blob: 18311c6e8cd6457c4b48806f1735a2d9f381c23c [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_format_h264.h"
#include <memory>
#include <vector>
#include "absl/algorithm/container.h"
#include "api/array_view.h"
#include "common_video/h264/h264_common.h"
#include "modules/rtp_rtcp/mocks/mock_rtp_rtcp.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::IsEmpty;
using ::testing::SizeIs;
constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr;
constexpr size_t kMaxPayloadSize = 1200;
constexpr size_t kLengthFieldLength = 2;
constexpr RtpPacketizer::PayloadSizeLimits kNoLimits;
enum Nalu {
kSlice = 1,
kIdr = 5,
kSei = 6,
kSps = 7,
kPps = 8,
kStapA = 24,
kFuA = 28
};
static const size_t kNalHeaderSize = 1;
static const size_t kFuAHeaderSize = 2;
// Creates Buffer that looks like nal unit of given size.
rtc::Buffer GenerateNalUnit(size_t size) {
RTC_CHECK_GT(size, 0);
rtc::Buffer buffer(size);
// Set some valid header.
buffer[0] = kSlice;
for (size_t i = 1; i < size; ++i) {
buffer[i] = static_cast<uint8_t>(i);
}
// Last byte shouldn't be 0, or it may be counted as part of next 4-byte start
// sequence.
buffer[size - 1] |= 0x10;
return buffer;
}
// Create frame consisting of nalus of given size.
rtc::Buffer CreateFrame(std::initializer_list<size_t> nalu_sizes) {
static constexpr int kStartCodeSize = 3;
rtc::Buffer frame(absl::c_accumulate(nalu_sizes, size_t{0}) +
kStartCodeSize * nalu_sizes.size());
size_t offset = 0;
for (size_t nalu_size : nalu_sizes) {
EXPECT_GE(nalu_size, 1u);
// Insert nalu start code
frame[offset] = 0;
frame[offset + 1] = 0;
frame[offset + 2] = 1;
// Set some valid header.
frame[offset + 3] = 1;
// Fill payload avoiding accidental start codes
if (nalu_size > 1) {
memset(frame.data() + offset + 4, 0x3f, nalu_size - 1);
}
offset += (kStartCodeSize + nalu_size);
}
return frame;
}
// Create frame consisting of given nalus.
rtc::Buffer CreateFrame(rtc::ArrayView<const rtc::Buffer> nalus) {
static constexpr int kStartCodeSize = 3;
int frame_size = 0;
for (const rtc::Buffer& nalu : nalus) {
frame_size += (kStartCodeSize + nalu.size());
}
rtc::Buffer frame(frame_size);
size_t offset = 0;
for (const rtc::Buffer& nalu : nalus) {
// Insert nalu start code
frame[offset] = 0;
frame[offset + 1] = 0;
frame[offset + 2] = 1;
// Copy the nalu unit.
memcpy(frame.data() + offset + 3, nalu.data(), nalu.size());
offset += (kStartCodeSize + nalu.size());
}
return frame;
}
std::vector<RtpPacketToSend> FetchAllPackets(RtpPacketizerH264* packetizer) {
std::vector<RtpPacketToSend> result;
size_t num_packets = packetizer->NumPackets();
result.reserve(num_packets);
RtpPacketToSend packet(kNoExtensions);
while (packetizer->NextPacket(&packet)) {
result.push_back(packet);
}
EXPECT_THAT(result, SizeIs(num_packets));
return result;
}
// Tests that should work with both packetization mode 0 and
// packetization mode 1.
class RtpPacketizerH264ModeTest
: public ::testing::TestWithParam<H264PacketizationMode> {};
TEST_P(RtpPacketizerH264ModeTest, SingleNalu) {
const uint8_t frame[] = {0, 0, 1, kIdr, 0xFF};
RtpPacketizerH264 packetizer(frame, kNoLimits, GetParam());
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(1));
EXPECT_THAT(packets[0].payload(), ElementsAre(kIdr, 0xFF));
}
TEST_P(RtpPacketizerH264ModeTest, SingleNaluTwoPackets) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = kMaxPayloadSize;
rtc::Buffer nalus[] = {GenerateNalUnit(kMaxPayloadSize),
GenerateNalUnit(100)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, limits, GetParam());
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(2));
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[1]));
}
TEST_P(RtpPacketizerH264ModeTest,
SingleNaluFirstPacketReductionAppliesOnlyToFirstFragment) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 200;
limits.first_packet_reduction_len = 5;
rtc::Buffer nalus[] = {GenerateNalUnit(/*size=*/195),
GenerateNalUnit(/*size=*/200),
GenerateNalUnit(/*size=*/200)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, limits, GetParam());
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(3));
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[1]));
EXPECT_THAT(packets[2].payload(), ElementsAreArray(nalus[2]));
}
TEST_P(RtpPacketizerH264ModeTest,
SingleNaluLastPacketReductionAppliesOnlyToLastFragment) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 200;
limits.last_packet_reduction_len = 5;
rtc::Buffer nalus[] = {GenerateNalUnit(/*size=*/200),
GenerateNalUnit(/*size=*/200),
GenerateNalUnit(/*size=*/195)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, limits, GetParam());
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(3));
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[1]));
EXPECT_THAT(packets[2].payload(), ElementsAreArray(nalus[2]));
}
TEST_P(RtpPacketizerH264ModeTest,
SingleNaluFirstAndLastPacketReductionSumsForSinglePacket) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 200;
limits.first_packet_reduction_len = 20;
limits.last_packet_reduction_len = 30;
rtc::Buffer frame = CreateFrame({150});
RtpPacketizerH264 packetizer(frame, limits, GetParam());
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
EXPECT_THAT(packets, SizeIs(1));
}
INSTANTIATE_TEST_SUITE_P(
PacketMode,
RtpPacketizerH264ModeTest,
::testing::Values(H264PacketizationMode::SingleNalUnit,
H264PacketizationMode::NonInterleaved));
// Aggregation tests.
TEST(RtpPacketizerH264Test, StapA) {
rtc::Buffer nalus[] = {GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/0x123)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, kNoLimits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(1));
auto payload = packets[0].payload();
EXPECT_EQ(payload.size(),
kNalHeaderSize + 3 * kLengthFieldLength + 2 + 2 + 0x123);
EXPECT_EQ(payload[0], kStapA);
payload = payload.subview(kNalHeaderSize);
// 1st fragment.
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
ElementsAre(0, 2)); // Size.
EXPECT_THAT(payload.subview(kLengthFieldLength, 2),
ElementsAreArray(nalus[0]));
payload = payload.subview(kLengthFieldLength + 2);
// 2nd fragment.
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
ElementsAre(0, 2)); // Size.
EXPECT_THAT(payload.subview(kLengthFieldLength, 2),
ElementsAreArray(nalus[1]));
payload = payload.subview(kLengthFieldLength + 2);
// 3rd fragment.
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
ElementsAre(0x1, 0x23)); // Size.
EXPECT_THAT(payload.subview(kLengthFieldLength), ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH264Test, SingleNalUnitModeHasNoStapA) {
// This is the same setup as for the StapA test.
rtc::Buffer frame = CreateFrame({2, 2, 0x123});
RtpPacketizerH264 packetizer(frame, kNoLimits,
H264PacketizationMode::SingleNalUnit);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
// The three fragments should be returned as three packets.
ASSERT_THAT(packets, SizeIs(3));
EXPECT_EQ(packets[0].payload_size(), 2u);
EXPECT_EQ(packets[1].payload_size(), 2u);
EXPECT_EQ(packets[2].payload_size(), 0x123u);
}
TEST(RtpPacketizerH264Test, StapARespectsFirstPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1000;
limits.first_packet_reduction_len = 100;
const size_t kFirstFragmentSize =
limits.max_payload_len - limits.first_packet_reduction_len;
rtc::Buffer nalus[] = {GenerateNalUnit(/*size=*/kFirstFragmentSize),
GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/2)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, limits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(2));
// Expect 1st packet is single nalu.
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
// Expect 2nd packet is aggregate of last two fragments.
EXPECT_THAT(packets[1].payload(),
ElementsAre(kStapA, //
0, 2, nalus[1][0], nalus[1][1], //
0, 2, nalus[2][0], nalus[2][1]));
}
TEST(RtpPacketizerH264Test, StapARespectsSinglePacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1000;
// It is possible for single_packet_reduction_len to be greater than
// first_packet_reduction_len + last_packet_reduction_len. Check that the
// right limit is used when first and last fragment go to one packet.
limits.first_packet_reduction_len = 4;
limits.last_packet_reduction_len = 0;
limits.single_packet_reduction_len = 8;
// 3 fragments of sizes 2 + 2 + 981, plus 7 bytes of headers, is expected to
// be packetized to single packet of size 992.
rtc::Buffer first_nalus[] = {GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/981)};
rtc::Buffer first_frame = CreateFrame(first_nalus);
RtpPacketizerH264 first_packetizer(first_frame, limits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&first_packetizer);
// Expect that everything fits in a single packet.
ASSERT_THAT(packets, SizeIs(1));
EXPECT_EQ(packets[0].payload_size(), 992u);
// Increasing the last fragment size by one exceeds
// single_packet_reduction_len and produces two packets.
rtc::Buffer second_nalus[] = {GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/982)};
rtc::Buffer second_frame = CreateFrame(second_nalus);
RtpPacketizerH264 second_packetizer(second_frame, limits,
H264PacketizationMode::NonInterleaved);
packets = FetchAllPackets(&second_packetizer);
ASSERT_THAT(packets, SizeIs(2));
}
TEST(RtpPacketizerH264Test, StapARespectsLastPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1000;
limits.last_packet_reduction_len = 100;
const size_t kFirstFragmentSize = 1000;
const size_t kLastFragmentSize =
limits.max_payload_len - limits.last_packet_reduction_len + 1;
rtc::Buffer nalus[] = {GenerateNalUnit(/*size=*/kFirstFragmentSize),
GenerateNalUnit(/*size=*/kLastFragmentSize)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, limits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(3));
// Expect 1st packet contains first fragment.
EXPECT_THAT(packets[0].payload()[0], kSlice);
// Expect 2nd and 3rd packets to be FU-A since last_packet_reduction_len
// was exceeded by one byte.
EXPECT_THAT(packets[1].payload()[0], kFuA);
EXPECT_THAT(packets[2].payload()[0], kFuA);
}
TEST(RtpPacketizerH264Test, TooSmallForStapAHeaders) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1000;
const size_t kLastFragmentSize =
limits.max_payload_len - 3 * kLengthFieldLength - 4;
rtc::Buffer nalus[] = {GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/2),
GenerateNalUnit(/*size=*/kLastFragmentSize)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, limits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(2));
// Expect 1st packet is aggregate of 1st two fragments.
EXPECT_THAT(packets[0].payload(),
ElementsAre(kStapA, //
0, 2, nalus[0][0], nalus[0][1], //
0, 2, nalus[1][0], nalus[1][1]));
// Expect 2nd packet is single nalu.
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[2]));
}
// Fragmentation + aggregation.
TEST(RtpPacketizerH264Test, MixedStapAFUA) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 100;
const size_t kFuaPayloadSize = 70;
const size_t kFuaNaluSize = kNalHeaderSize + 2 * kFuaPayloadSize;
const size_t kStapANaluSize = 20;
rtc::Buffer nalus[] = {GenerateNalUnit(kFuaNaluSize),
GenerateNalUnit(kStapANaluSize),
GenerateNalUnit(kStapANaluSize)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH264 packetizer(frame, limits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(3));
// First expect two FU-A packets.
EXPECT_THAT(packets[0].payload().subview(0, kFuAHeaderSize),
ElementsAre(kFuA, kH264SBit | nalus[0][0]));
EXPECT_THAT(
packets[0].payload().subview(kFuAHeaderSize),
ElementsAreArray(nalus[0].data() + kNalHeaderSize, kFuaPayloadSize));
EXPECT_THAT(packets[1].payload().subview(0, kFuAHeaderSize),
ElementsAre(kFuA, kH264EBit | nalus[0][0]));
EXPECT_THAT(
packets[1].payload().subview(kFuAHeaderSize),
ElementsAreArray(nalus[0].data() + kNalHeaderSize + kFuaPayloadSize,
kFuaPayloadSize));
// Then expect one STAP-A packet with two nal units.
EXPECT_THAT(packets[2].payload()[0], kStapA);
auto payload = packets[2].payload().subview(kNalHeaderSize);
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
ElementsAre(0, kStapANaluSize));
EXPECT_THAT(payload.subview(kLengthFieldLength, kStapANaluSize),
ElementsAreArray(nalus[1]));
payload = payload.subview(kLengthFieldLength + kStapANaluSize);
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
ElementsAre(0, kStapANaluSize));
EXPECT_THAT(payload.subview(kLengthFieldLength), ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH264Test, LastFragmentFitsInSingleButNotLastPacket) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1178;
limits.first_packet_reduction_len = 0;
limits.last_packet_reduction_len = 20;
limits.single_packet_reduction_len = 20;
// Actual sizes, which triggered this bug.
rtc::Buffer frame = CreateFrame({20, 8, 18, 1161});
RtpPacketizerH264 packetizer(frame, limits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
// Last packet has to be of correct size.
// Incorrect implementation might miss this constraint and not split the last
// fragment in two packets.
EXPECT_LE(static_cast<int>(packets.back().payload_size()),
limits.max_payload_len - limits.last_packet_reduction_len);
}
// Splits frame with payload size `frame_payload_size` without fragmentation,
// Returns sizes of the payloads excluding fua headers.
std::vector<int> TestFua(size_t frame_payload_size,
const RtpPacketizer::PayloadSizeLimits& limits) {
rtc::Buffer nalu[] = {GenerateNalUnit(kNalHeaderSize + frame_payload_size)};
rtc::Buffer frame = CreateFrame(nalu);
RtpPacketizerH264 packetizer(frame, limits,
H264PacketizationMode::NonInterleaved);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
EXPECT_GE(packets.size(), 2u); // Single packet indicates it is not FuA.
std::vector<uint16_t> fua_header;
std::vector<int> payload_sizes;
for (const RtpPacketToSend& packet : packets) {
auto payload = packet.payload();
EXPECT_GT(payload.size(), kFuAHeaderSize);
fua_header.push_back((payload[0] << 8) | payload[1]);
payload_sizes.push_back(payload.size() - kFuAHeaderSize);
}
EXPECT_TRUE(fua_header.front() & kH264SBit);
EXPECT_TRUE(fua_header.back() & kH264EBit);
// Clear S and E bits before testing all are duplicating same original header.
fua_header.front() &= ~kH264SBit;
fua_header.back() &= ~kH264EBit;
EXPECT_THAT(fua_header, Each(Eq((kFuA << 8) | nalu[0][0])));
return payload_sizes;
}
// Fragmentation tests.
TEST(RtpPacketizerH264Test, FUAOddSize) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
EXPECT_THAT(TestFua(1200, limits), ElementsAre(600, 600));
}
TEST(RtpPacketizerH264Test, FUAWithFirstPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
limits.first_packet_reduction_len = 4;
limits.single_packet_reduction_len = 4;
EXPECT_THAT(TestFua(1198, limits), ElementsAre(597, 601));
}
TEST(RtpPacketizerH264Test, FUAWithLastPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
limits.last_packet_reduction_len = 4;
limits.single_packet_reduction_len = 4;
EXPECT_THAT(TestFua(1198, limits), ElementsAre(601, 597));
}
TEST(RtpPacketizerH264Test, FUAWithSinglePacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1199;
limits.single_packet_reduction_len = 200;
EXPECT_THAT(TestFua(1000, limits), ElementsAre(500, 500));
}
TEST(RtpPacketizerH264Test, FUAEvenSize) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
EXPECT_THAT(TestFua(1201, limits), ElementsAre(600, 601));
}
TEST(RtpPacketizerH264Test, FUARounding) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1448;
EXPECT_THAT(TestFua(10123, limits),
ElementsAre(1265, 1265, 1265, 1265, 1265, 1266, 1266, 1266));
}
TEST(RtpPacketizerH264Test, FUABig) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
// Generate 10 full sized packets, leave room for FU-A headers.
EXPECT_THAT(
TestFua(10 * (1200 - kFuAHeaderSize), limits),
ElementsAre(1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198));
}
TEST(RtpPacketizerH264Test, RejectsOverlongDataInPacketizationMode0) {
RtpPacketizer::PayloadSizeLimits limits;
rtc::Buffer frame = CreateFrame({kMaxPayloadSize + 1});
RtpPacketizerH264 packetizer(frame, limits,
H264PacketizationMode::SingleNalUnit);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
EXPECT_THAT(packets, IsEmpty());
}
} // namespace
} // namespace webrtc