|  | /* | 
|  | *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "test/fake_encoder.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <array> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <memory> | 
|  | #include <optional> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/strings/string_view.h" | 
|  | #include "api/environment/environment.h" | 
|  | #include "api/fec_controller_override.h" | 
|  | #include "api/scoped_refptr.h" | 
|  | #include "api/sequence_checker.h" | 
|  | #include "api/task_queue/task_queue_base.h" | 
|  | #include "api/task_queue/task_queue_factory.h" | 
|  | #include "api/video/encoded_image.h" | 
|  | #include "api/video/video_bitrate_allocation.h" | 
|  | #include "api/video/video_codec_constants.h" | 
|  | #include "api/video/video_codec_type.h" | 
|  | #include "api/video/video_frame.h" | 
|  | #include "api/video/video_frame_type.h" | 
|  | #include "api/video_codecs/simulcast_stream.h" | 
|  | #include "api/video_codecs/video_codec.h" | 
|  | #include "api/video_codecs/video_encoder.h" | 
|  | #include "modules/video_coding/codecs/h264/include/h264_globals.h" | 
|  | #include "modules/video_coding/include/video_codec_interface.h" | 
|  | #include "modules/video_coding/include/video_error_codes.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/synchronization/mutex.h" | 
|  | #include "rtc_base/thread.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace test { | 
|  | namespace { | 
|  | const int kKeyframeSizeFactor = 5; | 
|  |  | 
|  | // Inverse of proportion of frames assigned to each temporal layer for all | 
|  | // possible temporal layers numbers. | 
|  | const int kTemporalLayerRateFactor[4][4] = { | 
|  | {1, 0, 0, 0},  // 1/1 | 
|  | {2, 2, 0, 0},  // 1/2 + 1/2 | 
|  | {4, 4, 2, 0},  // 1/4 + 1/4 + 1/2 | 
|  | {8, 8, 4, 2},  // 1/8 + 1/8 + 1/4 + 1/2 | 
|  | }; | 
|  |  | 
|  | void WriteCounter(unsigned char* payload, uint32_t counter) { | 
|  | payload[0] = (counter & 0x00FF); | 
|  | payload[1] = (counter & 0xFF00) >> 8; | 
|  | payload[2] = (counter & 0xFF0000) >> 16; | 
|  | payload[3] = (counter & 0xFF000000) >> 24; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | FakeEncoder::FakeEncoder(const Environment& env) | 
|  | : env_(env), | 
|  | num_initializations_(0), | 
|  | callback_(nullptr), | 
|  | max_target_bitrate_kbps_(-1), | 
|  | pending_keyframe_(true), | 
|  | counter_(0), | 
|  | debt_bytes_(0) { | 
|  | for (bool& used : used_layers_) { | 
|  | used = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void FakeEncoder::SetFecControllerOverride( | 
|  | FecControllerOverride* fec_controller_override) { | 
|  | // Ignored. | 
|  | } | 
|  |  | 
|  | void FakeEncoder::SetMaxBitrate(int max_kbps) { | 
|  | RTC_DCHECK_GE(max_kbps, -1);  // max_kbps == -1 disables it. | 
|  | MutexLock lock(&mutex_); | 
|  | max_target_bitrate_kbps_ = max_kbps; | 
|  | SetRatesLocked(current_rate_settings_); | 
|  | } | 
|  |  | 
|  | void FakeEncoder::SetQp(int qp) { | 
|  | MutexLock lock(&mutex_); | 
|  | qp_ = qp; | 
|  | } | 
|  |  | 
|  | void FakeEncoder::SetImplementationName(absl::string_view implementation_name) { | 
|  | MutexLock lock(&mutex_); | 
|  | implementation_name_ = std::string(implementation_name); | 
|  | } | 
|  |  | 
|  | int32_t FakeEncoder::InitEncode(const VideoCodec* config, | 
|  | const Settings& settings) { | 
|  | MutexLock lock(&mutex_); | 
|  | config_ = *config; | 
|  | ++num_initializations_; | 
|  | current_rate_settings_.bitrate.SetBitrate(0, 0, config_.startBitrate * 1000); | 
|  | current_rate_settings_.framerate_fps = config_.maxFramerate; | 
|  | pending_keyframe_ = true; | 
|  | last_frame_info_ = FrameInfo(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t FakeEncoder::Encode(const VideoFrame& input_image, | 
|  | const std::vector<VideoFrameType>* frame_types) { | 
|  | unsigned char max_framerate; | 
|  | unsigned char num_simulcast_streams; | 
|  | SimulcastStream simulcast_streams[kMaxSimulcastStreams]; | 
|  | EncodedImageCallback* callback; | 
|  | RateControlParameters rates; | 
|  | bool keyframe; | 
|  | uint32_t counter; | 
|  | std::optional<int> qp; | 
|  | { | 
|  | MutexLock lock(&mutex_); | 
|  | max_framerate = config_.maxFramerate; | 
|  | num_simulcast_streams = config_.numberOfSimulcastStreams; | 
|  | for (int i = 0; i < num_simulcast_streams; ++i) { | 
|  | simulcast_streams[i] = config_.simulcastStream[i]; | 
|  | } | 
|  | callback = callback_; | 
|  | rates = current_rate_settings_; | 
|  | if (rates.framerate_fps <= 0.0) { | 
|  | rates.framerate_fps = max_framerate; | 
|  | } | 
|  | keyframe = pending_keyframe_; | 
|  | pending_keyframe_ = false; | 
|  | counter = counter_++; | 
|  | qp = qp_; | 
|  | } | 
|  |  | 
|  | FrameInfo frame_info = | 
|  | NextFrame(frame_types, keyframe, num_simulcast_streams, rates.bitrate, | 
|  | simulcast_streams, static_cast<int>(rates.framerate_fps + 0.5)); | 
|  | for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { | 
|  | constexpr int kMinPayLoadLength = 14; | 
|  | if (frame_info.layers[i].size < kMinPayLoadLength) { | 
|  | // Drop this temporal layer. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto buffer = EncodedImageBuffer::Create(frame_info.layers[i].size); | 
|  | // Fill the buffer with arbitrary data. Write someting to make Asan happy. | 
|  | memset(buffer->data(), 9, frame_info.layers[i].size); | 
|  | // Write a counter to the image to make each frame unique. | 
|  | WriteCounter(buffer->data() + frame_info.layers[i].size - 4, counter); | 
|  |  | 
|  | EncodedImage encoded; | 
|  | encoded.SetEncodedData(buffer); | 
|  |  | 
|  | encoded.SetRtpTimestamp(input_image.rtp_timestamp()); | 
|  | encoded._frameType = frame_info.keyframe ? VideoFrameType::kVideoFrameKey | 
|  | : VideoFrameType::kVideoFrameDelta; | 
|  | encoded._encodedWidth = simulcast_streams[i].width; | 
|  | encoded._encodedHeight = simulcast_streams[i].height; | 
|  | if (qp) | 
|  | encoded.qp_ = *qp; | 
|  | encoded.SetSimulcastIndex(i); | 
|  | encoded.SetTemporalIndex(frame_info.layers[i].temporal_id); | 
|  | CodecSpecificInfo codec_specific = EncodeHook(encoded, buffer); | 
|  |  | 
|  | if (callback->OnEncodedImage(encoded, &codec_specific).error != | 
|  | EncodedImageCallback::Result::OK) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CodecSpecificInfo FakeEncoder::EncodeHook( | 
|  | EncodedImage& encoded_image, | 
|  | scoped_refptr<EncodedImageBuffer> buffer) { | 
|  | CodecSpecificInfo codec_specific; | 
|  | codec_specific.codecType = kVideoCodecGeneric; | 
|  | return codec_specific; | 
|  | } | 
|  |  | 
|  | FakeEncoder::FrameInfo FakeEncoder::NextFrame( | 
|  | const std::vector<VideoFrameType>* frame_types, | 
|  | bool keyframe, | 
|  | uint8_t num_simulcast_streams, | 
|  | const VideoBitrateAllocation& target_bitrate, | 
|  | SimulcastStream simulcast_streams[kMaxSimulcastStreams], | 
|  | int framerate) { | 
|  | FrameInfo frame_info; | 
|  | frame_info.keyframe = keyframe; | 
|  |  | 
|  | if (frame_types) { | 
|  | for (VideoFrameType frame_type : *frame_types) { | 
|  | if (frame_type == VideoFrameType::kVideoFrameKey) { | 
|  | frame_info.keyframe = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MutexLock lock(&mutex_); | 
|  | for (uint8_t i = 0; i < num_simulcast_streams; ++i) { | 
|  | if (target_bitrate.GetBitrate(i, 0) > 0) { | 
|  | int temporal_id = last_frame_info_.layers.size() > i | 
|  | ? ++last_frame_info_.layers[i].temporal_id % | 
|  | simulcast_streams[i].numberOfTemporalLayers | 
|  | : 0; | 
|  | frame_info.layers.emplace_back(0, temporal_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (last_frame_info_.layers.size() < frame_info.layers.size()) { | 
|  | // A new keyframe is needed since a new layer will be added. | 
|  | frame_info.keyframe = true; | 
|  | } | 
|  |  | 
|  | for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { | 
|  | FrameInfo::SpatialLayer& layer_info = frame_info.layers[i]; | 
|  | if (frame_info.keyframe) { | 
|  | layer_info.temporal_id = 0; | 
|  | size_t avg_frame_size = | 
|  | (target_bitrate.GetBitrate(i, 0) + 7) * | 
|  | kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / | 
|  | (8 * framerate); | 
|  |  | 
|  | // The first frame is a key frame and should be larger. | 
|  | // Store the overshoot bytes and distribute them over the coming frames, | 
|  | // so that we on average meet the bitrate target. | 
|  | debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size; | 
|  | layer_info.size = kKeyframeSizeFactor * avg_frame_size; | 
|  | } else { | 
|  | size_t avg_frame_size = | 
|  | (target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) * | 
|  | kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / | 
|  | (8 * framerate); | 
|  | layer_info.size = avg_frame_size; | 
|  | if (debt_bytes_ > 0) { | 
|  | // Pay at most half of the frame size for old debts. | 
|  | size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_); | 
|  | debt_bytes_ -= payment_size; | 
|  | layer_info.size -= payment_size; | 
|  | } | 
|  | } | 
|  | } | 
|  | last_frame_info_ = frame_info; | 
|  | return frame_info; | 
|  | } | 
|  |  | 
|  | int32_t FakeEncoder::RegisterEncodeCompleteCallback( | 
|  | EncodedImageCallback* callback) { | 
|  | MutexLock lock(&mutex_); | 
|  | callback_ = callback; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t FakeEncoder::Release() { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void FakeEncoder::SetRates(const RateControlParameters& parameters) { | 
|  | MutexLock lock(&mutex_); | 
|  | SetRatesLocked(parameters); | 
|  | } | 
|  |  | 
|  | void FakeEncoder::SetRatesLocked(const RateControlParameters& parameters) { | 
|  | current_rate_settings_ = parameters; | 
|  | int allocated_bitrate_kbps = parameters.bitrate.get_sum_kbps(); | 
|  |  | 
|  | // Scale bitrate allocation to not exceed the given max target bitrate. | 
|  | if (max_target_bitrate_kbps_ > 0 && | 
|  | allocated_bitrate_kbps > max_target_bitrate_kbps_) { | 
|  | for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers; | 
|  | ++spatial_idx) { | 
|  | for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams; | 
|  | ++temporal_idx) { | 
|  | if (current_rate_settings_.bitrate.HasBitrate(spatial_idx, | 
|  | temporal_idx)) { | 
|  | uint32_t bitrate = current_rate_settings_.bitrate.GetBitrate( | 
|  | spatial_idx, temporal_idx); | 
|  | bitrate = static_cast<uint32_t>( | 
|  | (bitrate * int64_t{max_target_bitrate_kbps_}) / | 
|  | allocated_bitrate_kbps); | 
|  | current_rate_settings_.bitrate.SetBitrate(spatial_idx, temporal_idx, | 
|  | bitrate); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const { | 
|  | EncoderInfo info; | 
|  | MutexLock lock(&mutex_); | 
|  | info.implementation_name = implementation_name_.value_or(kImplementationName); | 
|  | info.is_hardware_accelerated = true; | 
|  | for (int sid = 0; sid < config_.numberOfSimulcastStreams; ++sid) { | 
|  | int number_of_temporal_layers = | 
|  | config_.simulcastStream[sid].numberOfTemporalLayers; | 
|  | info.fps_allocation[sid].clear(); | 
|  | for (int tid = 0; tid < number_of_temporal_layers; ++tid) { | 
|  | // {1/4, 1/2, 1} allocation for num layers = 3. | 
|  | info.fps_allocation[sid].push_back(255 / | 
|  | (number_of_temporal_layers - tid)); | 
|  | } | 
|  | } | 
|  | return info; | 
|  | } | 
|  |  | 
|  | int FakeEncoder::GetConfiguredInputFramerate() const { | 
|  | MutexLock lock(&mutex_); | 
|  | return static_cast<int>(current_rate_settings_.framerate_fps + 0.5); | 
|  | } | 
|  |  | 
|  | int FakeEncoder::GetNumInitializations() const { | 
|  | MutexLock lock(&mutex_); | 
|  | return num_initializations_; | 
|  | } | 
|  |  | 
|  | const VideoCodec& FakeEncoder::config() const { | 
|  | MutexLock lock(&mutex_); | 
|  | return config_; | 
|  | } | 
|  |  | 
|  | FakeH264Encoder::FakeH264Encoder(const Environment& env) | 
|  | : FakeEncoder(env), idr_counter_(0) {} | 
|  |  | 
|  | CodecSpecificInfo FakeH264Encoder::EncodeHook( | 
|  | EncodedImage& encoded_image, | 
|  | scoped_refptr<EncodedImageBuffer> buffer) { | 
|  | static constexpr std::array<uint8_t, 3> kStartCode = {0, 0, 1}; | 
|  | const size_t kSpsSize = 8; | 
|  | const size_t kPpsSize = 11; | 
|  | const int kIdrFrequency = 10; | 
|  | int current_idr_counter; | 
|  | { | 
|  | MutexLock lock(&local_mutex_); | 
|  | current_idr_counter = idr_counter_; | 
|  | ++idr_counter_; | 
|  | } | 
|  | for (size_t i = 0; i < encoded_image.size(); ++i) { | 
|  | buffer->data()[i] = static_cast<uint8_t>(i); | 
|  | } | 
|  |  | 
|  | if (current_idr_counter % kIdrFrequency == 0 && | 
|  | encoded_image.size() > kSpsSize + kPpsSize + 1 + 3 * kStartCode.size()) { | 
|  | const size_t kSpsNalHeader = 0x67; | 
|  | const size_t kPpsNalHeader = 0x68; | 
|  | const size_t kIdrNalHeader = 0x65; | 
|  | uint8_t* data = buffer->data(); | 
|  | memcpy(data, kStartCode.data(), kStartCode.size()); | 
|  | data += kStartCode.size(); | 
|  | data[0] = kSpsNalHeader; | 
|  | data += kSpsSize; | 
|  |  | 
|  | memcpy(data, kStartCode.data(), kStartCode.size()); | 
|  | data += kStartCode.size(); | 
|  | data[0] = kPpsNalHeader; | 
|  | data += kPpsSize; | 
|  |  | 
|  | memcpy(data, kStartCode.data(), kStartCode.size()); | 
|  | data += kStartCode.size(); | 
|  | data[0] = kIdrNalHeader; | 
|  | } else { | 
|  | memcpy(buffer->data(), kStartCode.data(), kStartCode.size()); | 
|  | const size_t kNalHeader = 0x41; | 
|  | buffer->data()[kStartCode.size()] = kNalHeader; | 
|  | } | 
|  |  | 
|  | CodecSpecificInfo codec_specific; | 
|  | codec_specific.codecType = kVideoCodecH264; | 
|  | codec_specific.codecSpecific.H264.packetization_mode = | 
|  | H264PacketizationMode::NonInterleaved; | 
|  | return codec_specific; | 
|  | } | 
|  |  | 
|  | DelayedEncoder::DelayedEncoder(const Environment& env, int delay_ms) | 
|  | : test::FakeEncoder(env), delay_ms_(delay_ms) { | 
|  | // The encoder could be created on a different thread than | 
|  | // it is being used on. | 
|  | sequence_checker_.Detach(); | 
|  | } | 
|  |  | 
|  | void DelayedEncoder::SetDelay(int delay_ms) { | 
|  | RTC_DCHECK_RUN_ON(&sequence_checker_); | 
|  | delay_ms_ = delay_ms; | 
|  | } | 
|  |  | 
|  | int32_t DelayedEncoder::Encode(const VideoFrame& input_image, | 
|  | const std::vector<VideoFrameType>* frame_types) { | 
|  | RTC_DCHECK_RUN_ON(&sequence_checker_); | 
|  |  | 
|  | Thread::SleepMs(delay_ms_); | 
|  |  | 
|  | return FakeEncoder::Encode(input_image, frame_types); | 
|  | } | 
|  |  | 
|  | MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder( | 
|  | const Environment& env) | 
|  | : test::FakeH264Encoder(env), | 
|  | current_queue_(0), | 
|  | queue1_(nullptr), | 
|  | queue2_(nullptr) { | 
|  | // The encoder could be created on a different thread than | 
|  | // it is being used on. | 
|  | sequence_checker_.Detach(); | 
|  | } | 
|  |  | 
|  | int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config, | 
|  | const Settings& settings) { | 
|  | RTC_DCHECK_RUN_ON(&sequence_checker_); | 
|  |  | 
|  | queue1_ = env_.task_queue_factory().CreateTaskQueue( | 
|  | "Queue 1", TaskQueueFactory::Priority::NORMAL); | 
|  | queue2_ = env_.task_queue_factory().CreateTaskQueue( | 
|  | "Queue 2", TaskQueueFactory::Priority::NORMAL); | 
|  |  | 
|  | return FakeH264Encoder::InitEncode(config, settings); | 
|  | } | 
|  |  | 
|  | int32_t MultithreadedFakeH264Encoder::Encode( | 
|  | const VideoFrame& input_image, | 
|  | const std::vector<VideoFrameType>* frame_types) { | 
|  | RTC_DCHECK_RUN_ON(&sequence_checker_); | 
|  |  | 
|  | TaskQueueBase* queue = | 
|  | (current_queue_++ % 2 == 0) ? queue1_.get() : queue2_.get(); | 
|  |  | 
|  | if (!queue) { | 
|  | return WEBRTC_VIDEO_CODEC_UNINITIALIZED; | 
|  | } | 
|  |  | 
|  | queue->PostTask([this, input_image, frame_types = *frame_types] { | 
|  | EncodeCallback(input_image, &frame_types); | 
|  | }); | 
|  |  | 
|  | return WEBRTC_VIDEO_CODEC_OK; | 
|  | } | 
|  |  | 
|  | int32_t MultithreadedFakeH264Encoder::EncodeCallback( | 
|  | const VideoFrame& input_image, | 
|  | const std::vector<VideoFrameType>* frame_types) { | 
|  | return FakeH264Encoder::Encode(input_image, frame_types); | 
|  | } | 
|  |  | 
|  | int32_t MultithreadedFakeH264Encoder::Release() { | 
|  | RTC_DCHECK_RUN_ON(&sequence_checker_); | 
|  |  | 
|  | queue1_.reset(); | 
|  | queue2_.reset(); | 
|  |  | 
|  | return FakeH264Encoder::Release(); | 
|  | } | 
|  |  | 
|  | }  // namespace test | 
|  | }  // namespace webrtc |