| /* |
| * Copyright 2015 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef WEBRTC_BASE_OPTIONAL_H_ |
| #define WEBRTC_BASE_OPTIONAL_H_ |
| |
| #include <algorithm> |
| #include <memory> |
| #include <utility> |
| |
| #include "webrtc/base/checks.h" |
| |
| namespace rtc { |
| |
| // Simple std::optional-wannabe. It either contains a T or not. |
| // |
| // A moved-from Optional<T> may only be destroyed, and assigned to if T allows |
| // being assigned to after having been moved from. Specifically, you may not |
| // assume that it just doesn't contain a value anymore. |
| // |
| // Examples of good places to use Optional: |
| // |
| // - As a class or struct member, when the member doesn't always have a value: |
| // struct Prisoner { |
| // std::string name; |
| // Optional<int> cell_number; // Empty if not currently incarcerated. |
| // }; |
| // |
| // - As a return value for functions that may fail to return a value on all |
| // allowed inputs. For example, a function that searches an array might |
| // return an Optional<size_t> (the index where it found the element, or |
| // nothing if it didn't find it); and a function that parses numbers might |
| // return Optional<double> (the parsed number, or nothing if parsing failed). |
| // |
| // Examples of bad places to use Optional: |
| // |
| // - As a return value for functions that may fail because of disallowed |
| // inputs. For example, a string length function should not return |
| // Optional<size_t> so that it can return nothing in case the caller passed |
| // it a null pointer; the function should probably use RTC_[D]CHECK instead, |
| // and return plain size_t. |
| // |
| // - As a return value for functions that may fail to return a value on all |
| // allowed inputs, but need to tell the caller what went wrong. Returning |
| // Optional<double> when parsing a single number as in the example above |
| // might make sense, but any larger parse job is probably going to need to |
| // tell the caller what the problem was, not just that there was one. |
| // |
| // TODO(kwiberg): Get rid of this class when the standard library has |
| // std::optional (and we're allowed to use it). |
| template <typename T> |
| class Optional final { |
| public: |
| // Construct an empty Optional. |
| Optional() : has_value_(false), empty_('\0') {} |
| |
| // Construct an Optional that contains a value. |
| explicit Optional(const T& value) : has_value_(true) { |
| new (&value_) T(value); |
| } |
| explicit Optional(T&& value) : has_value_(true) { |
| new (&value_) T(std::move(value)); |
| } |
| |
| // Copy constructor: copies the value from m if it has one. |
| Optional(const Optional& m) : has_value_(m.has_value_) { |
| if (has_value_) |
| new (&value_) T(m.value_); |
| } |
| |
| // Move constructor: if m has a value, moves the value from m, leaving m |
| // still in a state where it has a value, but a moved-from one (the |
| // properties of which depends on T; the only general guarantee is that we |
| // can destroy m). |
| Optional(Optional&& m) : has_value_(m.has_value_) { |
| if (has_value_) |
| new (&value_) T(std::move(m.value_)); |
| } |
| |
| ~Optional() { |
| if (has_value_) |
| value_.~T(); |
| } |
| |
| // Copy assignment. Uses T's copy assignment if both sides have a value, T's |
| // copy constructor if only the right-hand side has a value. |
| Optional& operator=(const Optional& m) { |
| if (m.has_value_) { |
| if (has_value_) { |
| value_ = m.value_; // T's copy assignment. |
| } else { |
| new (&value_) T(m.value_); // T's copy constructor. |
| has_value_ = true; |
| } |
| } else if (has_value_) { |
| value_.~T(); |
| has_value_ = false; |
| } |
| return *this; |
| } |
| |
| // Move assignment. Uses T's move assignment if both sides have a value, T's |
| // move constructor if only the right-hand side has a value. The state of m |
| // after it's been moved from is as for the move constructor. |
| Optional& operator=(Optional&& m) { |
| if (m.has_value_) { |
| if (has_value_) { |
| value_ = std::move(m.value_); // T's move assignment. |
| } else { |
| new (&value_) T(std::move(m.value_)); // T's move constructor. |
| has_value_ = true; |
| } |
| } else if (has_value_) { |
| value_.~T(); |
| has_value_ = false; |
| } |
| return *this; |
| } |
| |
| // Swap the values if both m1 and m2 have values; move the value if only one |
| // of them has one. |
| friend void swap(Optional& m1, Optional& m2) { |
| if (m1.has_value_) { |
| if (m2.has_value_) { |
| // Both have values: swap. |
| using std::swap; |
| swap(m1.value_, m2.value_); |
| } else { |
| // Only m1 has a value: move it to m2. |
| new (&m2.value_) T(std::move(m1.value_)); |
| m1.value_.~T(); // Destroy the moved-from value. |
| m1.has_value_ = false; |
| m2.has_value_ = true; |
| } |
| } else if (m2.has_value_) { |
| // Only m2 has a value: move it to m1. |
| new (&m1.value_) T(std::move(m2.value_)); |
| m2.value_.~T(); // Destroy the moved-from value. |
| m1.has_value_ = true; |
| m2.has_value_ = false; |
| } |
| } |
| |
| // Conversion to bool to test if we have a value. |
| explicit operator bool() const { return has_value_; } |
| |
| // Dereferencing. Only allowed if we have a value. |
| const T* operator->() const { |
| RTC_DCHECK(has_value_); |
| return &value_; |
| } |
| T* operator->() { |
| RTC_DCHECK(has_value_); |
| return &value_; |
| } |
| const T& operator*() const { |
| RTC_DCHECK(has_value_); |
| return value_; |
| } |
| T& operator*() { |
| RTC_DCHECK(has_value_); |
| return value_; |
| } |
| |
| // Dereference with a default value in case we don't have a value. |
| const T& value_or(const T& default_val) const { |
| return has_value_ ? value_ : default_val; |
| } |
| |
| // Equality tests. Two Optionals are equal if they contain equivalent values, |
| // or |
| // if they're both empty. |
| friend bool operator==(const Optional& m1, const Optional& m2) { |
| return m1.has_value_ && m2.has_value_ ? m1.value_ == m2.value_ |
| : m1.has_value_ == m2.has_value_; |
| } |
| friend bool operator!=(const Optional& m1, const Optional& m2) { |
| return m1.has_value_ && m2.has_value_ ? m1.value_ != m2.value_ |
| : m1.has_value_ != m2.has_value_; |
| } |
| |
| private: |
| bool has_value_; // True iff value_ contains a live value. |
| union { |
| // empty_ exists only to make it possible to initialize the union, even when |
| // it doesn't contain any data. If the union goes uninitialized, it may |
| // trigger compiler warnings. |
| char empty_; |
| // By placing value_ in a union, we get to manage its construction and |
| // destruction manually: the Optional constructors won't automatically |
| // construct it, and the Optional destructor won't automatically destroy |
| // it. Basically, this just allocates a properly sized and aligned block of |
| // memory in which we can manually put a T with placement new. |
| T value_; |
| }; |
| }; |
| |
| } // namespace rtc |
| |
| #endif // WEBRTC_BASE_OPTIONAL_H_ |