blob: 866621f75dbdef7a1a64c8dd88cb4a9d26e27364 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/base/stun.h"
#include <string.h>
#include "webrtc/base/byteorder.h"
#include "webrtc/base/common.h"
#include "webrtc/base/crc32.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/messagedigest.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/stringencode.h"
using rtc::ByteBuffer;
namespace cricket {
const char STUN_ERROR_REASON_TRY_ALTERNATE_SERVER[] = "Try Alternate Server";
const char STUN_ERROR_REASON_BAD_REQUEST[] = "Bad Request";
const char STUN_ERROR_REASON_UNAUTHORIZED[] = "Unauthorized";
const char STUN_ERROR_REASON_FORBIDDEN[] = "Forbidden";
const char STUN_ERROR_REASON_STALE_CREDENTIALS[] = "Stale Credentials";
const char STUN_ERROR_REASON_ALLOCATION_MISMATCH[] = "Allocation Mismatch";
const char STUN_ERROR_REASON_STALE_NONCE[] = "Stale Nonce";
const char STUN_ERROR_REASON_WRONG_CREDENTIALS[] = "Wrong Credentials";
const char STUN_ERROR_REASON_UNSUPPORTED_PROTOCOL[] = "Unsupported Protocol";
const char STUN_ERROR_REASON_ROLE_CONFLICT[] = "Role Conflict";
const char STUN_ERROR_REASON_SERVER_ERROR[] = "Server Error";
const char TURN_MAGIC_COOKIE_VALUE[] = { '\x72', '\xC6', '\x4B', '\xC6' };
const char EMPTY_TRANSACTION_ID[] = "0000000000000000";
const uint32 STUN_FINGERPRINT_XOR_VALUE = 0x5354554E;
// StunMessage
StunMessage::StunMessage()
: type_(0),
length_(0),
transaction_id_(EMPTY_TRANSACTION_ID) {
ASSERT(IsValidTransactionId(transaction_id_));
attrs_ = new std::vector<StunAttribute*>();
}
StunMessage::~StunMessage() {
for (size_t i = 0; i < attrs_->size(); i++)
delete (*attrs_)[i];
delete attrs_;
}
bool StunMessage::IsLegacy() const {
if (transaction_id_.size() == kStunLegacyTransactionIdLength)
return true;
ASSERT(transaction_id_.size() == kStunTransactionIdLength);
return false;
}
bool StunMessage::SetTransactionID(const std::string& str) {
if (!IsValidTransactionId(str)) {
return false;
}
transaction_id_ = str;
return true;
}
bool StunMessage::AddAttribute(StunAttribute* attr) {
// Fail any attributes that aren't valid for this type of message.
if (attr->value_type() != GetAttributeValueType(attr->type())) {
return false;
}
attrs_->push_back(attr);
attr->SetOwner(this);
size_t attr_length = attr->length();
if (attr_length % 4 != 0) {
attr_length += (4 - (attr_length % 4));
}
length_ += static_cast<uint16>(attr_length + 4);
return true;
}
const StunAddressAttribute* StunMessage::GetAddress(int type) const {
switch (type) {
case STUN_ATTR_MAPPED_ADDRESS: {
// Return XOR-MAPPED-ADDRESS when MAPPED-ADDRESS attribute is
// missing.
const StunAttribute* mapped_address =
GetAttribute(STUN_ATTR_MAPPED_ADDRESS);
if (!mapped_address)
mapped_address = GetAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS);
return reinterpret_cast<const StunAddressAttribute*>(mapped_address);
}
default:
return static_cast<const StunAddressAttribute*>(GetAttribute(type));
}
}
const StunUInt32Attribute* StunMessage::GetUInt32(int type) const {
return static_cast<const StunUInt32Attribute*>(GetAttribute(type));
}
const StunUInt64Attribute* StunMessage::GetUInt64(int type) const {
return static_cast<const StunUInt64Attribute*>(GetAttribute(type));
}
const StunByteStringAttribute* StunMessage::GetByteString(int type) const {
return static_cast<const StunByteStringAttribute*>(GetAttribute(type));
}
const StunErrorCodeAttribute* StunMessage::GetErrorCode() const {
return static_cast<const StunErrorCodeAttribute*>(
GetAttribute(STUN_ATTR_ERROR_CODE));
}
const StunUInt16ListAttribute* StunMessage::GetUnknownAttributes() const {
return static_cast<const StunUInt16ListAttribute*>(
GetAttribute(STUN_ATTR_UNKNOWN_ATTRIBUTES));
}
// Verifies a STUN message has a valid MESSAGE-INTEGRITY attribute, using the
// procedure outlined in RFC 5389, section 15.4.
bool StunMessage::ValidateMessageIntegrity(const char* data, size_t size,
const std::string& password) {
// Verifying the size of the message.
if ((size % 4) != 0) {
return false;
}
// Getting the message length from the STUN header.
uint16 msg_length = rtc::GetBE16(&data[2]);
if (size != (msg_length + kStunHeaderSize)) {
return false;
}
// Finding Message Integrity attribute in stun message.
size_t current_pos = kStunHeaderSize;
bool has_message_integrity_attr = false;
while (current_pos < size) {
uint16 attr_type, attr_length;
// Getting attribute type and length.
attr_type = rtc::GetBE16(&data[current_pos]);
attr_length = rtc::GetBE16(&data[current_pos + sizeof(attr_type)]);
// If M-I, sanity check it, and break out.
if (attr_type == STUN_ATTR_MESSAGE_INTEGRITY) {
if (attr_length != kStunMessageIntegritySize ||
current_pos + attr_length > size) {
return false;
}
has_message_integrity_attr = true;
break;
}
// Otherwise, skip to the next attribute.
current_pos += sizeof(attr_type) + sizeof(attr_length) + attr_length;
if ((attr_length % 4) != 0) {
current_pos += (4 - (attr_length % 4));
}
}
if (!has_message_integrity_attr) {
return false;
}
// Getting length of the message to calculate Message Integrity.
size_t mi_pos = current_pos;
rtc::scoped_ptr<char[]> temp_data(new char[current_pos]);
memcpy(temp_data.get(), data, current_pos);
if (size > mi_pos + kStunAttributeHeaderSize + kStunMessageIntegritySize) {
// Stun message has other attributes after message integrity.
// Adjust the length parameter in stun message to calculate HMAC.
size_t extra_offset = size -
(mi_pos + kStunAttributeHeaderSize + kStunMessageIntegritySize);
size_t new_adjusted_len = size - extra_offset - kStunHeaderSize;
// Writing new length of the STUN message @ Message Length in temp buffer.
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0 0| STUN Message Type | Message Length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
rtc::SetBE16(temp_data.get() + 2,
static_cast<uint16>(new_adjusted_len));
}
char hmac[kStunMessageIntegritySize];
size_t ret = rtc::ComputeHmac(rtc::DIGEST_SHA_1,
password.c_str(), password.size(),
temp_data.get(), mi_pos,
hmac, sizeof(hmac));
ASSERT(ret == sizeof(hmac));
if (ret != sizeof(hmac))
return false;
// Comparing the calculated HMAC with the one present in the message.
return memcmp(data + current_pos + kStunAttributeHeaderSize,
hmac,
sizeof(hmac)) == 0;
}
bool StunMessage::AddMessageIntegrity(const std::string& password) {
return AddMessageIntegrity(password.c_str(), password.size());
}
bool StunMessage::AddMessageIntegrity(const char* key,
size_t keylen) {
// Add the attribute with a dummy value. Since this is a known attribute, it
// can't fail.
StunByteStringAttribute* msg_integrity_attr =
new StunByteStringAttribute(STUN_ATTR_MESSAGE_INTEGRITY,
std::string(kStunMessageIntegritySize, '0'));
VERIFY(AddAttribute(msg_integrity_attr));
// Calculate the HMAC for the message.
rtc::ByteBuffer buf;
if (!Write(&buf))
return false;
int msg_len_for_hmac = static_cast<int>(
buf.Length() - kStunAttributeHeaderSize - msg_integrity_attr->length());
char hmac[kStunMessageIntegritySize];
size_t ret = rtc::ComputeHmac(rtc::DIGEST_SHA_1,
key, keylen,
buf.Data(), msg_len_for_hmac,
hmac, sizeof(hmac));
ASSERT(ret == sizeof(hmac));
if (ret != sizeof(hmac)) {
LOG(LS_ERROR) << "HMAC computation failed. Message-Integrity "
<< "has dummy value.";
return false;
}
// Insert correct HMAC into the attribute.
msg_integrity_attr->CopyBytes(hmac, sizeof(hmac));
return true;
}
// Verifies a message is in fact a STUN message, by performing the checks
// outlined in RFC 5389, section 7.3, including the FINGERPRINT check detailed
// in section 15.5.
bool StunMessage::ValidateFingerprint(const char* data, size_t size) {
// Check the message length.
size_t fingerprint_attr_size =
kStunAttributeHeaderSize + StunUInt32Attribute::SIZE;
if (size % 4 != 0 || size < kStunHeaderSize + fingerprint_attr_size)
return false;
// Skip the rest if the magic cookie isn't present.
const char* magic_cookie =
data + kStunTransactionIdOffset - kStunMagicCookieLength;
if (rtc::GetBE32(magic_cookie) != kStunMagicCookie)
return false;
// Check the fingerprint type and length.
const char* fingerprint_attr_data = data + size - fingerprint_attr_size;
if (rtc::GetBE16(fingerprint_attr_data) != STUN_ATTR_FINGERPRINT ||
rtc::GetBE16(fingerprint_attr_data + sizeof(uint16)) !=
StunUInt32Attribute::SIZE)
return false;
// Check the fingerprint value.
uint32 fingerprint =
rtc::GetBE32(fingerprint_attr_data + kStunAttributeHeaderSize);
return ((fingerprint ^ STUN_FINGERPRINT_XOR_VALUE) ==
rtc::ComputeCrc32(data, size - fingerprint_attr_size));
}
bool StunMessage::AddFingerprint() {
// Add the attribute with a dummy value. Since this is a known attribute,
// it can't fail.
StunUInt32Attribute* fingerprint_attr =
new StunUInt32Attribute(STUN_ATTR_FINGERPRINT, 0);
VERIFY(AddAttribute(fingerprint_attr));
// Calculate the CRC-32 for the message and insert it.
rtc::ByteBuffer buf;
if (!Write(&buf))
return false;
int msg_len_for_crc32 = static_cast<int>(
buf.Length() - kStunAttributeHeaderSize - fingerprint_attr->length());
uint32 c = rtc::ComputeCrc32(buf.Data(), msg_len_for_crc32);
// Insert the correct CRC-32, XORed with a constant, into the attribute.
fingerprint_attr->SetValue(c ^ STUN_FINGERPRINT_XOR_VALUE);
return true;
}
bool StunMessage::Read(ByteBuffer* buf) {
if (!buf->ReadUInt16(&type_))
return false;
if (type_ & 0x8000) {
// RTP and RTCP set the MSB of first byte, since first two bits are version,
// and version is always 2 (10). If set, this is not a STUN packet.
return false;
}
if (!buf->ReadUInt16(&length_))
return false;
std::string magic_cookie;
if (!buf->ReadString(&magic_cookie, kStunMagicCookieLength))
return false;
std::string transaction_id;
if (!buf->ReadString(&transaction_id, kStunTransactionIdLength))
return false;
uint32 magic_cookie_int =
*reinterpret_cast<const uint32*>(magic_cookie.data());
if (rtc::NetworkToHost32(magic_cookie_int) != kStunMagicCookie) {
// If magic cookie is invalid it means that the peer implements
// RFC3489 instead of RFC5389.
transaction_id.insert(0, magic_cookie);
}
ASSERT(IsValidTransactionId(transaction_id));
transaction_id_ = transaction_id;
if (length_ != buf->Length())
return false;
attrs_->resize(0);
size_t rest = buf->Length() - length_;
while (buf->Length() > rest) {
uint16 attr_type, attr_length;
if (!buf->ReadUInt16(&attr_type))
return false;
if (!buf->ReadUInt16(&attr_length))
return false;
StunAttribute* attr = CreateAttribute(attr_type, attr_length);
if (!attr) {
// Skip any unknown or malformed attributes.
if ((attr_length % 4) != 0) {
attr_length += (4 - (attr_length % 4));
}
if (!buf->Consume(attr_length))
return false;
} else {
if (!attr->Read(buf))
return false;
attrs_->push_back(attr);
}
}
ASSERT(buf->Length() == rest);
return true;
}
bool StunMessage::Write(ByteBuffer* buf) const {
buf->WriteUInt16(type_);
buf->WriteUInt16(length_);
if (!IsLegacy())
buf->WriteUInt32(kStunMagicCookie);
buf->WriteString(transaction_id_);
for (size_t i = 0; i < attrs_->size(); ++i) {
buf->WriteUInt16((*attrs_)[i]->type());
buf->WriteUInt16(static_cast<uint16>((*attrs_)[i]->length()));
if (!(*attrs_)[i]->Write(buf))
return false;
}
return true;
}
StunAttributeValueType StunMessage::GetAttributeValueType(int type) const {
switch (type) {
case STUN_ATTR_MAPPED_ADDRESS: return STUN_VALUE_ADDRESS;
case STUN_ATTR_USERNAME: return STUN_VALUE_BYTE_STRING;
case STUN_ATTR_MESSAGE_INTEGRITY: return STUN_VALUE_BYTE_STRING;
case STUN_ATTR_ERROR_CODE: return STUN_VALUE_ERROR_CODE;
case STUN_ATTR_UNKNOWN_ATTRIBUTES: return STUN_VALUE_UINT16_LIST;
case STUN_ATTR_REALM: return STUN_VALUE_BYTE_STRING;
case STUN_ATTR_NONCE: return STUN_VALUE_BYTE_STRING;
case STUN_ATTR_XOR_MAPPED_ADDRESS: return STUN_VALUE_XOR_ADDRESS;
case STUN_ATTR_SOFTWARE: return STUN_VALUE_BYTE_STRING;
case STUN_ATTR_ALTERNATE_SERVER: return STUN_VALUE_ADDRESS;
case STUN_ATTR_FINGERPRINT: return STUN_VALUE_UINT32;
case STUN_ATTR_ORIGIN: return STUN_VALUE_BYTE_STRING;
case STUN_ATTR_RETRANSMIT_COUNT: return STUN_VALUE_UINT32;
default: return STUN_VALUE_UNKNOWN;
}
}
StunAttribute* StunMessage::CreateAttribute(int type, size_t length) /*const*/ {
StunAttributeValueType value_type = GetAttributeValueType(type);
return StunAttribute::Create(value_type, type,
static_cast<uint16>(length), this);
}
const StunAttribute* StunMessage::GetAttribute(int type) const {
for (size_t i = 0; i < attrs_->size(); ++i) {
if ((*attrs_)[i]->type() == type)
return (*attrs_)[i];
}
return NULL;
}
bool StunMessage::IsValidTransactionId(const std::string& transaction_id) {
return transaction_id.size() == kStunTransactionIdLength ||
transaction_id.size() == kStunLegacyTransactionIdLength;
}
// StunAttribute
StunAttribute::StunAttribute(uint16 type, uint16 length)
: type_(type), length_(length) {
}
void StunAttribute::ConsumePadding(rtc::ByteBuffer* buf) const {
int remainder = length_ % 4;
if (remainder > 0) {
buf->Consume(4 - remainder);
}
}
void StunAttribute::WritePadding(rtc::ByteBuffer* buf) const {
int remainder = length_ % 4;
if (remainder > 0) {
char zeroes[4] = {0};
buf->WriteBytes(zeroes, 4 - remainder);
}
}
StunAttribute* StunAttribute::Create(StunAttributeValueType value_type,
uint16 type, uint16 length,
StunMessage* owner) {
switch (value_type) {
case STUN_VALUE_ADDRESS:
return new StunAddressAttribute(type, length);
case STUN_VALUE_XOR_ADDRESS:
return new StunXorAddressAttribute(type, length, owner);
case STUN_VALUE_UINT32:
return new StunUInt32Attribute(type);
case STUN_VALUE_UINT64:
return new StunUInt64Attribute(type);
case STUN_VALUE_BYTE_STRING:
return new StunByteStringAttribute(type, length);
case STUN_VALUE_ERROR_CODE:
return new StunErrorCodeAttribute(type, length);
case STUN_VALUE_UINT16_LIST:
return new StunUInt16ListAttribute(type, length);
default:
return NULL;
}
}
StunAddressAttribute* StunAttribute::CreateAddress(uint16 type) {
return new StunAddressAttribute(type, 0);
}
StunXorAddressAttribute* StunAttribute::CreateXorAddress(uint16 type) {
return new StunXorAddressAttribute(type, 0, NULL);
}
StunUInt64Attribute* StunAttribute::CreateUInt64(uint16 type) {
return new StunUInt64Attribute(type);
}
StunUInt32Attribute* StunAttribute::CreateUInt32(uint16 type) {
return new StunUInt32Attribute(type);
}
StunByteStringAttribute* StunAttribute::CreateByteString(uint16 type) {
return new StunByteStringAttribute(type, 0);
}
StunErrorCodeAttribute* StunAttribute::CreateErrorCode() {
return new StunErrorCodeAttribute(
STUN_ATTR_ERROR_CODE, StunErrorCodeAttribute::MIN_SIZE);
}
StunUInt16ListAttribute* StunAttribute::CreateUnknownAttributes() {
return new StunUInt16ListAttribute(STUN_ATTR_UNKNOWN_ATTRIBUTES, 0);
}
StunAddressAttribute::StunAddressAttribute(uint16 type,
const rtc::SocketAddress& addr)
: StunAttribute(type, 0) {
SetAddress(addr);
}
StunAddressAttribute::StunAddressAttribute(uint16 type, uint16 length)
: StunAttribute(type, length) {
}
bool StunAddressAttribute::Read(ByteBuffer* buf) {
uint8 dummy;
if (!buf->ReadUInt8(&dummy))
return false;
uint8 stun_family;
if (!buf->ReadUInt8(&stun_family)) {
return false;
}
uint16 port;
if (!buf->ReadUInt16(&port))
return false;
if (stun_family == STUN_ADDRESS_IPV4) {
in_addr v4addr;
if (length() != SIZE_IP4) {
return false;
}
if (!buf->ReadBytes(reinterpret_cast<char*>(&v4addr), sizeof(v4addr))) {
return false;
}
rtc::IPAddress ipaddr(v4addr);
SetAddress(rtc::SocketAddress(ipaddr, port));
} else if (stun_family == STUN_ADDRESS_IPV6) {
in6_addr v6addr;
if (length() != SIZE_IP6) {
return false;
}
if (!buf->ReadBytes(reinterpret_cast<char*>(&v6addr), sizeof(v6addr))) {
return false;
}
rtc::IPAddress ipaddr(v6addr);
SetAddress(rtc::SocketAddress(ipaddr, port));
} else {
return false;
}
return true;
}
bool StunAddressAttribute::Write(ByteBuffer* buf) const {
StunAddressFamily address_family = family();
if (address_family == STUN_ADDRESS_UNDEF) {
LOG(LS_ERROR) << "Error writing address attribute: unknown family.";
return false;
}
buf->WriteUInt8(0);
buf->WriteUInt8(address_family);
buf->WriteUInt16(address_.port());
switch (address_.family()) {
case AF_INET: {
in_addr v4addr = address_.ipaddr().ipv4_address();
buf->WriteBytes(reinterpret_cast<char*>(&v4addr), sizeof(v4addr));
break;
}
case AF_INET6: {
in6_addr v6addr = address_.ipaddr().ipv6_address();
buf->WriteBytes(reinterpret_cast<char*>(&v6addr), sizeof(v6addr));
break;
}
}
return true;
}
StunXorAddressAttribute::StunXorAddressAttribute(uint16 type,
const rtc::SocketAddress& addr)
: StunAddressAttribute(type, addr), owner_(NULL) {
}
StunXorAddressAttribute::StunXorAddressAttribute(uint16 type,
uint16 length,
StunMessage* owner)
: StunAddressAttribute(type, length), owner_(owner) {}
rtc::IPAddress StunXorAddressAttribute::GetXoredIP() const {
if (owner_) {
rtc::IPAddress ip = ipaddr();
switch (ip.family()) {
case AF_INET: {
in_addr v4addr = ip.ipv4_address();
v4addr.s_addr =
(v4addr.s_addr ^ rtc::HostToNetwork32(kStunMagicCookie));
return rtc::IPAddress(v4addr);
}
case AF_INET6: {
in6_addr v6addr = ip.ipv6_address();
const std::string& transaction_id = owner_->transaction_id();
if (transaction_id.length() == kStunTransactionIdLength) {
uint32 transactionid_as_ints[3];
memcpy(&transactionid_as_ints[0], transaction_id.c_str(),
transaction_id.length());
uint32* ip_as_ints = reinterpret_cast<uint32*>(&v6addr.s6_addr);
// Transaction ID is in network byte order, but magic cookie
// is stored in host byte order.
ip_as_ints[0] =
(ip_as_ints[0] ^ rtc::HostToNetwork32(kStunMagicCookie));
ip_as_ints[1] = (ip_as_ints[1] ^ transactionid_as_ints[0]);
ip_as_ints[2] = (ip_as_ints[2] ^ transactionid_as_ints[1]);
ip_as_ints[3] = (ip_as_ints[3] ^ transactionid_as_ints[2]);
return rtc::IPAddress(v6addr);
}
break;
}
}
}
// Invalid ip family or transaction ID, or missing owner.
// Return an AF_UNSPEC address.
return rtc::IPAddress();
}
bool StunXorAddressAttribute::Read(ByteBuffer* buf) {
if (!StunAddressAttribute::Read(buf))
return false;
uint16 xoredport = port() ^ (kStunMagicCookie >> 16);
rtc::IPAddress xored_ip = GetXoredIP();
SetAddress(rtc::SocketAddress(xored_ip, xoredport));
return true;
}
bool StunXorAddressAttribute::Write(ByteBuffer* buf) const {
StunAddressFamily address_family = family();
if (address_family == STUN_ADDRESS_UNDEF) {
LOG(LS_ERROR) << "Error writing xor-address attribute: unknown family.";
return false;
}
rtc::IPAddress xored_ip = GetXoredIP();
if (xored_ip.family() == AF_UNSPEC) {
return false;
}
buf->WriteUInt8(0);
buf->WriteUInt8(family());
buf->WriteUInt16(port() ^ (kStunMagicCookie >> 16));
switch (xored_ip.family()) {
case AF_INET: {
in_addr v4addr = xored_ip.ipv4_address();
buf->WriteBytes(reinterpret_cast<const char*>(&v4addr), sizeof(v4addr));
break;
}
case AF_INET6: {
in6_addr v6addr = xored_ip.ipv6_address();
buf->WriteBytes(reinterpret_cast<const char*>(&v6addr), sizeof(v6addr));
break;
}
}
return true;
}
StunUInt32Attribute::StunUInt32Attribute(uint16 type, uint32 value)
: StunAttribute(type, SIZE), bits_(value) {
}
StunUInt32Attribute::StunUInt32Attribute(uint16 type)
: StunAttribute(type, SIZE), bits_(0) {
}
bool StunUInt32Attribute::GetBit(size_t index) const {
ASSERT(index < 32);
return static_cast<bool>((bits_ >> index) & 0x1);
}
void StunUInt32Attribute::SetBit(size_t index, bool value) {
ASSERT(index < 32);
bits_ &= ~(1 << index);
bits_ |= value ? (1 << index) : 0;
}
bool StunUInt32Attribute::Read(ByteBuffer* buf) {
if (length() != SIZE || !buf->ReadUInt32(&bits_))
return false;
return true;
}
bool StunUInt32Attribute::Write(ByteBuffer* buf) const {
buf->WriteUInt32(bits_);
return true;
}
StunUInt64Attribute::StunUInt64Attribute(uint16 type, uint64 value)
: StunAttribute(type, SIZE), bits_(value) {
}
StunUInt64Attribute::StunUInt64Attribute(uint16 type)
: StunAttribute(type, SIZE), bits_(0) {
}
bool StunUInt64Attribute::Read(ByteBuffer* buf) {
if (length() != SIZE || !buf->ReadUInt64(&bits_))
return false;
return true;
}
bool StunUInt64Attribute::Write(ByteBuffer* buf) const {
buf->WriteUInt64(bits_);
return true;
}
StunByteStringAttribute::StunByteStringAttribute(uint16 type)
: StunAttribute(type, 0), bytes_(NULL) {
}
StunByteStringAttribute::StunByteStringAttribute(uint16 type,
const std::string& str)
: StunAttribute(type, 0), bytes_(NULL) {
CopyBytes(str.c_str(), str.size());
}
StunByteStringAttribute::StunByteStringAttribute(uint16 type,
const void* bytes,
size_t length)
: StunAttribute(type, 0), bytes_(NULL) {
CopyBytes(bytes, length);
}
StunByteStringAttribute::StunByteStringAttribute(uint16 type, uint16 length)
: StunAttribute(type, length), bytes_(NULL) {
}
StunByteStringAttribute::~StunByteStringAttribute() {
delete [] bytes_;
}
void StunByteStringAttribute::CopyBytes(const char* bytes) {
CopyBytes(bytes, strlen(bytes));
}
void StunByteStringAttribute::CopyBytes(const void* bytes, size_t length) {
char* new_bytes = new char[length];
memcpy(new_bytes, bytes, length);
SetBytes(new_bytes, length);
}
uint8 StunByteStringAttribute::GetByte(size_t index) const {
ASSERT(bytes_ != NULL);
ASSERT(index < length());
return static_cast<uint8>(bytes_[index]);
}
void StunByteStringAttribute::SetByte(size_t index, uint8 value) {
ASSERT(bytes_ != NULL);
ASSERT(index < length());
bytes_[index] = value;
}
bool StunByteStringAttribute::Read(ByteBuffer* buf) {
bytes_ = new char[length()];
if (!buf->ReadBytes(bytes_, length())) {
return false;
}
ConsumePadding(buf);
return true;
}
bool StunByteStringAttribute::Write(ByteBuffer* buf) const {
buf->WriteBytes(bytes_, length());
WritePadding(buf);
return true;
}
void StunByteStringAttribute::SetBytes(char* bytes, size_t length) {
delete [] bytes_;
bytes_ = bytes;
SetLength(static_cast<uint16>(length));
}
StunErrorCodeAttribute::StunErrorCodeAttribute(uint16 type, int code,
const std::string& reason)
: StunAttribute(type, 0) {
SetCode(code);
SetReason(reason);
}
StunErrorCodeAttribute::StunErrorCodeAttribute(uint16 type, uint16 length)
: StunAttribute(type, length), class_(0), number_(0) {
}
StunErrorCodeAttribute::~StunErrorCodeAttribute() {
}
int StunErrorCodeAttribute::code() const {
return class_ * 100 + number_;
}
void StunErrorCodeAttribute::SetCode(int code) {
class_ = static_cast<uint8>(code / 100);
number_ = static_cast<uint8>(code % 100);
}
void StunErrorCodeAttribute::SetReason(const std::string& reason) {
SetLength(MIN_SIZE + static_cast<uint16>(reason.size()));
reason_ = reason;
}
bool StunErrorCodeAttribute::Read(ByteBuffer* buf) {
uint32 val;
if (length() < MIN_SIZE || !buf->ReadUInt32(&val))
return false;
if ((val >> 11) != 0)
LOG(LS_ERROR) << "error-code bits not zero";
class_ = ((val >> 8) & 0x7);
number_ = (val & 0xff);
if (!buf->ReadString(&reason_, length() - 4))
return false;
ConsumePadding(buf);
return true;
}
bool StunErrorCodeAttribute::Write(ByteBuffer* buf) const {
buf->WriteUInt32(class_ << 8 | number_);
buf->WriteString(reason_);
WritePadding(buf);
return true;
}
StunUInt16ListAttribute::StunUInt16ListAttribute(uint16 type, uint16 length)
: StunAttribute(type, length) {
attr_types_ = new std::vector<uint16>();
}
StunUInt16ListAttribute::~StunUInt16ListAttribute() {
delete attr_types_;
}
size_t StunUInt16ListAttribute::Size() const {
return attr_types_->size();
}
uint16 StunUInt16ListAttribute::GetType(int index) const {
return (*attr_types_)[index];
}
void StunUInt16ListAttribute::SetType(int index, uint16 value) {
(*attr_types_)[index] = value;
}
void StunUInt16ListAttribute::AddType(uint16 value) {
attr_types_->push_back(value);
SetLength(static_cast<uint16>(attr_types_->size() * 2));
}
bool StunUInt16ListAttribute::Read(ByteBuffer* buf) {
if (length() % 2)
return false;
for (size_t i = 0; i < length() / 2; i++) {
uint16 attr;
if (!buf->ReadUInt16(&attr))
return false;
attr_types_->push_back(attr);
}
// Padding of these attributes is done in RFC 5389 style. This is
// slightly different from RFC3489, but it shouldn't be important.
// RFC3489 pads out to a 32 bit boundary by duplicating one of the
// entries in the list (not necessarily the last one - it's unspecified).
// RFC5389 pads on the end, and the bytes are always ignored.
ConsumePadding(buf);
return true;
}
bool StunUInt16ListAttribute::Write(ByteBuffer* buf) const {
for (size_t i = 0; i < attr_types_->size(); ++i) {
buf->WriteUInt16((*attr_types_)[i]);
}
WritePadding(buf);
return true;
}
int GetStunSuccessResponseType(int req_type) {
return IsStunRequestType(req_type) ? (req_type | 0x100) : -1;
}
int GetStunErrorResponseType(int req_type) {
return IsStunRequestType(req_type) ? (req_type | 0x110) : -1;
}
bool IsStunRequestType(int msg_type) {
return ((msg_type & kStunTypeMask) == 0x000);
}
bool IsStunIndicationType(int msg_type) {
return ((msg_type & kStunTypeMask) == 0x010);
}
bool IsStunSuccessResponseType(int msg_type) {
return ((msg_type & kStunTypeMask) == 0x100);
}
bool IsStunErrorResponseType(int msg_type) {
return ((msg_type & kStunTypeMask) == 0x110);
}
bool ComputeStunCredentialHash(const std::string& username,
const std::string& realm,
const std::string& password,
std::string* hash) {
// http://tools.ietf.org/html/rfc5389#section-15.4
// long-term credentials will be calculated using the key and key is
// key = MD5(username ":" realm ":" SASLprep(password))
std::string input = username;
input += ':';
input += realm;
input += ':';
input += password;
char digest[rtc::MessageDigest::kMaxSize];
size_t size = rtc::ComputeDigest(
rtc::DIGEST_MD5, input.c_str(), input.size(),
digest, sizeof(digest));
if (size == 0) {
return false;
}
*hash = std::string(digest, size);
return true;
}
} // namespace cricket