blob: aa4316de28b67f1847c2d28e1222dddab9dba6de [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/gain_control_impl.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/optional.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/agc/legacy/gain_control.h"
namespace webrtc {
typedef void Handle;
namespace {
int16_t MapSetting(GainControl::Mode mode) {
switch (mode) {
case GainControl::kAdaptiveAnalog:
return kAgcModeAdaptiveAnalog;
case GainControl::kAdaptiveDigital:
return kAgcModeAdaptiveDigital;
case GainControl::kFixedDigital:
return kAgcModeFixedDigital;
}
RTC_DCHECK(false);
return -1;
}
// Maximum length that a frame of samples can have.
static const size_t kMaxAllowedValuesOfSamplesPerFrame = 160;
// Maximum number of frames to buffer in the render queue.
// TODO(peah): Decrease this once we properly handle hugely unbalanced
// reverse and forward call numbers.
static const size_t kMaxNumFramesToBuffer = 100;
} // namespace
class GainControlImpl::GainController {
public:
explicit GainController() {
state_ = WebRtcAgc_Create();
RTC_CHECK(state_);
}
~GainController() {
RTC_DCHECK(state_);
WebRtcAgc_Free(state_);
}
Handle* state() {
RTC_DCHECK(state_);
return state_;
}
void Initialize(int minimum_capture_level,
int maximum_capture_level,
Mode mode,
int sample_rate_hz,
int capture_level) {
RTC_DCHECK(state_);
int error =
WebRtcAgc_Init(state_, minimum_capture_level, maximum_capture_level,
MapSetting(mode), sample_rate_hz);
RTC_DCHECK_EQ(0, error);
set_capture_level(capture_level);
}
void set_capture_level(int capture_level) {
capture_level_ = rtc::Optional<int>(capture_level);
}
int get_capture_level() {
RTC_DCHECK(capture_level_);
return *capture_level_;
}
private:
Handle* state_;
// TODO(peah): Remove the optional once the initialization is moved into the
// ctor.
rtc::Optional<int> capture_level_;
RTC_DISALLOW_COPY_AND_ASSIGN(GainController);
};
GainControlImpl::GainControlImpl(rtc::CriticalSection* crit_render,
rtc::CriticalSection* crit_capture)
: crit_render_(crit_render),
crit_capture_(crit_capture),
mode_(kAdaptiveAnalog),
minimum_capture_level_(0),
maximum_capture_level_(255),
limiter_enabled_(true),
target_level_dbfs_(3),
compression_gain_db_(9),
analog_capture_level_(0),
was_analog_level_set_(false),
stream_is_saturated_(false),
render_queue_element_max_size_(0) {
RTC_DCHECK(crit_render);
RTC_DCHECK(crit_capture);
}
GainControlImpl::~GainControlImpl() {}
int GainControlImpl::ProcessRenderAudio(AudioBuffer* audio) {
rtc::CritScope cs(crit_render_);
if (!enabled_) {
return AudioProcessing::kNoError;
}
RTC_DCHECK_GE(160u, audio->num_frames_per_band());
render_queue_buffer_.resize(0);
for (auto& gain_controller : gain_controllers_) {
int err = WebRtcAgc_GetAddFarendError(gain_controller->state(),
audio->num_frames_per_band());
if (err != AudioProcessing::kNoError) {
return AudioProcessing::kUnspecifiedError;
}
// Buffer the samples in the render queue.
render_queue_buffer_.insert(
render_queue_buffer_.end(), audio->mixed_low_pass_data(),
(audio->mixed_low_pass_data() + audio->num_frames_per_band()));
}
// Insert the samples into the queue.
if (!render_signal_queue_->Insert(&render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
ReadQueuedRenderData();
// Retry the insert (should always work).
RTC_DCHECK_EQ(render_signal_queue_->Insert(&render_queue_buffer_), true);
}
return AudioProcessing::kNoError;
}
// Read chunks of data that were received and queued on the render side from
// a queue. All the data chunks are buffered into the farend signal of the AGC.
void GainControlImpl::ReadQueuedRenderData() {
rtc::CritScope cs(crit_capture_);
if (!enabled_) {
return;
}
while (render_signal_queue_->Remove(&capture_queue_buffer_)) {
size_t buffer_index = 0;
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK_LT(0ul, *num_proc_channels_);
const size_t num_frames_per_band =
capture_queue_buffer_.size() / (*num_proc_channels_);
for (auto& gain_controller : gain_controllers_) {
WebRtcAgc_AddFarend(gain_controller->state(),
&capture_queue_buffer_[buffer_index],
num_frames_per_band);
buffer_index += num_frames_per_band;
}
}
}
int GainControlImpl::AnalyzeCaptureAudio(AudioBuffer* audio) {
rtc::CritScope cs(crit_capture_);
if (!enabled_) {
return AudioProcessing::kNoError;
}
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK_GE(160u, audio->num_frames_per_band());
RTC_DCHECK_EQ(audio->num_channels(), *num_proc_channels_);
RTC_DCHECK_LE(*num_proc_channels_, gain_controllers_.size());
if (mode_ == kAdaptiveAnalog) {
int capture_channel = 0;
for (auto& gain_controller : gain_controllers_) {
gain_controller->set_capture_level(analog_capture_level_);
int err = WebRtcAgc_AddMic(
gain_controller->state(), audio->split_bands(capture_channel),
audio->num_bands(), audio->num_frames_per_band());
if (err != AudioProcessing::kNoError) {
return AudioProcessing::kUnspecifiedError;
}
++capture_channel;
}
} else if (mode_ == kAdaptiveDigital) {
int capture_channel = 0;
for (auto& gain_controller : gain_controllers_) {
int32_t capture_level_out = 0;
int err = WebRtcAgc_VirtualMic(
gain_controller->state(), audio->split_bands(capture_channel),
audio->num_bands(), audio->num_frames_per_band(),
analog_capture_level_, &capture_level_out);
gain_controller->set_capture_level(capture_level_out);
if (err != AudioProcessing::kNoError) {
return AudioProcessing::kUnspecifiedError;
}
++capture_channel;
}
}
return AudioProcessing::kNoError;
}
int GainControlImpl::ProcessCaptureAudio(AudioBuffer* audio,
bool stream_has_echo) {
rtc::CritScope cs(crit_capture_);
if (!enabled_) {
return AudioProcessing::kNoError;
}
if (mode_ == kAdaptiveAnalog && !was_analog_level_set_) {
return AudioProcessing::kStreamParameterNotSetError;
}
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK_GE(160u, audio->num_frames_per_band());
RTC_DCHECK_EQ(audio->num_channels(), *num_proc_channels_);
stream_is_saturated_ = false;
int capture_channel = 0;
for (auto& gain_controller : gain_controllers_) {
int32_t capture_level_out = 0;
uint8_t saturation_warning = 0;
// The call to stream_has_echo() is ok from a deadlock perspective
// as the capture lock is allready held.
int err = WebRtcAgc_Process(
gain_controller->state(), audio->split_bands_const(capture_channel),
audio->num_bands(), audio->num_frames_per_band(),
audio->split_bands(capture_channel),
gain_controller->get_capture_level(), &capture_level_out,
stream_has_echo, &saturation_warning);
if (err != AudioProcessing::kNoError) {
return AudioProcessing::kUnspecifiedError;
}
gain_controller->set_capture_level(capture_level_out);
if (saturation_warning == 1) {
stream_is_saturated_ = true;
}
++capture_channel;
}
RTC_DCHECK_LT(0ul, *num_proc_channels_);
if (mode_ == kAdaptiveAnalog) {
// Take the analog level to be the average across the handles.
analog_capture_level_ = 0;
for (auto& gain_controller : gain_controllers_) {
analog_capture_level_ += gain_controller->get_capture_level();
}
analog_capture_level_ /= (*num_proc_channels_);
}
was_analog_level_set_ = false;
return AudioProcessing::kNoError;
}
int GainControlImpl::compression_gain_db() const {
rtc::CritScope cs(crit_capture_);
return compression_gain_db_;
}
// TODO(ajm): ensure this is called under kAdaptiveAnalog.
int GainControlImpl::set_stream_analog_level(int level) {
rtc::CritScope cs(crit_capture_);
was_analog_level_set_ = true;
if (level < minimum_capture_level_ || level > maximum_capture_level_) {
return AudioProcessing::kBadParameterError;
}
analog_capture_level_ = level;
return AudioProcessing::kNoError;
}
int GainControlImpl::stream_analog_level() {
rtc::CritScope cs(crit_capture_);
// TODO(ajm): enable this assertion?
//RTC_DCHECK_EQ(kAdaptiveAnalog, mode_);
return analog_capture_level_;
}
int GainControlImpl::Enable(bool enable) {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
if (enable && !enabled_) {
enabled_ = enable; // Must be set before Initialize() is called.
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK(sample_rate_hz_);
Initialize(*num_proc_channels_, *sample_rate_hz_);
} else {
enabled_ = enable;
}
return AudioProcessing::kNoError;
}
bool GainControlImpl::is_enabled() const {
rtc::CritScope cs(crit_capture_);
return enabled_;
}
int GainControlImpl::set_mode(Mode mode) {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
if (MapSetting(mode) == -1) {
return AudioProcessing::kBadParameterError;
}
mode_ = mode;
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK(sample_rate_hz_);
Initialize(*num_proc_channels_, *sample_rate_hz_);
return AudioProcessing::kNoError;
}
GainControl::Mode GainControlImpl::mode() const {
rtc::CritScope cs(crit_capture_);
return mode_;
}
int GainControlImpl::set_analog_level_limits(int minimum,
int maximum) {
if (minimum < 0) {
return AudioProcessing::kBadParameterError;
}
if (maximum > 65535) {
return AudioProcessing::kBadParameterError;
}
if (maximum < minimum) {
return AudioProcessing::kBadParameterError;
}
size_t num_proc_channels_local = 0u;
int sample_rate_hz_local = 0;
{
rtc::CritScope cs(crit_capture_);
minimum_capture_level_ = minimum;
maximum_capture_level_ = maximum;
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK(sample_rate_hz_);
num_proc_channels_local = *num_proc_channels_;
sample_rate_hz_local = *sample_rate_hz_;
}
Initialize(num_proc_channels_local, sample_rate_hz_local);
return AudioProcessing::kNoError;
}
int GainControlImpl::analog_level_minimum() const {
rtc::CritScope cs(crit_capture_);
return minimum_capture_level_;
}
int GainControlImpl::analog_level_maximum() const {
rtc::CritScope cs(crit_capture_);
return maximum_capture_level_;
}
bool GainControlImpl::stream_is_saturated() const {
rtc::CritScope cs(crit_capture_);
return stream_is_saturated_;
}
int GainControlImpl::set_target_level_dbfs(int level) {
if (level > 31 || level < 0) {
return AudioProcessing::kBadParameterError;
}
{
rtc::CritScope cs(crit_capture_);
target_level_dbfs_ = level;
}
return Configure();
}
int GainControlImpl::target_level_dbfs() const {
rtc::CritScope cs(crit_capture_);
return target_level_dbfs_;
}
int GainControlImpl::set_compression_gain_db(int gain) {
if (gain < 0 || gain > 90) {
return AudioProcessing::kBadParameterError;
}
{
rtc::CritScope cs(crit_capture_);
compression_gain_db_ = gain;
}
return Configure();
}
int GainControlImpl::enable_limiter(bool enable) {
{
rtc::CritScope cs(crit_capture_);
limiter_enabled_ = enable;
}
return Configure();
}
bool GainControlImpl::is_limiter_enabled() const {
rtc::CritScope cs(crit_capture_);
return limiter_enabled_;
}
void GainControlImpl::Initialize(size_t num_proc_channels, int sample_rate_hz) {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
num_proc_channels_ = rtc::Optional<size_t>(num_proc_channels);
sample_rate_hz_ = rtc::Optional<int>(sample_rate_hz);
if (!enabled_) {
return;
}
gain_controllers_.resize(*num_proc_channels_);
for (auto& gain_controller : gain_controllers_) {
if (!gain_controller) {
gain_controller.reset(new GainController());
}
gain_controller->Initialize(minimum_capture_level_, maximum_capture_level_,
mode_, *sample_rate_hz_, analog_capture_level_);
}
Configure();
AllocateRenderQueue();
}
void GainControlImpl::AllocateRenderQueue() {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
RTC_DCHECK(num_proc_channels_);
const size_t new_render_queue_element_max_size = std::max<size_t>(
static_cast<size_t>(1),
kMaxAllowedValuesOfSamplesPerFrame * (*num_proc_channels_));
if (render_queue_element_max_size_ < new_render_queue_element_max_size) {
render_queue_element_max_size_ = new_render_queue_element_max_size;
std::vector<int16_t> template_queue_element(render_queue_element_max_size_);
render_signal_queue_.reset(
new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<int16_t>(render_queue_element_max_size_)));
render_queue_buffer_.resize(render_queue_element_max_size_);
capture_queue_buffer_.resize(render_queue_element_max_size_);
} else {
render_signal_queue_->Clear();
}
}
int GainControlImpl::Configure() {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
WebRtcAgcConfig config;
// TODO(ajm): Flip the sign here (since AGC expects a positive value) if we
// change the interface.
//RTC_DCHECK_LE(target_level_dbfs_, 0);
//config.targetLevelDbfs = static_cast<int16_t>(-target_level_dbfs_);
config.targetLevelDbfs = static_cast<int16_t>(target_level_dbfs_);
config.compressionGaindB =
static_cast<int16_t>(compression_gain_db_);
config.limiterEnable = limiter_enabled_;
int error = AudioProcessing::kNoError;
for (auto& gain_controller : gain_controllers_) {
const int handle_error =
WebRtcAgc_set_config(gain_controller->state(), config);
if (handle_error != AudioProcessing::kNoError) {
error = handle_error;
}
}
return error;
}
} // namespace webrtc