| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "video/encoder_bitrate_adjuster.h" |
| |
| #include <memory> |
| #include <vector> |
| |
| #include "api/units/data_rate.h" |
| #include "rtc_base/fake_clock.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "test/field_trial.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace test { |
| |
| class EncoderBitrateAdjusterTest : public ::testing::Test { |
| public: |
| static constexpr int64_t kWindowSizeMs = 3000; |
| static constexpr int kDefaultBitrateBps = 300000; |
| static constexpr int kDefaultFrameRateFps = 30; |
| // For network utilization higher than media utilization, loop over a |
| // sequence where the first half undershoots and the second half overshoots |
| // by the same amount. |
| static constexpr int kSequenceLength = 4; |
| static_assert(kSequenceLength % 2 == 0, "Sequence length must be even."); |
| |
| EncoderBitrateAdjusterTest() |
| : target_bitrate_(DataRate::BitsPerSec(kDefaultBitrateBps)), |
| target_framerate_fps_(kDefaultFrameRateFps), |
| tl_pattern_idx_{}, |
| sequence_idx_{} {} |
| |
| protected: |
| void SetUpAdjuster(size_t num_spatial_layers, |
| size_t num_temporal_layers, |
| bool vp9_svc) { |
| // Initialize some default VideoCodec instance with the given number of |
| // layers. |
| if (vp9_svc) { |
| codec_.codecType = VideoCodecType::kVideoCodecVP9; |
| codec_.numberOfSimulcastStreams = 1; |
| codec_.VP9()->numberOfSpatialLayers = num_spatial_layers; |
| codec_.VP9()->numberOfTemporalLayers = num_temporal_layers; |
| for (size_t si = 0; si < num_spatial_layers; ++si) { |
| codec_.spatialLayers[si].minBitrate = 100 * (1 << si); |
| codec_.spatialLayers[si].targetBitrate = 200 * (1 << si); |
| codec_.spatialLayers[si].maxBitrate = 300 * (1 << si); |
| codec_.spatialLayers[si].active = true; |
| codec_.spatialLayers[si].numberOfTemporalLayers = num_temporal_layers; |
| } |
| } else { |
| codec_.codecType = VideoCodecType::kVideoCodecVP8; |
| codec_.numberOfSimulcastStreams = num_spatial_layers; |
| codec_.VP8()->numberOfTemporalLayers = num_temporal_layers; |
| for (size_t si = 0; si < num_spatial_layers; ++si) { |
| codec_.simulcastStream[si].minBitrate = 100 * (1 << si); |
| codec_.simulcastStream[si].targetBitrate = 200 * (1 << si); |
| codec_.simulcastStream[si].maxBitrate = 300 * (1 << si); |
| codec_.simulcastStream[si].active = true; |
| codec_.simulcastStream[si].numberOfTemporalLayers = num_temporal_layers; |
| codec_.spatialLayers[si].width = 320 * (1<<si); |
| codec_.spatialLayers[si].height = 180 * (1<<si); |
| } |
| } |
| |
| for (size_t si = 0; si < num_spatial_layers; ++si) { |
| encoder_info_.fps_allocation[si].resize(num_temporal_layers); |
| double fraction = 1.0; |
| for (int ti = num_temporal_layers - 1; ti >= 0; --ti) { |
| encoder_info_.fps_allocation[si][ti] = static_cast<uint8_t>( |
| VideoEncoder::EncoderInfo::kMaxFramerateFraction * fraction + 0.5); |
| fraction /= 2.0; |
| } |
| } |
| |
| adjuster_ = std::make_unique<EncoderBitrateAdjuster>(codec_); |
| adjuster_->OnEncoderInfo(encoder_info_); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| } |
| |
| void InsertFrames(std::vector<std::vector<double>> media_utilization_factors, |
| int64_t duration_ms) { |
| InsertFrames(media_utilization_factors, media_utilization_factors, |
| duration_ms); |
| } |
| |
| void InsertFrames( |
| std::vector<std::vector<double>> media_utilization_factors, |
| std::vector<std::vector<double>> network_utilization_factors, |
| int64_t duration_ms) { |
| RTC_DCHECK_EQ(media_utilization_factors.size(), |
| network_utilization_factors.size()); |
| |
| const int64_t start_us = rtc::TimeMicros(); |
| while (rtc::TimeMicros() < |
| start_us + (duration_ms * rtc::kNumMicrosecsPerMillisec)) { |
| clock_.AdvanceTime(TimeDelta::Seconds(1) / target_framerate_fps_); |
| for (size_t si = 0; si < NumSpatialLayers(); ++si) { |
| const std::vector<int>& tl_pattern = |
| kTlPatterns[NumTemporalLayers(si) - 1]; |
| const size_t ti = |
| tl_pattern[(tl_pattern_idx_[si]++) % tl_pattern.size()]; |
| |
| uint32_t layer_bitrate_bps = |
| current_adjusted_allocation_.GetBitrate(si, ti); |
| double layer_framerate_fps = target_framerate_fps_; |
| if (encoder_info_.fps_allocation[si].size() > ti) { |
| uint8_t layer_fps_fraction = encoder_info_.fps_allocation[si][ti]; |
| if (ti > 0) { |
| // We're interested in the frame rate for this layer only, not |
| // cumulative frame rate. |
| layer_fps_fraction -= encoder_info_.fps_allocation[si][ti - 1]; |
| } |
| layer_framerate_fps = |
| (target_framerate_fps_ * layer_fps_fraction) / |
| VideoEncoder::EncoderInfo::kMaxFramerateFraction; |
| } |
| double media_utilization_factor = 1.0; |
| double network_utilization_factor = 1.0; |
| if (media_utilization_factors.size() > si) { |
| RTC_DCHECK_EQ(media_utilization_factors[si].size(), |
| network_utilization_factors[si].size()); |
| if (media_utilization_factors[si].size() > ti) { |
| media_utilization_factor = media_utilization_factors[si][ti]; |
| network_utilization_factor = network_utilization_factors[si][ti]; |
| } |
| } |
| RTC_DCHECK_GE(network_utilization_factor, media_utilization_factor); |
| |
| // Frame size based on constant (media) overshoot. |
| const size_t media_frame_size = media_utilization_factor * |
| (layer_bitrate_bps / 8.0) / |
| layer_framerate_fps; |
| |
| constexpr int kFramesWithPenalty = (kSequenceLength / 2) - 1; |
| RTC_DCHECK_GT(kFramesWithPenalty, 0); |
| |
| // The positive/negative size diff needed to achieve network rate but |
| // not media rate penalty is the difference between the utilization |
| // factors times the media rate frame size, then scaled by the fraction |
| // between total frames and penalized frames in the sequence. |
| // Cap to media frame size to avoid negative size undershoot. |
| const size_t network_frame_size_diff_bytes = std::min( |
| media_frame_size, |
| static_cast<size_t>( |
| (((network_utilization_factor - media_utilization_factor) * |
| media_frame_size) * |
| kSequenceLength) / |
| kFramesWithPenalty + |
| 0.5)); |
| |
| int sequence_idx = sequence_idx_[si][ti]; |
| sequence_idx_[si][ti] = (sequence_idx_[si][ti] + 1) % kSequenceLength; |
| const DataSize frame_size = DataSize::Bytes( |
| (sequence_idx < kSequenceLength / 2) |
| ? media_frame_size - network_frame_size_diff_bytes |
| : media_frame_size + network_frame_size_diff_bytes); |
| |
| adjuster_->OnEncodedFrame(frame_size, si, ti); |
| sequence_idx = ++sequence_idx % kSequenceLength; |
| } |
| } |
| } |
| |
| size_t NumSpatialLayers() const { |
| if (codec_.codecType == VideoCodecType::kVideoCodecVP9) { |
| return codec_.VP9().numberOfSpatialLayers; |
| } |
| return codec_.numberOfSimulcastStreams; |
| } |
| |
| size_t NumTemporalLayers(int spatial_index) { |
| if (codec_.codecType == VideoCodecType::kVideoCodecVP9) { |
| return codec_.spatialLayers[spatial_index].numberOfTemporalLayers; |
| } |
| return codec_.simulcastStream[spatial_index].numberOfTemporalLayers; |
| } |
| |
| void ExpectNear(const VideoBitrateAllocation& expected_allocation, |
| const VideoBitrateAllocation& actual_allocation, |
| double allowed_error_fraction) { |
| for (size_t si = 0; si < kMaxSpatialLayers; ++si) { |
| for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { |
| if (expected_allocation.HasBitrate(si, ti)) { |
| EXPECT_TRUE(actual_allocation.HasBitrate(si, ti)); |
| uint32_t expected_layer_bitrate_bps = |
| expected_allocation.GetBitrate(si, ti); |
| EXPECT_NEAR(expected_layer_bitrate_bps, |
| actual_allocation.GetBitrate(si, ti), |
| static_cast<uint32_t>(expected_layer_bitrate_bps * |
| allowed_error_fraction)); |
| } else { |
| EXPECT_FALSE(actual_allocation.HasBitrate(si, ti)); |
| } |
| } |
| } |
| } |
| |
| VideoBitrateAllocation MultiplyAllocation( |
| const VideoBitrateAllocation& allocation, |
| double factor) { |
| VideoBitrateAllocation multiplied_allocation; |
| for (size_t si = 0; si < kMaxSpatialLayers; ++si) { |
| for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { |
| if (allocation.HasBitrate(si, ti)) { |
| multiplied_allocation.SetBitrate( |
| si, ti, |
| static_cast<uint32_t>(factor * allocation.GetBitrate(si, ti) + |
| 0.5)); |
| } |
| } |
| } |
| return multiplied_allocation; |
| } |
| |
| VideoCodec codec_; |
| VideoEncoder::EncoderInfo encoder_info_; |
| std::unique_ptr<EncoderBitrateAdjuster> adjuster_; |
| VideoBitrateAllocation current_input_allocation_; |
| VideoBitrateAllocation current_adjusted_allocation_; |
| rtc::ScopedFakeClock clock_; |
| DataRate target_bitrate_; |
| double target_framerate_fps_; |
| int tl_pattern_idx_[kMaxSpatialLayers]; |
| int sequence_idx_[kMaxSpatialLayers][kMaxTemporalStreams]; |
| |
| const std::vector<int> kTlPatterns[kMaxTemporalStreams] = { |
| {0}, |
| {0, 1}, |
| {0, 2, 1, 2}, |
| {0, 3, 2, 3, 1, 3, 2, 3}}; |
| }; |
| |
| TEST_F(EncoderBitrateAdjusterTest, SingleLayerOptimal) { |
| // Single layer, well behaved encoder. |
| current_input_allocation_.SetBitrate(0, 0, 300000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 1, false); |
| InsertFrames({{1.0}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Adjusted allocation near input. Allow 1% error margin due to rounding |
| // errors etc. |
| ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, SingleLayerOveruse) { |
| // Single layer, well behaved encoder. |
| current_input_allocation_.SetBitrate(0, 0, 300000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 1, false); |
| InsertFrames({{1.2}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Adjusted allocation lowered by 20%. |
| ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.2), |
| current_adjusted_allocation_, 0.01); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, SingleLayerUnderuse) { |
| // Single layer, well behaved encoder. |
| current_input_allocation_.SetBitrate(0, 0, 300000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 1, false); |
| InsertFrames({{0.5}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Undershoot, adjusted should exactly match input. |
| ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.00); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersOptimalSize) { |
| // Three temporal layers, 60%/20%/20% bps distro, well behaved encoder. |
| current_input_allocation_.SetBitrate(0, 0, 180000); |
| current_input_allocation_.SetBitrate(0, 1, 60000); |
| current_input_allocation_.SetBitrate(0, 2, 60000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 3, false); |
| InsertFrames({{1.0, 1.0, 1.0}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersOvershoot) { |
| // Three temporal layers, 60%/20%/20% bps distro. |
| // 10% overshoot on all layers. |
| current_input_allocation_.SetBitrate(0, 0, 180000); |
| current_input_allocation_.SetBitrate(0, 1, 60000); |
| current_input_allocation_.SetBitrate(0, 2, 60000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 3, false); |
| InsertFrames({{1.1, 1.1, 1.1}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Adjusted allocation lowered by 10%. |
| ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.1), |
| current_adjusted_allocation_, 0.01); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersUndershoot) { |
| // Three temporal layers, 60%/20%/20% bps distro, undershoot all layers. |
| current_input_allocation_.SetBitrate(0, 0, 180000); |
| current_input_allocation_.SetBitrate(0, 1, 60000); |
| current_input_allocation_.SetBitrate(0, 2, 60000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 3, false); |
| InsertFrames({{0.8, 0.8, 0.8}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Adjusted allocation identical since we don't boost bitrates. |
| ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.0); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersSkewedOvershoot) { |
| // Three temporal layers, 60%/20%/20% bps distro. |
| // 10% overshoot on base layer, 20% on higher layers. |
| current_input_allocation_.SetBitrate(0, 0, 180000); |
| current_input_allocation_.SetBitrate(0, 1, 60000); |
| current_input_allocation_.SetBitrate(0, 2, 60000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 3, false); |
| InsertFrames({{1.1, 1.2, 1.2}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Expected overshoot is weighted by bitrate: |
| // (0.6 * 1.1 + 0.2 * 1.2 + 0.2 * 1.2) = 1.14 |
| ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.14), |
| current_adjusted_allocation_, 0.01); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersNonLayeredEncoder) { |
| // Three temporal layers, 60%/20%/20% bps allocation, 10% overshoot, |
| // encoder does not actually support temporal layers. |
| current_input_allocation_.SetBitrate(0, 0, 180000); |
| current_input_allocation_.SetBitrate(0, 1, 60000); |
| current_input_allocation_.SetBitrate(0, 2, 60000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 1, false); |
| InsertFrames({{1.1}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Expect the actual 10% overuse to be detected and the allocation to |
| // only contain the one entry. |
| VideoBitrateAllocation expected_allocation; |
| expected_allocation.SetBitrate( |
| 0, 0, |
| static_cast<uint32_t>(current_input_allocation_.get_sum_bps() / 1.10)); |
| ExpectNear(expected_allocation, current_adjusted_allocation_, 0.01); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, IgnoredStream) { |
| // Encoder with three temporal layers, but in a mode that does not support |
| // deterministic frame rate. Those are ignored, even if bitrate overshoots. |
| current_input_allocation_.SetBitrate(0, 0, 180000); |
| current_input_allocation_.SetBitrate(0, 1, 60000); |
| target_framerate_fps_ = 30; |
| SetUpAdjuster(1, 1, false); |
| encoder_info_.fps_allocation[0].clear(); |
| adjuster_->OnEncoderInfo(encoder_info_); |
| |
| InsertFrames({{1.1}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| |
| // Values passed through. |
| ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.00); |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, DifferentSpatialOvershoots) { |
| // Two streams, both with three temporal layers. |
| // S0 has 5% overshoot, S1 has 25% overshoot. |
| current_input_allocation_.SetBitrate(0, 0, 180000); |
| current_input_allocation_.SetBitrate(0, 1, 60000); |
| current_input_allocation_.SetBitrate(0, 2, 60000); |
| current_input_allocation_.SetBitrate(1, 0, 400000); |
| current_input_allocation_.SetBitrate(1, 1, 150000); |
| current_input_allocation_.SetBitrate(1, 2, 150000); |
| target_framerate_fps_ = 30; |
| // Run twice, once configured as simulcast and once as VP9 SVC. |
| for (int i = 0; i < 2; ++i) { |
| SetUpAdjuster(2, 3, i == 0); |
| InsertFrames({{1.05, 1.05, 1.05}, {1.25, 1.25, 1.25}}, kWindowSizeMs); |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| VideoBitrateAllocation expected_allocation; |
| for (size_t ti = 0; ti < 3; ++ti) { |
| expected_allocation.SetBitrate( |
| 0, ti, |
| static_cast<uint32_t>(current_input_allocation_.GetBitrate(0, ti) / |
| 1.05)); |
| expected_allocation.SetBitrate( |
| 1, ti, |
| static_cast<uint32_t>(current_input_allocation_.GetBitrate(1, ti) / |
| 1.25)); |
| } |
| ExpectNear(expected_allocation, current_adjusted_allocation_, 0.01); |
| } |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, HeadroomAllowsOvershootToMediaRate) { |
| // Two streams, both with three temporal layers. |
| // Media rate is 1.0, but network rate is higher. |
| ScopedFieldTrials field_trial( |
| "WebRTC-VideoRateControl/adjuster_use_headroom:true/"); |
| |
| const uint32_t kS0Bitrate = 300000; |
| const uint32_t kS1Bitrate = 900000; |
| current_input_allocation_.SetBitrate(0, 0, kS0Bitrate / 3); |
| current_input_allocation_.SetBitrate(0, 1, kS0Bitrate / 3); |
| current_input_allocation_.SetBitrate(0, 2, kS0Bitrate / 3); |
| current_input_allocation_.SetBitrate(1, 0, kS1Bitrate / 3); |
| current_input_allocation_.SetBitrate(1, 1, kS1Bitrate / 3); |
| current_input_allocation_.SetBitrate(1, 2, kS1Bitrate / 3); |
| |
| target_framerate_fps_ = 30; |
| |
| // Run twice, once configured as simulcast and once as VP9 SVC. |
| for (int i = 0; i < 2; ++i) { |
| SetUpAdjuster(2, 3, i == 0); |
| // Network rate has 10% overshoot, but media rate is correct at 1.0. |
| InsertFrames({{1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}}, |
| {{1.1, 1.1, 1.1}, {1.1, 1.1, 1.1}}, |
| kWindowSizeMs * kSequenceLength); |
| |
| // Push back by 10%. |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.1), |
| current_adjusted_allocation_, 0.01); |
| |
| // Add 10% link headroom, overshoot is now allowed. |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_, |
| DataRate::BitsPerSec(current_input_allocation_.get_sum_bps() * |
| 1.1))); |
| ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01); |
| } |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, DontExceedMediaRateEvenWithHeadroom) { |
| // Two streams, both with three temporal layers. |
| // Media rate is 1.1, but network rate is higher. |
| ScopedFieldTrials field_trial( |
| "WebRTC-VideoRateControl/adjuster_use_headroom:true/"); |
| |
| const uint32_t kS0Bitrate = 300000; |
| const uint32_t kS1Bitrate = 900000; |
| current_input_allocation_.SetBitrate(0, 0, kS0Bitrate / 3); |
| current_input_allocation_.SetBitrate(0, 1, kS0Bitrate / 3); |
| current_input_allocation_.SetBitrate(0, 2, kS0Bitrate / 3); |
| current_input_allocation_.SetBitrate(1, 0, kS1Bitrate / 3); |
| current_input_allocation_.SetBitrate(1, 1, kS1Bitrate / 3); |
| current_input_allocation_.SetBitrate(1, 2, kS1Bitrate / 3); |
| |
| target_framerate_fps_ = 30; |
| |
| // Run twice, once configured as simulcast and once as VP9 SVC. |
| for (int i = 0; i < 2; ++i) { |
| SetUpAdjuster(2, 3, i == 0); |
| // Network rate has 30% overshoot, media rate has 10% overshoot. |
| InsertFrames({{1.1, 1.1, 1.1}, {1.1, 1.1, 1.1}}, |
| {{1.3, 1.3, 1.3}, {1.3, 1.3, 1.3}}, |
| kWindowSizeMs * kSequenceLength); |
| |
| // Push back by 30%. |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // The up-down causes a bit more noise, allow slightly more error margin. |
| ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.3), |
| current_adjusted_allocation_, 0.015); |
| |
| // Add 100% link headroom, overshoot from network to media rate is allowed. |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_, |
| DataRate::BitsPerSec(current_input_allocation_.get_sum_bps() * 2))); |
| ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.1), |
| current_adjusted_allocation_, 0.015); |
| } |
| } |
| |
| TEST_F(EncoderBitrateAdjusterTest, HonorMinBitrateSettingFromEncoderInfo) { |
| // Single layer, well behaved encoder. |
| const int high_bitrate = 20000; |
| const int a_lower_min_bitrate = 12000; |
| current_input_allocation_.SetBitrate(0, 0, high_bitrate); |
| VideoBitrateAllocation expected_input_allocation; |
| expected_input_allocation.SetBitrate(0, 0, a_lower_min_bitrate); |
| |
| target_framerate_fps_ = 30; |
| |
| SetUpAdjuster(1, 1, false); |
| |
| auto new_resolution_limit = VideoEncoder::ResolutionBitrateLimits( |
| codec_.spatialLayers[0].width * codec_.spatialLayers[0].height, 15000, |
| a_lower_min_bitrate, 2000000); |
| encoder_info_.resolution_bitrate_limits.push_back(new_resolution_limit); |
| adjuster_->OnEncoderInfo(encoder_info_); |
| |
| InsertFrames({{2.0}}, kWindowSizeMs); |
| |
| current_adjusted_allocation_ = |
| adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters( |
| current_input_allocation_, target_framerate_fps_)); |
| // Adjusted allocation near input. Allow 1% error margin due to rounding |
| // errors etc. |
| ExpectNear(expected_input_allocation, current_adjusted_allocation_, 0.01); |
| } |
| |
| } // namespace test |
| } // namespace webrtc |