| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "test/fake_encoder.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| |
| #include "api/task_queue/queued_task.h" |
| #include "api/video/video_content_type.h" |
| #include "modules/video_coding/codecs/h264/include/h264_globals.h" |
| #include "modules/video_coding/include/video_codec_interface.h" |
| #include "modules/video_coding/include/video_error_codes.h" |
| #include "rtc_base/checks.h" |
| #include "system_wrappers/include/sleep.h" |
| |
| namespace webrtc { |
| namespace test { |
| namespace { |
| const int kKeyframeSizeFactor = 5; |
| |
| // Inverse of proportion of frames assigned to each temporal layer for all |
| // possible temporal layers numbers. |
| const int kTemporalLayerRateFactor[4][4] = { |
| {1, 0, 0, 0}, // 1/1 |
| {2, 2, 0, 0}, // 1/2 + 1/2 |
| {4, 4, 2, 0}, // 1/4 + 1/4 + 1/2 |
| {8, 8, 4, 2}, // 1/8 + 1/8 + 1/4 + 1/2 |
| }; |
| |
| void WriteCounter(unsigned char* payload, uint32_t counter) { |
| payload[0] = (counter & 0x00FF); |
| payload[1] = (counter & 0xFF00) >> 8; |
| payload[2] = (counter & 0xFF0000) >> 16; |
| payload[3] = (counter & 0xFF000000) >> 24; |
| } |
| |
| } // namespace |
| |
| FakeEncoder::FakeEncoder(Clock* clock) |
| : clock_(clock), |
| callback_(nullptr), |
| max_target_bitrate_kbps_(-1), |
| pending_keyframe_(true), |
| counter_(0), |
| debt_bytes_(0) { |
| for (bool& used : used_layers_) { |
| used = false; |
| } |
| } |
| |
| void FakeEncoder::SetFecControllerOverride( |
| FecControllerOverride* fec_controller_override) { |
| // Ignored. |
| } |
| |
| void FakeEncoder::SetMaxBitrate(int max_kbps) { |
| RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it. |
| MutexLock lock(&mutex_); |
| max_target_bitrate_kbps_ = max_kbps; |
| SetRatesLocked(current_rate_settings_); |
| } |
| |
| void FakeEncoder::SetQp(int qp) { |
| MutexLock lock(&mutex_); |
| qp_ = qp; |
| } |
| |
| int32_t FakeEncoder::InitEncode(const VideoCodec* config, |
| const Settings& settings) { |
| MutexLock lock(&mutex_); |
| config_ = *config; |
| current_rate_settings_.bitrate.SetBitrate(0, 0, config_.startBitrate * 1000); |
| current_rate_settings_.framerate_fps = config_.maxFramerate; |
| pending_keyframe_ = true; |
| last_frame_info_ = FrameInfo(); |
| return 0; |
| } |
| |
| int32_t FakeEncoder::Encode(const VideoFrame& input_image, |
| const std::vector<VideoFrameType>* frame_types) { |
| unsigned char max_framerate; |
| unsigned char num_simulcast_streams; |
| SpatialLayer simulcast_streams[kMaxSimulcastStreams]; |
| EncodedImageCallback* callback; |
| RateControlParameters rates; |
| VideoCodecMode mode; |
| bool keyframe; |
| uint32_t counter; |
| absl::optional<int> qp; |
| { |
| MutexLock lock(&mutex_); |
| max_framerate = config_.maxFramerate; |
| num_simulcast_streams = config_.numberOfSimulcastStreams; |
| for (int i = 0; i < num_simulcast_streams; ++i) { |
| simulcast_streams[i] = config_.simulcastStream[i]; |
| } |
| callback = callback_; |
| rates = current_rate_settings_; |
| mode = config_.mode; |
| if (rates.framerate_fps <= 0.0) { |
| rates.framerate_fps = max_framerate; |
| } |
| keyframe = pending_keyframe_; |
| pending_keyframe_ = false; |
| counter = counter_++; |
| qp = qp_; |
| } |
| |
| FrameInfo frame_info = |
| NextFrame(frame_types, keyframe, num_simulcast_streams, rates.bitrate, |
| simulcast_streams, static_cast<int>(rates.framerate_fps + 0.5)); |
| for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { |
| constexpr int kMinPayLoadLength = 14; |
| if (frame_info.layers[i].size < kMinPayLoadLength) { |
| // Drop this temporal layer. |
| continue; |
| } |
| |
| EncodedImage encoded; |
| encoded.SetEncodedData( |
| EncodedImageBuffer::Create(frame_info.layers[i].size)); |
| |
| // Fill the buffer with arbitrary data. Write someting to make Asan happy. |
| memset(encoded.data(), 9, frame_info.layers[i].size); |
| // Write a counter to the image to make each frame unique. |
| WriteCounter(encoded.data() + frame_info.layers[i].size - 4, counter); |
| encoded.SetTimestamp(input_image.timestamp()); |
| encoded._frameType = frame_info.keyframe ? VideoFrameType::kVideoFrameKey |
| : VideoFrameType::kVideoFrameDelta; |
| encoded._encodedWidth = simulcast_streams[i].width; |
| encoded._encodedHeight = simulcast_streams[i].height; |
| if (qp) |
| encoded.qp_ = *qp; |
| encoded.SetSpatialIndex(i); |
| CodecSpecificInfo codec_specific = EncodeHook(encoded); |
| |
| if (callback->OnEncodedImage(encoded, &codec_specific).error != |
| EncodedImageCallback::Result::OK) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| CodecSpecificInfo FakeEncoder::EncodeHook(EncodedImage& encoded_image) { |
| CodecSpecificInfo codec_specific; |
| codec_specific.codecType = kVideoCodecGeneric; |
| return codec_specific; |
| } |
| |
| FakeEncoder::FrameInfo FakeEncoder::NextFrame( |
| const std::vector<VideoFrameType>* frame_types, |
| bool keyframe, |
| uint8_t num_simulcast_streams, |
| const VideoBitrateAllocation& target_bitrate, |
| SpatialLayer simulcast_streams[kMaxSimulcastStreams], |
| int framerate) { |
| FrameInfo frame_info; |
| frame_info.keyframe = keyframe; |
| |
| if (frame_types) { |
| for (VideoFrameType frame_type : *frame_types) { |
| if (frame_type == VideoFrameType::kVideoFrameKey) { |
| frame_info.keyframe = true; |
| break; |
| } |
| } |
| } |
| |
| MutexLock lock(&mutex_); |
| for (uint8_t i = 0; i < num_simulcast_streams; ++i) { |
| if (target_bitrate.GetBitrate(i, 0) > 0) { |
| int temporal_id = last_frame_info_.layers.size() > i |
| ? ++last_frame_info_.layers[i].temporal_id % |
| simulcast_streams[i].numberOfTemporalLayers |
| : 0; |
| frame_info.layers.emplace_back(0, temporal_id); |
| } |
| } |
| |
| if (last_frame_info_.layers.size() < frame_info.layers.size()) { |
| // A new keyframe is needed since a new layer will be added. |
| frame_info.keyframe = true; |
| } |
| |
| for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { |
| FrameInfo::SpatialLayer& layer_info = frame_info.layers[i]; |
| if (frame_info.keyframe) { |
| layer_info.temporal_id = 0; |
| size_t avg_frame_size = |
| (target_bitrate.GetBitrate(i, 0) + 7) * |
| kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / |
| (8 * framerate); |
| |
| // The first frame is a key frame and should be larger. |
| // Store the overshoot bytes and distribute them over the coming frames, |
| // so that we on average meet the bitrate target. |
| debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size; |
| layer_info.size = kKeyframeSizeFactor * avg_frame_size; |
| } else { |
| size_t avg_frame_size = |
| (target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) * |
| kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / |
| (8 * framerate); |
| layer_info.size = avg_frame_size; |
| if (debt_bytes_ > 0) { |
| // Pay at most half of the frame size for old debts. |
| size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_); |
| debt_bytes_ -= payment_size; |
| layer_info.size -= payment_size; |
| } |
| } |
| } |
| last_frame_info_ = frame_info; |
| return frame_info; |
| } |
| |
| int32_t FakeEncoder::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| MutexLock lock(&mutex_); |
| callback_ = callback; |
| return 0; |
| } |
| |
| int32_t FakeEncoder::Release() { |
| return 0; |
| } |
| |
| void FakeEncoder::SetRates(const RateControlParameters& parameters) { |
| MutexLock lock(&mutex_); |
| SetRatesLocked(parameters); |
| } |
| |
| void FakeEncoder::SetRatesLocked(const RateControlParameters& parameters) { |
| current_rate_settings_ = parameters; |
| int allocated_bitrate_kbps = parameters.bitrate.get_sum_kbps(); |
| |
| // Scale bitrate allocation to not exceed the given max target bitrate. |
| if (max_target_bitrate_kbps_ > 0 && |
| allocated_bitrate_kbps > max_target_bitrate_kbps_) { |
| for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers; |
| ++spatial_idx) { |
| for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams; |
| ++temporal_idx) { |
| if (current_rate_settings_.bitrate.HasBitrate(spatial_idx, |
| temporal_idx)) { |
| uint32_t bitrate = current_rate_settings_.bitrate.GetBitrate( |
| spatial_idx, temporal_idx); |
| bitrate = static_cast<uint32_t>( |
| (bitrate * int64_t{max_target_bitrate_kbps_}) / |
| allocated_bitrate_kbps); |
| current_rate_settings_.bitrate.SetBitrate(spatial_idx, temporal_idx, |
| bitrate); |
| } |
| } |
| } |
| } |
| } |
| |
| const char* FakeEncoder::kImplementationName = "fake_encoder"; |
| VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const { |
| EncoderInfo info; |
| info.implementation_name = kImplementationName; |
| return info; |
| } |
| |
| int FakeEncoder::GetConfiguredInputFramerate() const { |
| MutexLock lock(&mutex_); |
| return static_cast<int>(current_rate_settings_.framerate_fps + 0.5); |
| } |
| |
| FakeH264Encoder::FakeH264Encoder(Clock* clock) |
| : FakeEncoder(clock), idr_counter_(0) {} |
| |
| CodecSpecificInfo FakeH264Encoder::EncodeHook(EncodedImage& encoded_image) { |
| static constexpr std::array<uint8_t, 3> kStartCode = {0, 0, 1}; |
| const size_t kSpsSize = 8; |
| const size_t kPpsSize = 11; |
| const int kIdrFrequency = 10; |
| int current_idr_counter; |
| { |
| MutexLock lock(&local_mutex_); |
| current_idr_counter = idr_counter_; |
| ++idr_counter_; |
| } |
| for (size_t i = 0; i < encoded_image.size(); ++i) { |
| encoded_image.data()[i] = static_cast<uint8_t>(i); |
| } |
| |
| if (current_idr_counter % kIdrFrequency == 0 && |
| encoded_image.size() > kSpsSize + kPpsSize + 1 + 3 * kStartCode.size()) { |
| const size_t kSpsNalHeader = 0x67; |
| const size_t kPpsNalHeader = 0x68; |
| const size_t kIdrNalHeader = 0x65; |
| uint8_t* data = encoded_image.data(); |
| memcpy(data, kStartCode.data(), kStartCode.size()); |
| data += kStartCode.size(); |
| data[0] = kSpsNalHeader; |
| data += kSpsSize; |
| |
| memcpy(data, kStartCode.data(), kStartCode.size()); |
| data += kStartCode.size(); |
| data[0] = kPpsNalHeader; |
| data += kPpsSize; |
| |
| memcpy(data, kStartCode.data(), kStartCode.size()); |
| data += kStartCode.size(); |
| data[0] = kIdrNalHeader; |
| } else { |
| memcpy(encoded_image.data(), kStartCode.data(), kStartCode.size()); |
| const size_t kNalHeader = 0x41; |
| encoded_image.data()[kStartCode.size()] = kNalHeader; |
| } |
| |
| CodecSpecificInfo codec_specific; |
| codec_specific.codecType = kVideoCodecH264; |
| codec_specific.codecSpecific.H264.packetization_mode = |
| H264PacketizationMode::NonInterleaved; |
| return codec_specific; |
| } |
| |
| DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms) |
| : test::FakeEncoder(clock), delay_ms_(delay_ms) { |
| // The encoder could be created on a different thread than |
| // it is being used on. |
| sequence_checker_.Detach(); |
| } |
| |
| void DelayedEncoder::SetDelay(int delay_ms) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| delay_ms_ = delay_ms; |
| } |
| |
| int32_t DelayedEncoder::Encode(const VideoFrame& input_image, |
| const std::vector<VideoFrameType>* frame_types) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| SleepMs(delay_ms_); |
| |
| return FakeEncoder::Encode(input_image, frame_types); |
| } |
| |
| MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder( |
| Clock* clock, |
| TaskQueueFactory* task_queue_factory) |
| : test::FakeH264Encoder(clock), |
| task_queue_factory_(task_queue_factory), |
| current_queue_(0), |
| queue1_(nullptr), |
| queue2_(nullptr) { |
| // The encoder could be created on a different thread than |
| // it is being used on. |
| sequence_checker_.Detach(); |
| } |
| |
| int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config, |
| const Settings& settings) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| queue1_ = task_queue_factory_->CreateTaskQueue( |
| "Queue 1", TaskQueueFactory::Priority::NORMAL); |
| queue2_ = task_queue_factory_->CreateTaskQueue( |
| "Queue 2", TaskQueueFactory::Priority::NORMAL); |
| |
| return FakeH264Encoder::InitEncode(config, settings); |
| } |
| |
| class MultithreadedFakeH264Encoder::EncodeTask : public QueuedTask { |
| public: |
| EncodeTask(MultithreadedFakeH264Encoder* encoder, |
| const VideoFrame& input_image, |
| const std::vector<VideoFrameType>* frame_types) |
| : encoder_(encoder), |
| input_image_(input_image), |
| frame_types_(*frame_types) {} |
| |
| private: |
| bool Run() override { |
| encoder_->EncodeCallback(input_image_, &frame_types_); |
| return true; |
| } |
| |
| MultithreadedFakeH264Encoder* const encoder_; |
| VideoFrame input_image_; |
| std::vector<VideoFrameType> frame_types_; |
| }; |
| |
| int32_t MultithreadedFakeH264Encoder::Encode( |
| const VideoFrame& input_image, |
| const std::vector<VideoFrameType>* frame_types) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| TaskQueueBase* queue = |
| (current_queue_++ % 2 == 0) ? queue1_.get() : queue2_.get(); |
| |
| if (!queue) { |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| |
| queue->PostTask(std::make_unique<EncodeTask>(this, input_image, frame_types)); |
| |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t MultithreadedFakeH264Encoder::EncodeCallback( |
| const VideoFrame& input_image, |
| const std::vector<VideoFrameType>* frame_types) { |
| return FakeH264Encoder::Encode(input_image, frame_types); |
| } |
| |
| int32_t MultithreadedFakeH264Encoder::Release() { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| queue1_.reset(); |
| queue2_.reset(); |
| |
| return FakeH264Encoder::Release(); |
| } |
| |
| } // namespace test |
| } // namespace webrtc |