blob: 0fabd9b4969a827202881b421acac5094b50ebb0 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/frame_buffer2.h"
#include <algorithm>
#include <cstring>
#include <limits>
#include <memory>
#include <vector>
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/video_coding/frame_object.h"
#include "modules/video_coding/timing/jitter_estimator.h"
#include "modules/video_coding/timing/timing.h"
#include "rtc_base/numerics/sequence_number_util.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/random.h"
#include "system_wrappers/include/clock.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
#include "test/time_controller/simulated_time_controller.h"
using ::testing::_;
using ::testing::IsEmpty;
using ::testing::Return;
using ::testing::SizeIs;
namespace webrtc {
namespace video_coding {
class VCMTimingFake : public VCMTiming {
public:
explicit VCMTimingFake(Clock* clock, const FieldTrialsView& field_trials)
: VCMTiming(clock, field_trials) {}
Timestamp RenderTime(uint32_t frame_timestamp, Timestamp now) const override {
if (last_render_time_.IsMinusInfinity()) {
last_render_time_ = now + kDelay;
last_timestamp_ = frame_timestamp;
}
auto diff = MinDiff(frame_timestamp, last_timestamp_);
auto timeDiff = TimeDelta::Millis(diff / 90);
if (AheadOf(frame_timestamp, last_timestamp_))
last_render_time_ += timeDiff;
else
last_render_time_ -= timeDiff;
last_timestamp_ = frame_timestamp;
return last_render_time_;
}
TimeDelta MaxWaitingTime(Timestamp render_time,
Timestamp now,
bool too_many_frames_queued) const override {
return render_time - now - kDecodeTime;
}
TimeDelta GetCurrentJitter() {
return VCMTiming::GetTimings().jitter_buffer_delay;
}
private:
static constexpr TimeDelta kDelay = TimeDelta::Millis(50);
const TimeDelta kDecodeTime = kDelay / 2;
mutable uint32_t last_timestamp_ = 0;
mutable Timestamp last_render_time_ = Timestamp::MinusInfinity();
};
class FrameObjectFake : public EncodedFrame {
public:
int64_t ReceivedTime() const override { return 0; }
int64_t RenderTime() const override { return _renderTimeMs; }
bool delayed_by_retransmission() const override {
return delayed_by_retransmission_;
}
void set_delayed_by_retransmission(bool delayed) {
delayed_by_retransmission_ = delayed;
}
private:
bool delayed_by_retransmission_ = false;
};
class VCMReceiveStatisticsCallbackMock : public VCMReceiveStatisticsCallback {
public:
MOCK_METHOD(void,
OnCompleteFrame,
(bool is_keyframe,
size_t size_bytes,
VideoContentType content_type),
(override));
MOCK_METHOD(void, OnDroppedFrames, (uint32_t frames_dropped), (override));
MOCK_METHOD(void,
OnFrameBufferTimingsUpdated,
(int max_decode,
int current_delay,
int target_delay,
int jitter_buffer,
int min_playout_delay,
int render_delay),
(override));
MOCK_METHOD(void,
OnTimingFrameInfoUpdated,
(const TimingFrameInfo& info),
(override));
};
class TestFrameBuffer2 : public ::testing::Test {
protected:
static constexpr int kMaxReferences = 5;
static constexpr int kFps1 = 1000;
static constexpr int kFps10 = kFps1 / 10;
static constexpr int kFps20 = kFps1 / 20;
static constexpr size_t kFrameSize = 10;
TestFrameBuffer2()
: time_controller_(Timestamp::Seconds(0)),
time_task_queue_(
time_controller_.GetTaskQueueFactory()->CreateTaskQueue(
"extract queue",
TaskQueueFactory::Priority::NORMAL)),
timing_(time_controller_.GetClock(), field_trials_),
buffer_(new FrameBuffer(time_controller_.GetClock(),
&timing_,
field_trials_)),
rand_(0x34678213) {}
template <typename... T>
std::unique_ptr<FrameObjectFake> CreateFrame(uint16_t picture_id,
uint8_t spatial_layer,
int64_t ts_ms,
bool last_spatial_layer,
size_t frame_size_bytes,
T... refs) {
static_assert(sizeof...(refs) <= kMaxReferences,
"To many references specified for EncodedFrame.");
std::array<uint16_t, sizeof...(refs)> references = {
{rtc::checked_cast<uint16_t>(refs)...}};
auto frame = std::make_unique<FrameObjectFake>();
frame->SetId(picture_id);
frame->SetSpatialIndex(spatial_layer);
frame->SetTimestamp(ts_ms * 90);
frame->num_references = references.size();
frame->is_last_spatial_layer = last_spatial_layer;
// Add some data to buffer.
frame->SetEncodedData(EncodedImageBuffer::Create(frame_size_bytes));
for (size_t r = 0; r < references.size(); ++r)
frame->references[r] = references[r];
return frame;
}
template <typename... T>
int InsertFrame(uint16_t picture_id,
uint8_t spatial_layer,
int64_t ts_ms,
bool last_spatial_layer,
size_t frame_size_bytes,
T... refs) {
return buffer_->InsertFrame(CreateFrame(picture_id, spatial_layer, ts_ms,
last_spatial_layer,
frame_size_bytes, refs...));
}
int InsertNackedFrame(uint16_t picture_id, int64_t ts_ms) {
std::unique_ptr<FrameObjectFake> frame =
CreateFrame(picture_id, 0, ts_ms, true, kFrameSize);
frame->set_delayed_by_retransmission(true);
return buffer_->InsertFrame(std::move(frame));
}
void ExtractFrame(int64_t max_wait_time = 0, bool keyframe_required = false) {
time_task_queue_->PostTask([this, max_wait_time, keyframe_required]() {
buffer_->NextFrame(max_wait_time, keyframe_required,
time_task_queue_.get(),
[this](std::unique_ptr<EncodedFrame> frame) {
frames_.emplace_back(std::move(frame));
});
});
if (max_wait_time == 0) {
time_controller_.AdvanceTime(TimeDelta::Zero());
}
}
void CheckFrame(size_t index, int picture_id, int spatial_layer) {
ASSERT_LT(index, frames_.size());
ASSERT_TRUE(frames_[index]);
ASSERT_EQ(picture_id, frames_[index]->Id());
ASSERT_EQ(spatial_layer, frames_[index]->SpatialIndex().value_or(0));
}
void CheckFrameSize(size_t index, size_t size) {
ASSERT_LT(index, frames_.size());
ASSERT_TRUE(frames_[index]);
ASSERT_EQ(frames_[index]->size(), size);
}
void CheckNoFrame(size_t index) {
ASSERT_LT(index, frames_.size());
ASSERT_FALSE(frames_[index]);
}
uint32_t Rand() { return rand_.Rand<uint32_t>(); }
test::ScopedKeyValueConfig field_trials_;
webrtc::GlobalSimulatedTimeController time_controller_;
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> time_task_queue_;
VCMTimingFake timing_;
std::unique_ptr<FrameBuffer> buffer_;
std::vector<std::unique_ptr<EncodedFrame>> frames_;
Random rand_;
};
// From https://en.cppreference.com/w/cpp/language/static: "If ... a constexpr
// static data member (since C++11) is odr-used, a definition at namespace scope
// is still required... This definition is deprecated for constexpr data members
// since C++17."
// kFrameSize is odr-used since it is passed by reference to EXPECT_EQ().
#if __cplusplus < 201703L
constexpr size_t TestFrameBuffer2::kFrameSize;
#endif
TEST_F(TestFrameBuffer2, WaitForFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
ExtractFrame(50);
InsertFrame(pid, 0, ts, true, kFrameSize);
time_controller_.AdvanceTime(TimeDelta::Millis(50));
CheckFrame(0, pid, 0);
}
TEST_F(TestFrameBuffer2, ClearWhileWaitingForFrame) {
const uint16_t pid = Rand();
// Insert a frame and wait for it for max 100ms.
InsertFrame(pid, 0, 25, true, kFrameSize);
ExtractFrame(100);
// After 10ms, clear the buffer.
time_controller_.AdvanceTime(TimeDelta::Millis(10));
buffer_->Clear();
// Confirm that the frame was not sent for rendering.
time_controller_.AdvanceTime(TimeDelta::Millis(15));
EXPECT_THAT(frames_, IsEmpty());
// We are still waiting for a frame, since 100ms has not passed. Insert a new
// frame. This new frame should be the one that is returned as the old frame
// was cleared.
const uint16_t new_pid = pid + 1;
InsertFrame(new_pid, 0, 50, true, kFrameSize);
time_controller_.AdvanceTime(TimeDelta::Millis(25));
ASSERT_THAT(frames_, SizeIs(1));
CheckFrame(0, new_pid, 0);
}
TEST_F(TestFrameBuffer2, OneSuperFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false, kFrameSize);
InsertFrame(pid + 1, 1, ts, true, kFrameSize);
ExtractFrame();
CheckFrame(0, pid, 1);
}
TEST_F(TestFrameBuffer2, ZeroPlayoutDelay) {
test::ScopedKeyValueConfig field_trials;
VCMTiming timing(time_controller_.GetClock(), field_trials);
buffer_ = std::make_unique<FrameBuffer>(time_controller_.GetClock(), &timing,
field_trials);
const VideoPlayoutDelay kPlayoutDelayMs = {0, 0};
std::unique_ptr<FrameObjectFake> test_frame(new FrameObjectFake());
test_frame->SetId(0);
test_frame->SetPlayoutDelay(kPlayoutDelayMs);
buffer_->InsertFrame(std::move(test_frame));
ExtractFrame(0, false);
CheckFrame(0, 0, 0);
EXPECT_EQ(0, frames_[0]->RenderTimeMs());
}
// Flaky test, see bugs.webrtc.org/7068.
TEST_F(TestFrameBuffer2, DISABLED_OneUnorderedSuperFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
ExtractFrame(50);
InsertFrame(pid, 1, ts, true, kFrameSize);
InsertFrame(pid, 0, ts, false, kFrameSize);
time_controller_.AdvanceTime(TimeDelta::Zero());
CheckFrame(0, pid, 0);
CheckFrame(1, pid, 1);
}
TEST_F(TestFrameBuffer2, DISABLED_OneLayerStreamReordered) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false, true, kFrameSize);
ExtractFrame();
CheckFrame(0, pid, 0);
for (int i = 1; i < 10; i += 2) {
ExtractFrame(50);
InsertFrame(pid + i + 1, 0, ts + (i + 1) * kFps10, true, kFrameSize,
pid + i);
time_controller_.AdvanceTime(TimeDelta::Millis(kFps10));
InsertFrame(pid + i, 0, ts + i * kFps10, true, kFrameSize, pid + i - 1);
time_controller_.AdvanceTime(TimeDelta::Millis(kFps10));
ExtractFrame();
CheckFrame(i, pid + i, 0);
CheckFrame(i + 1, pid + i + 1, 0);
}
}
TEST_F(TestFrameBuffer2, ExtractFromEmptyBuffer) {
ExtractFrame();
CheckNoFrame(0);
}
TEST_F(TestFrameBuffer2, MissingFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, true, kFrameSize);
InsertFrame(pid + 2, 0, ts, true, kFrameSize, pid);
InsertFrame(pid + 3, 0, ts, true, kFrameSize, pid + 1, pid + 2);
ExtractFrame();
ExtractFrame();
ExtractFrame();
CheckFrame(0, pid, 0);
CheckFrame(1, pid + 2, 0);
CheckNoFrame(2);
}
TEST_F(TestFrameBuffer2, OneLayerStream) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, true, kFrameSize);
ExtractFrame();
CheckFrame(0, pid, 0);
for (int i = 1; i < 10; ++i) {
InsertFrame(pid + i, 0, ts + i * kFps10, true, kFrameSize, pid + i - 1);
ExtractFrame();
time_controller_.AdvanceTime(TimeDelta::Millis(kFps10));
CheckFrame(i, pid + i, 0);
}
}
TEST_F(TestFrameBuffer2, DropTemporalLayerSlowDecoder) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, true, kFrameSize);
InsertFrame(pid + 1, 0, ts + kFps20, true, kFrameSize, pid);
for (int i = 2; i < 10; i += 2) {
uint32_t ts_tl0 = ts + i / 2 * kFps10;
InsertFrame(pid + i, 0, ts_tl0, true, kFrameSize, pid + i - 2);
InsertFrame(pid + i + 1, 0, ts_tl0 + kFps20, true, kFrameSize, pid + i,
pid + i - 1);
}
for (int i = 0; i < 10; ++i) {
ExtractFrame();
time_controller_.AdvanceTime(TimeDelta::Millis(70));
}
CheckFrame(0, pid, 0);
CheckFrame(1, pid + 1, 0);
CheckFrame(2, pid + 2, 0);
CheckFrame(3, pid + 4, 0);
CheckFrame(4, pid + 6, 0);
CheckFrame(5, pid + 8, 0);
CheckNoFrame(6);
CheckNoFrame(7);
CheckNoFrame(8);
CheckNoFrame(9);
}
TEST_F(TestFrameBuffer2, DropFramesIfSystemIsStalled) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, true, kFrameSize);
InsertFrame(pid + 1, 0, ts + 1 * kFps10, true, kFrameSize, pid);
InsertFrame(pid + 2, 0, ts + 2 * kFps10, true, kFrameSize, pid + 1);
InsertFrame(pid + 3, 0, ts + 3 * kFps10, true, kFrameSize);
ExtractFrame();
// Jump forward in time, simulating the system being stalled for some reason.
time_controller_.AdvanceTime(TimeDelta::Millis(3) * kFps10);
// Extract one more frame, expect second and third frame to be dropped.
ExtractFrame();
CheckFrame(0, pid + 0, 0);
CheckFrame(1, pid + 3, 0);
}
TEST_F(TestFrameBuffer2, DroppedFramesCountedOnClear) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, true, kFrameSize);
for (int i = 1; i < 5; ++i) {
InsertFrame(pid + i, 0, ts + i * kFps10, true, kFrameSize, pid + i - 1);
}
// All frames should be dropped when Clear is called.
buffer_->Clear();
}
TEST_F(TestFrameBuffer2, InsertLateFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, true, kFrameSize);
ExtractFrame();
InsertFrame(pid + 2, 0, ts, true, kFrameSize);
ExtractFrame();
InsertFrame(pid + 1, 0, ts, true, kFrameSize, pid);
ExtractFrame();
CheckFrame(0, pid, 0);
CheckFrame(1, pid + 2, 0);
CheckNoFrame(2);
}
TEST_F(TestFrameBuffer2, ProtectionModeNackFEC) {
uint16_t pid = Rand();
uint32_t ts = Rand();
constexpr int64_t kRttMs = 200;
buffer_->UpdateRtt(kRttMs);
// Jitter estimate unaffected by RTT in this protection mode.
buffer_->SetProtectionMode(kProtectionNackFEC);
InsertNackedFrame(pid, ts);
InsertNackedFrame(pid + 1, ts + 100);
InsertNackedFrame(pid + 2, ts + 200);
InsertFrame(pid + 3, 0, ts + 300, true, kFrameSize);
ExtractFrame();
ExtractFrame();
ExtractFrame();
ExtractFrame();
ASSERT_EQ(4u, frames_.size());
EXPECT_LT(timing_.GetCurrentJitter().ms(), kRttMs);
}
TEST_F(TestFrameBuffer2, NoContinuousFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(-1, InsertFrame(pid + 1, 0, ts, true, kFrameSize, pid));
}
TEST_F(TestFrameBuffer2, LastContinuousFrameSingleLayer) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(pid, InsertFrame(pid, 0, ts, true, kFrameSize));
EXPECT_EQ(pid, InsertFrame(pid + 2, 0, ts, true, kFrameSize, pid + 1));
EXPECT_EQ(pid + 2, InsertFrame(pid + 1, 0, ts, true, kFrameSize, pid));
EXPECT_EQ(pid + 2, InsertFrame(pid + 4, 0, ts, true, kFrameSize, pid + 3));
EXPECT_EQ(pid + 5, InsertFrame(pid + 5, 0, ts, true, kFrameSize));
}
TEST_F(TestFrameBuffer2, LastContinuousFrameTwoLayers) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(pid, InsertFrame(pid, 0, ts, false, kFrameSize));
EXPECT_EQ(pid + 1, InsertFrame(pid + 1, 1, ts, true, kFrameSize));
EXPECT_EQ(pid + 1,
InsertFrame(pid + 3, 1, ts, true, kFrameSize, pid + 1, pid + 2));
EXPECT_EQ(pid + 1, InsertFrame(pid + 4, 0, ts, false, kFrameSize, pid + 2));
EXPECT_EQ(pid + 1,
InsertFrame(pid + 5, 1, ts, true, kFrameSize, pid + 3, pid + 4));
EXPECT_EQ(pid + 1, InsertFrame(pid + 6, 0, ts, false, kFrameSize, pid + 4));
EXPECT_EQ(pid + 6, InsertFrame(pid + 2, 0, ts, false, kFrameSize, pid));
EXPECT_EQ(pid + 7,
InsertFrame(pid + 7, 1, ts, true, kFrameSize, pid + 5, pid + 6));
}
TEST_F(TestFrameBuffer2, PictureIdJumpBack) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(pid, InsertFrame(pid, 0, ts, true, kFrameSize));
EXPECT_EQ(pid + 1, InsertFrame(pid + 1, 0, ts + 1, true, kFrameSize, pid));
ExtractFrame();
CheckFrame(0, pid, 0);
// Jump back in pid but increase ts.
EXPECT_EQ(pid - 1, InsertFrame(pid - 1, 0, ts + 2, true, kFrameSize));
ExtractFrame();
ExtractFrame();
CheckFrame(1, pid - 1, 0);
CheckNoFrame(2);
}
TEST_F(TestFrameBuffer2, ForwardJumps) {
EXPECT_EQ(5453, InsertFrame(5453, 0, 1, true, kFrameSize));
ExtractFrame();
EXPECT_EQ(5454, InsertFrame(5454, 0, 1, true, kFrameSize, 5453));
ExtractFrame();
EXPECT_EQ(15670, InsertFrame(15670, 0, 1, true, kFrameSize));
ExtractFrame();
EXPECT_EQ(29804, InsertFrame(29804, 0, 1, true, kFrameSize));
ExtractFrame();
EXPECT_EQ(29805, InsertFrame(29805, 0, 1, true, kFrameSize, 29804));
ExtractFrame();
EXPECT_EQ(29806, InsertFrame(29806, 0, 1, true, kFrameSize, 29805));
ExtractFrame();
EXPECT_EQ(33819, InsertFrame(33819, 0, 1, true, kFrameSize));
ExtractFrame();
EXPECT_EQ(41248, InsertFrame(41248, 0, 1, true, kFrameSize));
ExtractFrame();
}
TEST_F(TestFrameBuffer2, DuplicateFrames) {
EXPECT_EQ(22256, InsertFrame(22256, 0, 1, true, kFrameSize));
ExtractFrame();
EXPECT_EQ(22256, InsertFrame(22256, 0, 1, true, kFrameSize));
}
// TODO(philipel): implement more unittests related to invalid references.
TEST_F(TestFrameBuffer2, InvalidReferences) {
EXPECT_EQ(-1, InsertFrame(0, 0, 1000, true, kFrameSize, 2));
EXPECT_EQ(1, InsertFrame(1, 0, 2000, true, kFrameSize));
ExtractFrame();
EXPECT_EQ(2, InsertFrame(2, 0, 3000, true, kFrameSize, 1));
}
TEST_F(TestFrameBuffer2, KeyframeRequired) {
EXPECT_EQ(1, InsertFrame(1, 0, 1000, true, kFrameSize));
EXPECT_EQ(2, InsertFrame(2, 0, 2000, true, kFrameSize, 1));
EXPECT_EQ(3, InsertFrame(3, 0, 3000, true, kFrameSize));
ExtractFrame();
ExtractFrame(0, true);
ExtractFrame();
CheckFrame(0, 1, 0);
CheckFrame(1, 3, 0);
CheckNoFrame(2);
}
TEST_F(TestFrameBuffer2, KeyframeClearsFullBuffer) {
const int kMaxBufferSize = 600;
for (int i = 1; i <= kMaxBufferSize; ++i)
EXPECT_EQ(-1, InsertFrame(i, 0, i * 1000, true, kFrameSize, i - 1));
ExtractFrame();
CheckNoFrame(0);
EXPECT_EQ(kMaxBufferSize + 1,
InsertFrame(kMaxBufferSize + 1, 0, (kMaxBufferSize + 1) * 1000,
true, kFrameSize));
ExtractFrame();
CheckFrame(1, kMaxBufferSize + 1, 0);
}
TEST_F(TestFrameBuffer2, DontUpdateOnUndecodableFrame) {
InsertFrame(1, 0, 0, true, kFrameSize);
ExtractFrame(0, true);
InsertFrame(3, 0, 0, true, kFrameSize, 2, 0);
InsertFrame(3, 0, 0, true, kFrameSize, 0);
InsertFrame(2, 0, 0, true, kFrameSize);
ExtractFrame(0, true);
ExtractFrame(0, true);
}
TEST_F(TestFrameBuffer2, DontDecodeOlderTimestamp) {
InsertFrame(2, 0, 1, true, kFrameSize);
InsertFrame(1, 0, 2, true,
kFrameSize); // Older picture id but newer timestamp.
ExtractFrame(0);
ExtractFrame(0);
CheckFrame(0, 1, 0);
CheckNoFrame(1);
InsertFrame(3, 0, 4, true, kFrameSize);
InsertFrame(4, 0, 3, true,
kFrameSize); // Newer picture id but older timestamp.
ExtractFrame(0);
ExtractFrame(0);
CheckFrame(2, 3, 0);
CheckNoFrame(3);
}
TEST_F(TestFrameBuffer2, CombineFramesToSuperframe) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false, kFrameSize);
InsertFrame(pid + 1, 1, ts, true, 2 * kFrameSize, pid);
ExtractFrame(0);
ExtractFrame(0);
CheckFrame(0, pid, 1);
CheckNoFrame(1);
// Two frames should be combined and returned together.
CheckFrameSize(0, 3 * kFrameSize);
EXPECT_EQ(frames_[0]->SpatialIndex(), 1);
EXPECT_EQ(frames_[0]->SpatialLayerFrameSize(0), kFrameSize);
EXPECT_EQ(frames_[0]->SpatialLayerFrameSize(1), 2 * kFrameSize);
}
TEST_F(TestFrameBuffer2, HigherSpatialLayerNonDecodable) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false, kFrameSize);
InsertFrame(pid + 1, 1, ts, true, kFrameSize, pid);
ExtractFrame(0);
CheckFrame(0, pid, 1);
InsertFrame(pid + 3, 1, ts + kFps20, true, kFrameSize, pid);
InsertFrame(pid + 4, 0, ts + kFps10, false, kFrameSize, pid);
InsertFrame(pid + 5, 1, ts + kFps10, true, kFrameSize, pid + 3, pid + 4);
time_controller_.AdvanceTime(TimeDelta::Millis(1000));
// Frame pid+3 is decodable but too late.
// In superframe pid+4 is decodable, but frame pid+5 is not.
// Incorrect implementation might skip pid+2 frame and output undecodable
// pid+5 instead.
ExtractFrame();
ExtractFrame();
CheckFrame(1, pid + 3, 1);
CheckFrame(2, pid + 4, 1);
}
TEST_F(TestFrameBuffer2, StopWhileWaitingForFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, true, kFrameSize);
ExtractFrame(10);
buffer_->Stop();
time_controller_.AdvanceTime(TimeDelta::Millis(10));
EXPECT_THAT(frames_, IsEmpty());
// A new frame request should exit immediately and return no new frame.
ExtractFrame(0);
EXPECT_THAT(frames_, IsEmpty());
}
} // namespace video_coding
} // namespace webrtc