blob: 4f57902e7d03394921a71ab52c297bc3188c1705 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/block_processor.h"
#include <utility>
#include "absl/types/optional.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/block_processor_metrics.h"
#include "modules/audio_processing/aec3/delay_estimate.h"
#include "modules/audio_processing/aec3/echo_path_variability.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "rtc_base/constructormagic.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
enum class BlockProcessorApiCall { kCapture, kRender };
class BlockProcessorImpl final : public BlockProcessor {
public:
BlockProcessorImpl(const EchoCanceller3Config& config,
int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer,
std::unique_ptr<RenderDelayController> delay_controller,
std::unique_ptr<EchoRemover> echo_remover);
~BlockProcessorImpl() override;
void ProcessCapture(bool echo_path_gain_change,
bool capture_signal_saturation,
std::vector<std::vector<float>>* capture_block) override;
void BufferRender(const std::vector<std::vector<float>>& block) override;
void UpdateEchoLeakageStatus(bool leakage_detected) override;
void GetMetrics(EchoControl::Metrics* metrics) const override;
void SetAudioBufferDelay(size_t delay_ms) override;
private:
static int instance_count_;
std::unique_ptr<ApmDataDumper> data_dumper_;
const EchoCanceller3Config config_;
bool capture_properly_started_ = false;
bool render_properly_started_ = false;
const size_t sample_rate_hz_;
std::unique_ptr<RenderDelayBuffer> render_buffer_;
std::unique_ptr<RenderDelayController> delay_controller_;
std::unique_ptr<EchoRemover> echo_remover_;
BlockProcessorMetrics metrics_;
RenderDelayBuffer::BufferingEvent render_event_;
size_t capture_call_counter_ = 0;
absl::optional<DelayEstimate> estimated_delay_;
absl::optional<int> echo_remover_delay_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(BlockProcessorImpl);
};
int BlockProcessorImpl::instance_count_ = 0;
BlockProcessorImpl::BlockProcessorImpl(
const EchoCanceller3Config& config,
int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer,
std::unique_ptr<RenderDelayController> delay_controller,
std::unique_ptr<EchoRemover> echo_remover)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
sample_rate_hz_(sample_rate_hz),
render_buffer_(std::move(render_buffer)),
delay_controller_(std::move(delay_controller)),
echo_remover_(std::move(echo_remover)),
render_event_(RenderDelayBuffer::BufferingEvent::kNone) {
RTC_DCHECK(ValidFullBandRate(sample_rate_hz_));
}
BlockProcessorImpl::~BlockProcessorImpl() = default;
void BlockProcessorImpl::ProcessCapture(
bool echo_path_gain_change,
bool capture_signal_saturation,
std::vector<std::vector<float>>* capture_block) {
RTC_DCHECK(capture_block);
RTC_DCHECK_EQ(NumBandsForRate(sample_rate_hz_), capture_block->size());
RTC_DCHECK_EQ(kBlockSize, (*capture_block)[0].size());
capture_call_counter_++;
data_dumper_->DumpRaw("aec3_processblock_call_order",
static_cast<int>(BlockProcessorApiCall::kCapture));
data_dumper_->DumpWav("aec3_processblock_capture_input", kBlockSize,
&(*capture_block)[0][0],
LowestBandRate(sample_rate_hz_), 1);
if (render_properly_started_) {
if (!capture_properly_started_) {
capture_properly_started_ = true;
render_buffer_->Reset();
delay_controller_->Reset();
}
} else {
// If no render data has yet arrived, do not process the capture signal.
return;
}
EchoPathVariability echo_path_variability(
echo_path_gain_change, EchoPathVariability::DelayAdjustment::kNone,
false);
if (render_event_ == RenderDelayBuffer::BufferingEvent::kRenderOverrun &&
render_properly_started_) {
echo_path_variability.delay_change =
EchoPathVariability::DelayAdjustment::kBufferFlush;
delay_controller_->Reset();
RTC_LOG(LS_WARNING) << "Reset due to render buffer overrun at block "
<< capture_call_counter_;
}
// Update the render buffers with any newly arrived render blocks and prepare
// the render buffers for reading the render data corresponding to the current
// capture block.
render_event_ = render_buffer_->PrepareCaptureProcessing();
RTC_DCHECK(RenderDelayBuffer::BufferingEvent::kRenderOverrun !=
render_event_);
if (render_event_ == RenderDelayBuffer::BufferingEvent::kRenderUnderrun) {
if (estimated_delay_ &&
estimated_delay_->quality == DelayEstimate::Quality::kRefined) {
echo_path_variability.delay_change =
EchoPathVariability::DelayAdjustment::kDelayReset;
delay_controller_->Reset();
capture_properly_started_ = false;
render_properly_started_ = false;
RTC_LOG(LS_WARNING) << "Reset due to render buffer underrun at block "
<< capture_call_counter_;
}
} else if (render_event_ == RenderDelayBuffer::BufferingEvent::kApiCallSkew) {
// There have been too many render calls in a row. Reset to avoid noncausal
// echo.
echo_path_variability.delay_change =
EchoPathVariability::DelayAdjustment::kDelayReset;
delay_controller_->Reset();
capture_properly_started_ = false;
render_properly_started_ = false;
RTC_LOG(LS_WARNING) << "Reset due to render buffer api skew at block "
<< capture_call_counter_;
}
data_dumper_->DumpWav("aec3_processblock_capture_input2", kBlockSize,
&(*capture_block)[0][0],
LowestBandRate(sample_rate_hz_), 1);
// Compute and and apply the render delay required to achieve proper signal
// alignment.
estimated_delay_ = delay_controller_->GetDelay(
render_buffer_->GetDownsampledRenderBuffer(), render_buffer_->Delay(),
echo_remover_delay_, (*capture_block)[0]);
if (estimated_delay_) {
if (render_buffer_->CausalDelay(estimated_delay_->delay)) {
bool delay_change = render_buffer_->SetDelay(estimated_delay_->delay);
if (delay_change) {
RTC_LOG(LS_WARNING) << "Delay changed to " << estimated_delay_->delay
<< " at block " << capture_call_counter_;
echo_path_variability.delay_change =
EchoPathVariability::DelayAdjustment::kNewDetectedDelay;
}
} else {
// A noncausal delay has been detected. This can only happen if there is
// clockdrift, an audio pipeline issue has occurred, an unreliable delay
// estimate is used or the specified minimum delay is too short.
if (estimated_delay_->quality == DelayEstimate::Quality::kRefined) {
echo_path_variability.delay_change =
EchoPathVariability::DelayAdjustment::kDelayReset;
delay_controller_->Reset();
render_buffer_->Reset();
capture_properly_started_ = false;
render_properly_started_ = false;
RTC_LOG(LS_WARNING) << "Reset due to noncausal delay at block "
<< capture_call_counter_;
}
}
}
// Remove the echo from the capture signal.
echo_remover_->ProcessCapture(
echo_path_variability, capture_signal_saturation, estimated_delay_,
render_buffer_->GetRenderBuffer(), capture_block);
// Check to see if a refined delay estimate has been obtained from the echo
// remover.
echo_remover_delay_ = echo_remover_->Delay();
// Update the metrics.
metrics_.UpdateCapture(false);
render_event_ = RenderDelayBuffer::BufferingEvent::kNone;
}
void BlockProcessorImpl::BufferRender(
const std::vector<std::vector<float>>& block) {
RTC_DCHECK_EQ(NumBandsForRate(sample_rate_hz_), block.size());
RTC_DCHECK_EQ(kBlockSize, block[0].size());
data_dumper_->DumpRaw("aec3_processblock_call_order",
static_cast<int>(BlockProcessorApiCall::kRender));
data_dumper_->DumpWav("aec3_processblock_render_input", kBlockSize,
&block[0][0], LowestBandRate(sample_rate_hz_), 1);
data_dumper_->DumpWav("aec3_processblock_render_input2", kBlockSize,
&block[0][0], LowestBandRate(sample_rate_hz_), 1);
render_event_ = render_buffer_->Insert(block);
metrics_.UpdateRender(render_event_ !=
RenderDelayBuffer::BufferingEvent::kNone);
render_properly_started_ = true;
delay_controller_->LogRenderCall();
}
void BlockProcessorImpl::UpdateEchoLeakageStatus(bool leakage_detected) {
echo_remover_->UpdateEchoLeakageStatus(leakage_detected);
}
void BlockProcessorImpl::GetMetrics(EchoControl::Metrics* metrics) const {
echo_remover_->GetMetrics(metrics);
const int block_size_ms = sample_rate_hz_ == 8000 ? 8 : 4;
absl::optional<size_t> delay = render_buffer_->Delay();
metrics->delay_ms = delay ? static_cast<int>(*delay) * block_size_ms : 0;
}
void BlockProcessorImpl::SetAudioBufferDelay(size_t delay_ms) {
render_buffer_->SetAudioBufferDelay(delay_ms);
}
} // namespace
BlockProcessor* BlockProcessor::Create(const EchoCanceller3Config& config,
int sample_rate_hz) {
std::unique_ptr<RenderDelayBuffer> render_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(sample_rate_hz)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(
config, RenderDelayBuffer::DelayEstimatorOffset(config),
sample_rate_hz));
std::unique_ptr<EchoRemover> echo_remover(
EchoRemover::Create(config, sample_rate_hz));
return Create(config, sample_rate_hz, std::move(render_buffer),
std::move(delay_controller), std::move(echo_remover));
}
BlockProcessor* BlockProcessor::Create(
const EchoCanceller3Config& config,
int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer) {
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(
config, RenderDelayBuffer::DelayEstimatorOffset(config),
sample_rate_hz));
std::unique_ptr<EchoRemover> echo_remover(
EchoRemover::Create(config, sample_rate_hz));
return Create(config, sample_rate_hz, std::move(render_buffer),
std::move(delay_controller), std::move(echo_remover));
}
BlockProcessor* BlockProcessor::Create(
const EchoCanceller3Config& config,
int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer,
std::unique_ptr<RenderDelayController> delay_controller,
std::unique_ptr<EchoRemover> echo_remover) {
return new BlockProcessorImpl(
config, sample_rate_hz, std::move(render_buffer),
std::move(delay_controller), std::move(echo_remover));
}
} // namespace webrtc