdateCurrentDelay(timestamp); |
| |
| timing.Reset(); |
| |
| timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); |
| uint32_t jitter_delay_ms = 20; |
| timing.SetJitterDelay(jitter_delay_ms); |
| timing.UpdateCurrentDelay(timestamp); |
| timing.set_render_delay(0); |
| uint32_t wait_time_ms = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| // First update initializes the render time. Since we have no decode delay |
| // we get wait_time_ms = renderTime - now - renderDelay = jitter. |
| EXPECT_EQ(jitter_delay_ms, wait_time_ms); |
| |
| jitter_delay_ms += VCMTiming::kDelayMaxChangeMsPerS + 10; |
| timestamp += 90000; |
| clock.AdvanceTimeMilliseconds(1000); |
| timing.SetJitterDelay(jitter_delay_ms); |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time_ms = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| // Since we gradually increase the delay we only get 100 ms every second. |
| EXPECT_EQ(jitter_delay_ms - 10, wait_time_ms); |
| |
| timestamp += 90000; |
| clock.AdvanceTimeMilliseconds(1000); |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time_ms = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| EXPECT_EQ(jitter_delay_ms, wait_time_ms); |
| |
| // Insert frames without jitter, verify that this gives the exact wait time. |
| const int kNumFrames = 300; |
| for (int i = 0; i < kNumFrames; i++) { |
| clock.AdvanceTimeMilliseconds(1000 / kFps); |
| timestamp += 90000 / kFps; |
| timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); |
| } |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time_ms = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| EXPECT_EQ(jitter_delay_ms, wait_time_ms); |
| |
| // Add decode time estimates for 1 second. |
| const uint32_t kDecodeTimeMs = 10; |
| for (int i = 0; i < kFps; i++) { |
| clock.AdvanceTimeMilliseconds(kDecodeTimeMs); |
| timing.StopDecodeTimer(kDecodeTimeMs, clock.TimeInMilliseconds()); |
| timestamp += 90000 / kFps; |
| clock.AdvanceTimeMilliseconds(1000 / kFps - kDecodeTimeMs); |
| timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); |
| } |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time_ms = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| EXPECT_EQ(jitter_delay_ms, wait_time_ms); |
| |
| const int kMinTotalDelayMs = 200; |
| timing.set_min_playout_delay(kMinTotalDelayMs); |
| clock.AdvanceTimeMilliseconds(5000); |
| timestamp += 5 * 90000; |
| timing.UpdateCurrentDelay(timestamp); |
| const int kRenderDelayMs = 10; |
| timing.set_render_delay(kRenderDelayMs); |
| wait_time_ms = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| // We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime |
| // (10) to wait. |
| EXPECT_EQ(kMinTotalDelayMs - kDecodeTimeMs - kRenderDelayMs, wait_time_ms); |
| // The total video delay should be equal to the min total delay. |
| EXPECT_EQ(kMinTotalDelayMs, timing.TargetVideoDelay()); |
| |
| // Reset playout delay. |
| timing.set_min_playout_delay(0); |
| clock.AdvanceTimeMilliseconds(5000); |
| timestamp += 5 * 90000; |
| timing.UpdateCurrentDelay(timestamp); |
| } |
| |
| TEST(ReceiverTimingTest, TimestampWrapAround) { |
| SimulatedClock clock(0); |
| VCMTiming timing(&clock); |
| // Provoke a wrap-around. The fifth frame will have wrapped at 25 fps. |
| uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFps; |
| for (int i = 0; i < 5; ++i) { |
| timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); |
| clock.AdvanceTimeMilliseconds(1000 / kFps); |
| timestamp += 90000 / kFps; |
| EXPECT_EQ(3 * 1000 / kFps, |
| timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds())); |
| EXPECT_EQ(3 * 1000 / kFps + 1, |
| timing.RenderTimeMs(89u, // One ms later in 90 kHz. |
| clock.TimeInMilliseconds())); |
| } |
| } |
| |
| TEST(ReceiverTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) { |
| // This is the default path when the RTP playout delay header extension is set |
| // to min==0. |
| constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. |
| constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0; |
| constexpr int64_t kZeroRenderTimeMs = 0; |
| SimulatedClock clock(kStartTimeUs); |
| VCMTiming timing(&clock); |
| timing.Reset(); |
| for (int i = 0; i < 10; ++i) { |
| clock.AdvanceTimeMilliseconds(kTimeDeltaMs); |
| int64_t now_ms = clock.TimeInMilliseconds(); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0); |
| } |
| // Another frame submitted at the same time also returns a negative max |
| // waiting time. |
| int64_t now_ms = clock.TimeInMilliseconds(); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0); |
| // MaxWaitingTime should be less than zero even if there's a burst of frames. |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0); |
| } |
| |
| TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) { |
| // The minimum pacing is enabled by a field trial and active if the RTP |
| // playout delay header extension is set to min==0. |
| constexpr int64_t kMinPacingMs = 3; |
| test::ScopedFieldTrials override_field_trials( |
| "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); |
| constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. |
| constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0; |
| constexpr int64_t kZeroRenderTimeMs = 0; |
| SimulatedClock clock(kStartTimeUs); |
| VCMTiming timing(&clock); |
| timing.Reset(); |
| // MaxWaitingTime() returns zero for evenly spaced video frames. |
| for (int i = 0; i < 10; ++i) { |
| clock.AdvanceTimeMilliseconds(kTimeDeltaMs); |
| int64_t now_ms = clock.TimeInMilliseconds(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0); |
| } |
| // Another frame submitted at the same time is paced according to the field |
| // trial setting. |
| int64_t now_ms = clock.TimeInMilliseconds(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs); |
| // If there's a burst of frames, the min pacing interval is summed. |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 2 * kMinPacingMs); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 3 * kMinPacingMs); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 4 * kMinPacingMs); |
| // Allow a few ms to pass, this should be subtracted from the MaxWaitingTime. |
| constexpr int64_t kTwoMs = 2; |
| clock.AdvanceTimeMilliseconds(kTwoMs); |
| now_ms = clock.TimeInMilliseconds(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), |
| 5 * kMinPacingMs - kTwoMs); |
| } |
| |
| TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) { |
| // The minimum pacing is enabled by a field trial but should not have any |
| // effect if render_time_ms is greater than 0; |
| test::ScopedFieldTrials override_field_trials( |
| "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); |
| constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. |
| constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0; |
| SimulatedClock clock(kStartTimeUs); |
| VCMTiming timing(&clock); |
| timing.Reset(); |
| clock.AdvanceTimeMilliseconds(kTimeDeltaMs); |
| int64_t now_ms = clock.TimeInMilliseconds(); |
| int64_t render_time_ms = now_ms + 30; |
| // Estimate the internal processing delay from the first frame. |
| int64_t estimated_processing_delay = |
| (render_time_ms - now_ms) - timing.MaxWaitingTime(render_time_ms, now_ms); |
| EXPECT_GT(estimated_processing_delay, 0); |
| |
| // Any other frame submitted at the same time should be scheduled according to |
| // its render time. |
| for (int i = 0; i < 5; ++i) { |
| render_time_ms += kTimeDeltaMs; |
| EXPECT_EQ(timing.MaxWaitingTime(render_time_ms, now_ms), |
| render_time_ms - now_ms - estimated_processing_delay); |
| } |
| } |
| |
| } // namespace webrtc |