| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Modified from the Chromium original: |
| // src/media/base/sinc_resampler_unittest.cc |
| |
| // MSVC++ requires this to be set before any other includes to get M_PI. |
| #define _USE_MATH_DEFINES |
| |
| #include "common_audio/resampler/sinc_resampler.h" |
| |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <tuple> |
| |
| #include "common_audio/resampler/sinusoidal_linear_chirp_source.h" |
| #include "rtc_base/stringize_macros.h" |
| #include "rtc_base/system/arch.h" |
| #include "rtc_base/time_utils.h" |
| #include "system_wrappers/include/cpu_features_wrapper.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| using ::testing::_; |
| |
| namespace webrtc { |
| |
| static const double kSampleRateRatio = 192000.0 / 44100.0; |
| static const double kKernelInterpolationFactor = 0.5; |
| |
| // Helper class to ensure ChunkedResample() functions properly. |
| class MockSource : public SincResamplerCallback { |
| public: |
| MOCK_METHOD(void, Run, (size_t frames, float* destination), (override)); |
| }; |
| |
| ACTION(ClearBuffer) { |
| memset(arg1, 0, arg0 * sizeof(float)); |
| } |
| |
| ACTION(FillBuffer) { |
| // Value chosen arbitrarily such that SincResampler resamples it to something |
| // easily representable on all platforms; e.g., using kSampleRateRatio this |
| // becomes 1.81219. |
| memset(arg1, 64, arg0 * sizeof(float)); |
| } |
| |
| // Test requesting multiples of ChunkSize() frames results in the proper number |
| // of callbacks. |
| TEST(SincResamplerTest, ChunkedResample) { |
| MockSource mock_source; |
| |
| // Choose a high ratio of input to output samples which will result in quick |
| // exhaustion of SincResampler's internal buffers. |
| SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, |
| &mock_source); |
| |
| static const int kChunks = 2; |
| size_t max_chunk_size = resampler.ChunkSize() * kChunks; |
| std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]); |
| |
| // Verify requesting ChunkSize() frames causes a single callback. |
| EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer()); |
| resampler.Resample(resampler.ChunkSize(), resampled_destination.get()); |
| |
| // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks. |
| ::testing::Mock::VerifyAndClear(&mock_source); |
| EXPECT_CALL(mock_source, Run(_, _)) |
| .Times(kChunks) |
| .WillRepeatedly(ClearBuffer()); |
| resampler.Resample(max_chunk_size, resampled_destination.get()); |
| } |
| |
| // Test flush resets the internal state properly. |
| TEST(SincResamplerTest, Flush) { |
| MockSource mock_source; |
| SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, |
| &mock_source); |
| std::unique_ptr<float[]> resampled_destination( |
| new float[resampler.ChunkSize()]); |
| |
| // Fill the resampler with junk data. |
| EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(FillBuffer()); |
| resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); |
| ASSERT_NE(resampled_destination[0], 0); |
| |
| // Flush and request more data, which should all be zeros now. |
| resampler.Flush(); |
| ::testing::Mock::VerifyAndClear(&mock_source); |
| EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer()); |
| resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); |
| for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i) |
| ASSERT_FLOAT_EQ(resampled_destination[i], 0); |
| } |
| |
| // Test flush resets the internal state properly. |
| TEST(SincResamplerTest, DISABLED_SetRatioBench) { |
| MockSource mock_source; |
| SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, |
| &mock_source); |
| |
| int64_t start = rtc::TimeNanos(); |
| for (int i = 1; i < 10000; ++i) |
| resampler.SetRatio(1.0 / i); |
| double total_time_c_us = |
| (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; |
| printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000); |
| } |
| |
| // Ensure various optimized Convolve() methods return the same value. Only run |
| // this test if other optimized methods exist, otherwise the default Convolve() |
| // will be tested by the parameterized SincResampler tests below. |
| TEST(SincResamplerTest, Convolve) { |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| ASSERT_TRUE(GetCPUInfo(kSSE2)); |
| #elif defined(WEBRTC_ARCH_ARM_V7) |
| ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON); |
| #endif |
| |
| // Initialize a dummy resampler. |
| MockSource mock_source; |
| SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, |
| &mock_source); |
| |
| // The optimized Convolve methods are slightly more precise than Convolve_C(), |
| // so comparison must be done using an epsilon. |
| static const double kEpsilon = 0.00000005; |
| |
| // Use a kernel from SincResampler as input and kernel data, this has the |
| // benefit of already being properly sized and aligned for Convolve_SSE(). |
| double result = resampler.Convolve_C( |
| resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), |
| resampler.kernel_storage_.get(), kKernelInterpolationFactor); |
| double result2 = resampler.convolve_proc_( |
| resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), |
| resampler.kernel_storage_.get(), kKernelInterpolationFactor); |
| EXPECT_NEAR(result2, result, kEpsilon); |
| |
| // Test Convolve() w/ unaligned input pointer. |
| result = resampler.Convolve_C( |
| resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), |
| resampler.kernel_storage_.get(), kKernelInterpolationFactor); |
| result2 = resampler.convolve_proc_( |
| resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), |
| resampler.kernel_storage_.get(), kKernelInterpolationFactor); |
| EXPECT_NEAR(result2, result, kEpsilon); |
| } |
| |
| // Benchmark for the various Convolve() methods. Make sure to build with |
| // branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking. |
| // Original benchmarks were run with --convolve-iterations=50000000. |
| TEST(SincResamplerTest, ConvolveBenchmark) { |
| // Initialize a dummy resampler. |
| MockSource mock_source; |
| SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, |
| &mock_source); |
| |
| // Retrieve benchmark iterations from command line. |
| // TODO(ajm): Reintroduce this as a command line option. |
| const int kConvolveIterations = 1000000; |
| |
| printf("Benchmarking %d iterations:\n", kConvolveIterations); |
| |
| // Benchmark Convolve_C(). |
| int64_t start = rtc::TimeNanos(); |
| for (int i = 0; i < kConvolveIterations; ++i) { |
| resampler.Convolve_C( |
| resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), |
| resampler.kernel_storage_.get(), kKernelInterpolationFactor); |
| } |
| double total_time_c_us = |
| (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; |
| printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000); |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| ASSERT_TRUE(GetCPUInfo(kSSE2)); |
| #elif defined(WEBRTC_ARCH_ARM_V7) |
| ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON); |
| #endif |
| |
| // Benchmark with unaligned input pointer. |
| start = rtc::TimeNanos(); |
| for (int j = 0; j < kConvolveIterations; ++j) { |
| resampler.convolve_proc_( |
| resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), |
| resampler.kernel_storage_.get(), kKernelInterpolationFactor); |
| } |
| double total_time_optimized_unaligned_us = |
| (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; |
| printf(STRINGIZE(convolve_proc_) "(unaligned) took %.2fms; which is %.2fx " |
| "faster than Convolve_C.\n", total_time_optimized_unaligned_us / 1000, |
| total_time_c_us / total_time_optimized_unaligned_us); |
| |
| // Benchmark with aligned input pointer. |
| start = rtc::TimeNanos(); |
| for (int j = 0; j < kConvolveIterations; ++j) { |
| resampler.convolve_proc_( |
| resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), |
| resampler.kernel_storage_.get(), kKernelInterpolationFactor); |
| } |
| double total_time_optimized_aligned_us = |
| (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; |
| printf(STRINGIZE(convolve_proc_) " (aligned) took %.2fms; which is %.2fx " |
| "faster than Convolve_C and %.2fx faster than " |
| STRINGIZE(convolve_proc_) " (unaligned).\n", |
| total_time_optimized_aligned_us / 1000, |
| total_time_c_us / total_time_optimized_aligned_us, |
| total_time_optimized_unaligned_us / total_time_optimized_aligned_us); |
| } |
| |
| typedef std::tuple<int, int, double, double> SincResamplerTestData; |
| class SincResamplerTest |
| : public ::testing::TestWithParam<SincResamplerTestData> { |
| public: |
| SincResamplerTest() |
| : input_rate_(std::get<0>(GetParam())), |
| output_rate_(std::get<1>(GetParam())), |
| rms_error_(std::get<2>(GetParam())), |
| low_freq_error_(std::get<3>(GetParam())) {} |
| |
| virtual ~SincResamplerTest() {} |
| |
| protected: |
| int input_rate_; |
| int output_rate_; |
| double rms_error_; |
| double low_freq_error_; |
| }; |
| |
| // Tests resampling using a given input and output sample rate. |
| TEST_P(SincResamplerTest, Resample) { |
| // Make comparisons using one second of data. |
| static const double kTestDurationSecs = 1; |
| const size_t input_samples = |
| static_cast<size_t>(kTestDurationSecs * input_rate_); |
| const size_t output_samples = |
| static_cast<size_t>(kTestDurationSecs * output_rate_); |
| |
| // Nyquist frequency for the input sampling rate. |
| const double input_nyquist_freq = 0.5 * input_rate_; |
| |
| // Source for data to be resampled. |
| SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples, |
| input_nyquist_freq, 0); |
| |
| const double io_ratio = input_rate_ / static_cast<double>(output_rate_); |
| SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize, |
| &resampler_source); |
| |
| // Force an update to the sample rate ratio to ensure dyanmic sample rate |
| // changes are working correctly. |
| std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]); |
| memcpy(kernel.get(), resampler.get_kernel_for_testing(), |
| SincResampler::kKernelStorageSize); |
| resampler.SetRatio(M_PI); |
| ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), |
| SincResampler::kKernelStorageSize)); |
| resampler.SetRatio(io_ratio); |
| ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), |
| SincResampler::kKernelStorageSize)); |
| |
| // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to |
| // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes. |
| std::unique_ptr<float[]> resampled_destination(new float[output_samples]); |
| std::unique_ptr<float[]> pure_destination(new float[output_samples]); |
| |
| // Generate resampled signal. |
| resampler.Resample(output_samples, resampled_destination.get()); |
| |
| // Generate pure signal. |
| SinusoidalLinearChirpSource pure_source(output_rate_, output_samples, |
| input_nyquist_freq, 0); |
| pure_source.Run(output_samples, pure_destination.get()); |
| |
| // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which |
| // we refer to as low and high. |
| static const double kLowFrequencyNyquistRange = 0.7; |
| static const double kHighFrequencyNyquistRange = 0.9; |
| |
| // Calculate Root-Mean-Square-Error and maximum error for the resampling. |
| double sum_of_squares = 0; |
| double low_freq_max_error = 0; |
| double high_freq_max_error = 0; |
| int minimum_rate = std::min(input_rate_, output_rate_); |
| double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate; |
| double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate; |
| for (size_t i = 0; i < output_samples; ++i) { |
| double error = fabs(resampled_destination[i] - pure_destination[i]); |
| |
| if (pure_source.Frequency(i) < low_frequency_range) { |
| if (error > low_freq_max_error) |
| low_freq_max_error = error; |
| } else if (pure_source.Frequency(i) < high_frequency_range) { |
| if (error > high_freq_max_error) |
| high_freq_max_error = error; |
| } |
| // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange. |
| |
| sum_of_squares += error * error; |
| } |
| |
| double rms_error = sqrt(sum_of_squares / output_samples); |
| |
| // Convert each error to dbFS. |
| #define DBFS(x) 20 * log10(x) |
| rms_error = DBFS(rms_error); |
| low_freq_max_error = DBFS(low_freq_max_error); |
| high_freq_max_error = DBFS(high_freq_max_error); |
| |
| EXPECT_LE(rms_error, rms_error_); |
| EXPECT_LE(low_freq_max_error, low_freq_error_); |
| |
| // All conversions currently have a high frequency error around -6 dbFS. |
| static const double kHighFrequencyMaxError = -6.02; |
| EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError); |
| } |
| |
| // Almost all conversions have an RMS error of around -14 dbFS. |
| static const double kResamplingRMSError = -14.58; |
| |
| // Thresholds chosen arbitrarily based on what each resampling reported during |
| // testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS. |
| INSTANTIATE_TEST_SUITE_P( |
| SincResamplerTest, |
| SincResamplerTest, |
| ::testing::Values( |
| // To 44.1kHz |
| std::make_tuple(8000, 44100, kResamplingRMSError, -62.73), |
| std::make_tuple(11025, 44100, kResamplingRMSError, -72.19), |
| std::make_tuple(16000, 44100, kResamplingRMSError, -62.54), |
| std::make_tuple(22050, 44100, kResamplingRMSError, -73.53), |
| std::make_tuple(32000, 44100, kResamplingRMSError, -63.32), |
| std::make_tuple(44100, 44100, kResamplingRMSError, -73.52), |
| std::make_tuple(48000, 44100, -15.01, -64.04), |
| std::make_tuple(96000, 44100, -18.49, -25.51), |
| std::make_tuple(192000, 44100, -20.50, -13.31), |
| |
| // To 48kHz |
| std::make_tuple(8000, 48000, kResamplingRMSError, -63.43), |
| std::make_tuple(11025, 48000, kResamplingRMSError, -62.61), |
| std::make_tuple(16000, 48000, kResamplingRMSError, -63.95), |
| std::make_tuple(22050, 48000, kResamplingRMSError, -62.42), |
| std::make_tuple(32000, 48000, kResamplingRMSError, -64.04), |
| std::make_tuple(44100, 48000, kResamplingRMSError, -62.63), |
| std::make_tuple(48000, 48000, kResamplingRMSError, -73.52), |
| std::make_tuple(96000, 48000, -18.40, -28.44), |
| std::make_tuple(192000, 48000, -20.43, -14.11), |
| |
| // To 96kHz |
| std::make_tuple(8000, 96000, kResamplingRMSError, -63.19), |
| std::make_tuple(11025, 96000, kResamplingRMSError, -62.61), |
| std::make_tuple(16000, 96000, kResamplingRMSError, -63.39), |
| std::make_tuple(22050, 96000, kResamplingRMSError, -62.42), |
| std::make_tuple(32000, 96000, kResamplingRMSError, -63.95), |
| std::make_tuple(44100, 96000, kResamplingRMSError, -62.63), |
| std::make_tuple(48000, 96000, kResamplingRMSError, -73.52), |
| std::make_tuple(96000, 96000, kResamplingRMSError, -73.52), |
| std::make_tuple(192000, 96000, kResamplingRMSError, -28.41), |
| |
| // To 192kHz |
| std::make_tuple(8000, 192000, kResamplingRMSError, -63.10), |
| std::make_tuple(11025, 192000, kResamplingRMSError, -62.61), |
| std::make_tuple(16000, 192000, kResamplingRMSError, -63.14), |
| std::make_tuple(22050, 192000, kResamplingRMSError, -62.42), |
| std::make_tuple(32000, 192000, kResamplingRMSError, -63.38), |
| std::make_tuple(44100, 192000, kResamplingRMSError, -62.63), |
| std::make_tuple(48000, 192000, kResamplingRMSError, -73.44), |
| std::make_tuple(96000, 192000, kResamplingRMSError, -73.52), |
| std::make_tuple(192000, 192000, kResamplingRMSError, -73.52))); |
| |
| } // namespace webrtc |