|  | /* | 
|  | *  Copyright 2015 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #ifndef API_OPTIONAL_H_ | 
|  | #define API_OPTIONAL_H_ | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  |  | 
|  | #ifdef UNIT_TEST | 
|  | #include <iomanip> | 
|  | #include <ostream> | 
|  | #endif  // UNIT_TEST | 
|  |  | 
|  | #include "api/array_view.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/sanitizer.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | namespace optional_internal { | 
|  |  | 
|  | #if RTC_HAS_ASAN | 
|  |  | 
|  | // This is a non-inlined function. The optimizer can't see inside it.  It | 
|  | // prevents the compiler from generating optimized code that reads value_ even | 
|  | // if it is unset. Although safe, this causes memory sanitizers to complain. | 
|  | void* FunctionThatDoesNothingImpl(void*); | 
|  |  | 
|  | template <typename T> | 
|  | inline T* FunctionThatDoesNothing(T* x) { | 
|  | return reinterpret_cast<T*>( | 
|  | FunctionThatDoesNothingImpl(reinterpret_cast<void*>(x))); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | template <typename T> | 
|  | inline T* FunctionThatDoesNothing(T* x) { | 
|  | return x; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | }  // namespace optional_internal | 
|  |  | 
|  | // Simple std::optional-wannabe. It either contains a T or not. | 
|  | // | 
|  | // A moved-from Optional<T> may only be destroyed, and assigned to if T allows | 
|  | // being assigned to after having been moved from. Specifically, you may not | 
|  | // assume that it just doesn't contain a value anymore. | 
|  | // | 
|  | // Examples of good places to use Optional: | 
|  | // | 
|  | // - As a class or struct member, when the member doesn't always have a value: | 
|  | //     struct Prisoner { | 
|  | //       std::string name; | 
|  | //       Optional<int> cell_number;  // Empty if not currently incarcerated. | 
|  | //     }; | 
|  | // | 
|  | // - As a return value for functions that may fail to return a value on all | 
|  | //   allowed inputs. For example, a function that searches an array might | 
|  | //   return an Optional<size_t> (the index where it found the element, or | 
|  | //   nothing if it didn't find it); and a function that parses numbers might | 
|  | //   return Optional<double> (the parsed number, or nothing if parsing failed). | 
|  | // | 
|  | // Examples of bad places to use Optional: | 
|  | // | 
|  | // - As a return value for functions that may fail because of disallowed | 
|  | //   inputs. For example, a string length function should not return | 
|  | //   Optional<size_t> so that it can return nothing in case the caller passed | 
|  | //   it a null pointer; the function should probably use RTC_[D]CHECK instead, | 
|  | //   and return plain size_t. | 
|  | // | 
|  | // - As a return value for functions that may fail to return a value on all | 
|  | //   allowed inputs, but need to tell the caller what went wrong. Returning | 
|  | //   Optional<double> when parsing a single number as in the example above | 
|  | //   might make sense, but any larger parse job is probably going to need to | 
|  | //   tell the caller what the problem was, not just that there was one. | 
|  | // | 
|  | // - As a non-mutable function argument. When you want to pass a value of a | 
|  | //   type T that can fail to be there, const T* is almost always both fastest | 
|  | //   and cleanest. (If you're *sure* that the the caller will always already | 
|  | //   have an Optional<T>, const Optional<T>& is slightly faster than const T*, | 
|  | //   but this is a micro-optimization. In general, stick to const T*.) | 
|  | // | 
|  | // TODO(kwiberg): Get rid of this class when the standard library has | 
|  | // std::optional (and we're allowed to use it). | 
|  | template <typename T> | 
|  | class Optional final { | 
|  | public: | 
|  | // Construct an empty Optional. | 
|  | Optional() : has_value_(false), empty_('\0') { PoisonValue(); } | 
|  |  | 
|  | // Construct an Optional that contains a value. | 
|  | explicit Optional(const T& value) : has_value_(true) { | 
|  | new (&value_) T(value); | 
|  | } | 
|  | explicit Optional(T&& value) : has_value_(true) { | 
|  | new (&value_) T(std::move(value)); | 
|  | } | 
|  |  | 
|  | // Copy constructor: copies the value from m if it has one. | 
|  | Optional(const Optional& m) : has_value_(m.has_value_) { | 
|  | if (has_value_) | 
|  | new (&value_) T(m.value_); | 
|  | else | 
|  | PoisonValue(); | 
|  | } | 
|  |  | 
|  | // Move constructor: if m has a value, moves the value from m, leaving m | 
|  | // still in a state where it has a value, but a moved-from one (the | 
|  | // properties of which depends on T; the only general guarantee is that we | 
|  | // can destroy m). | 
|  | Optional(Optional&& m) : has_value_(m.has_value_) { | 
|  | if (has_value_) | 
|  | new (&value_) T(std::move(m.value_)); | 
|  | else | 
|  | PoisonValue(); | 
|  | } | 
|  |  | 
|  | ~Optional() { | 
|  | if (has_value_) | 
|  | value_.~T(); | 
|  | else | 
|  | UnpoisonValue(); | 
|  | } | 
|  |  | 
|  | // Copy assignment. Uses T's copy assignment if both sides have a value, T's | 
|  | // copy constructor if only the right-hand side has a value. | 
|  | Optional& operator=(const Optional& m) { | 
|  | if (m.has_value_) { | 
|  | if (has_value_) { | 
|  | value_ = m.value_;  // T's copy assignment. | 
|  | } else { | 
|  | UnpoisonValue(); | 
|  | new (&value_) T(m.value_);  // T's copy constructor. | 
|  | has_value_ = true; | 
|  | } | 
|  | } else { | 
|  | reset(); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Move assignment. Uses T's move assignment if both sides have a value, T's | 
|  | // move constructor if only the right-hand side has a value. The state of m | 
|  | // after it's been moved from is as for the move constructor. | 
|  | Optional& operator=(Optional&& m) { | 
|  | if (m.has_value_) { | 
|  | if (has_value_) { | 
|  | value_ = std::move(m.value_);  // T's move assignment. | 
|  | } else { | 
|  | UnpoisonValue(); | 
|  | new (&value_) T(std::move(m.value_));  // T's move constructor. | 
|  | has_value_ = true; | 
|  | } | 
|  | } else { | 
|  | reset(); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Swap the values if both m1 and m2 have values; move the value if only one | 
|  | // of them has one. | 
|  | friend void swap(Optional& m1, Optional& m2) { | 
|  | if (m1.has_value_) { | 
|  | if (m2.has_value_) { | 
|  | // Both have values: swap. | 
|  | using std::swap; | 
|  | swap(m1.value_, m2.value_); | 
|  | } else { | 
|  | // Only m1 has a value: move it to m2. | 
|  | m2.UnpoisonValue(); | 
|  | new (&m2.value_) T(std::move(m1.value_)); | 
|  | m1.value_.~T();  // Destroy the moved-from value. | 
|  | m1.has_value_ = false; | 
|  | m2.has_value_ = true; | 
|  | m1.PoisonValue(); | 
|  | } | 
|  | } else if (m2.has_value_) { | 
|  | // Only m2 has a value: move it to m1. | 
|  | m1.UnpoisonValue(); | 
|  | new (&m1.value_) T(std::move(m2.value_)); | 
|  | m2.value_.~T();  // Destroy the moved-from value. | 
|  | m1.has_value_ = true; | 
|  | m2.has_value_ = false; | 
|  | m2.PoisonValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Destroy any contained value. Has no effect if we have no value. | 
|  | void reset() { | 
|  | if (!has_value_) | 
|  | return; | 
|  | value_.~T(); | 
|  | has_value_ = false; | 
|  | PoisonValue(); | 
|  | } | 
|  |  | 
|  | template <class... Args> | 
|  | void emplace(Args&&... args) { | 
|  | if (has_value_) | 
|  | value_.~T(); | 
|  | else | 
|  | UnpoisonValue(); | 
|  | new (&value_) T(std::forward<Args>(args)...); | 
|  | has_value_ = true; | 
|  | } | 
|  |  | 
|  | // Conversion to bool to test if we have a value. | 
|  | explicit operator bool() const { return has_value_; } | 
|  | bool has_value() const { return has_value_; } | 
|  |  | 
|  | // Dereferencing. Only allowed if we have a value. | 
|  | const T* operator->() const { | 
|  | RTC_DCHECK(has_value_); | 
|  | return &value_; | 
|  | } | 
|  | T* operator->() { | 
|  | RTC_DCHECK(has_value_); | 
|  | return &value_; | 
|  | } | 
|  | const T& operator*() const { | 
|  | RTC_DCHECK(has_value_); | 
|  | return value_; | 
|  | } | 
|  | T& operator*() { | 
|  | RTC_DCHECK(has_value_); | 
|  | return value_; | 
|  | } | 
|  | const T& value() const { | 
|  | RTC_DCHECK(has_value_); | 
|  | return value_; | 
|  | } | 
|  | T& value() { | 
|  | RTC_DCHECK(has_value_); | 
|  | return value_; | 
|  | } | 
|  |  | 
|  | // Dereference with a default value in case we don't have a value. | 
|  | const T& value_or(const T& default_val) const { | 
|  | // The no-op call prevents the compiler from generating optimized code that | 
|  | // reads value_ even if !has_value_, but only if FunctionThatDoesNothing is | 
|  | // not completely inlined; see its declaration.). | 
|  | return has_value_ ? *optional_internal::FunctionThatDoesNothing(&value_) | 
|  | : default_val; | 
|  | } | 
|  |  | 
|  | // Dereference and move value. | 
|  | T MoveValue() { | 
|  | RTC_DCHECK(has_value_); | 
|  | return std::move(value_); | 
|  | } | 
|  |  | 
|  | // Equality tests. Two Optionals are equal if they contain equivalent values, | 
|  | // or if they're both empty. | 
|  | friend bool operator==(const Optional& m1, const Optional& m2) { | 
|  | return m1.has_value_ && m2.has_value_ ? m1.value_ == m2.value_ | 
|  | : m1.has_value_ == m2.has_value_; | 
|  | } | 
|  | friend bool operator==(const Optional& opt, const T& value) { | 
|  | return opt.has_value_ && opt.value_ == value; | 
|  | } | 
|  | friend bool operator==(const T& value, const Optional& opt) { | 
|  | return opt.has_value_ && value == opt.value_; | 
|  | } | 
|  |  | 
|  | friend bool operator!=(const Optional& m1, const Optional& m2) { | 
|  | return m1.has_value_ && m2.has_value_ ? m1.value_ != m2.value_ | 
|  | : m1.has_value_ != m2.has_value_; | 
|  | } | 
|  | friend bool operator!=(const Optional& opt, const T& value) { | 
|  | return !opt.has_value_ || opt.value_ != value; | 
|  | } | 
|  | friend bool operator!=(const T& value, const Optional& opt) { | 
|  | return !opt.has_value_ || value != opt.value_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Tell sanitizers that value_ shouldn't be touched. | 
|  | void PoisonValue() { | 
|  | rtc::AsanPoison(rtc::MakeArrayView(&value_, 1)); | 
|  | rtc::MsanMarkUninitialized(rtc::MakeArrayView(&value_, 1)); | 
|  | } | 
|  |  | 
|  | // Tell sanitizers that value_ is OK to touch again. | 
|  | void UnpoisonValue() { rtc::AsanUnpoison(rtc::MakeArrayView(&value_, 1)); } | 
|  |  | 
|  | bool has_value_;  // True iff value_ contains a live value. | 
|  | union { | 
|  | // empty_ exists only to make it possible to initialize the union, even when | 
|  | // it doesn't contain any data. If the union goes uninitialized, it may | 
|  | // trigger compiler warnings. | 
|  | char empty_; | 
|  | // By placing value_ in a union, we get to manage its construction and | 
|  | // destruction manually: the Optional constructors won't automatically | 
|  | // construct it, and the Optional destructor won't automatically destroy | 
|  | // it. Basically, this just allocates a properly sized and aligned block of | 
|  | // memory in which we can manually put a T with placement new. | 
|  | T value_; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | #ifdef UNIT_TEST | 
|  | namespace optional_internal { | 
|  |  | 
|  | // Checks if there's a valid PrintTo(const T&, std::ostream*) call for T. | 
|  | template <typename T> | 
|  | struct HasPrintTo { | 
|  | private: | 
|  | struct No {}; | 
|  |  | 
|  | template <typename T2> | 
|  | static auto Test(const T2& obj) | 
|  | -> decltype(PrintTo(obj, std::declval<std::ostream*>())); | 
|  |  | 
|  | template <typename> | 
|  | static No Test(...); | 
|  |  | 
|  | public: | 
|  | static constexpr bool value = | 
|  | !std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value; | 
|  | }; | 
|  |  | 
|  | // Checks if there's a valid operator<<(std::ostream&, const T&) call for T. | 
|  | template <typename T> | 
|  | struct HasOstreamOperator { | 
|  | private: | 
|  | struct No {}; | 
|  |  | 
|  | template <typename T2> | 
|  | static auto Test(const T2& obj) | 
|  | -> decltype(std::declval<std::ostream&>() << obj); | 
|  |  | 
|  | template <typename> | 
|  | static No Test(...); | 
|  |  | 
|  | public: | 
|  | static constexpr bool value = | 
|  | !std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value; | 
|  | }; | 
|  |  | 
|  | // Prefer using PrintTo to print the object. | 
|  | template <typename T> | 
|  | typename std::enable_if<HasPrintTo<T>::value, void>::type OptionalPrintToHelper( | 
|  | const T& value, | 
|  | std::ostream* os) { | 
|  | PrintTo(value, os); | 
|  | } | 
|  |  | 
|  | // Fall back to operator<<(std::ostream&, ...) if it exists. | 
|  | template <typename T> | 
|  | typename std::enable_if<HasOstreamOperator<T>::value && !HasPrintTo<T>::value, | 
|  | void>::type | 
|  | OptionalPrintToHelper(const T& value, std::ostream* os) { | 
|  | *os << value; | 
|  | } | 
|  |  | 
|  | inline void OptionalPrintObjectBytes(const unsigned char* bytes, | 
|  | size_t size, | 
|  | std::ostream* os) { | 
|  | *os << "<optional with " << size << "-byte object ["; | 
|  | for (size_t i = 0; i != size; ++i) { | 
|  | *os << (i == 0 ? "" : ((i & 1) ? "-" : " ")); | 
|  | *os << std::hex << std::setw(2) << std::setfill('0') | 
|  | << static_cast<int>(bytes[i]); | 
|  | } | 
|  | *os << "]>"; | 
|  | } | 
|  |  | 
|  | // As a final back-up, just print the contents of the objcets byte-wise. | 
|  | template <typename T> | 
|  | typename std::enable_if<!HasOstreamOperator<T>::value && !HasPrintTo<T>::value, | 
|  | void>::type | 
|  | OptionalPrintToHelper(const T& value, std::ostream* os) { | 
|  | OptionalPrintObjectBytes(reinterpret_cast<const unsigned char*>(&value), | 
|  | sizeof(value), os); | 
|  | } | 
|  |  | 
|  | }  // namespace optional_internal | 
|  |  | 
|  | // PrintTo is used by gtest to print out the results of tests. We want to ensure | 
|  | // the object contained in an Optional can be printed out if it's set, while | 
|  | // avoiding touching the object's storage if it is undefined. | 
|  | template <typename T> | 
|  | void PrintTo(const rtc::Optional<T>& opt, std::ostream* os) { | 
|  | if (opt) { | 
|  | optional_internal::OptionalPrintToHelper(*opt, os); | 
|  | } else { | 
|  | *os << "<empty optional>"; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // UNIT_TEST | 
|  |  | 
|  | }  // namespace rtc | 
|  |  | 
|  | #endif  // API_OPTIONAL_H_ |