blob: ac681b3619471c40b2fb6a3a75a08ad584483c22 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/erle_estimator.h"
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/vector_buffer.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2;
constexpr float kTrueErle = 10.f;
constexpr float kTrueErleOnsets = 1.0f;
constexpr float kEchoPathGain = 3.f;
void VerifyErleBands(rtc::ArrayView<const float> erle,
float reference_lf,
float reference_hf) {
std::for_each(
erle.begin(), erle.begin() + kLowFrequencyLimit,
[reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); });
std::for_each(
erle.begin() + kLowFrequencyLimit, erle.end(),
[reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); });
}
void VerifyErle(rtc::ArrayView<const float> erle,
float erle_time_domain,
float reference_lf,
float reference_hf) {
VerifyErleBands(erle, reference_lf, reference_hf);
EXPECT_NEAR(reference_lf, erle_time_domain, 0.5);
}
void FormFarendTimeFrame(rtc::ArrayView<float> x) {
const std::array<float, kBlockSize> frame = {
7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85,
6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2,
7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89,
7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03,
9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6,
11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8,
1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4,
12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19};
RTC_DCHECK_GE(x.size(), frame.size());
std::copy(frame.begin(), frame.end(), x.begin());
}
void FormFarendFrame(const RenderBuffer& render_buffer,
std::array<float, kFftLengthBy2Plus1>* X2,
std::array<float, kFftLengthBy2Plus1>* E2,
std::array<float, kFftLengthBy2Plus1>* Y2,
float erle) {
const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer();
const auto& X2_from_buffer = spectrum_buffer.buffer[spectrum_buffer.write];
std::copy(X2_from_buffer.begin(), X2_from_buffer.end(), X2->begin());
std::transform(X2->begin(), X2->end(), Y2->begin(),
[](float a) { return a * kEchoPathGain * kEchoPathGain; });
std::transform(Y2->begin(), Y2->end(), E2->begin(),
[erle](float a) { return a / erle; });
} // namespace
void FormNearendFrame(rtc::ArrayView<float> x,
std::array<float, kFftLengthBy2Plus1>* X2,
std::array<float, kFftLengthBy2Plus1>* E2,
std::array<float, kFftLengthBy2Plus1>* Y2) {
x[0] = 0.f;
X2->fill(0.f);
Y2->fill(500.f * 1000.f * 1000.f);
E2->fill((*Y2)[0]);
}
void GetFilterFreq(std::vector<std::array<float, kFftLengthBy2Plus1>>&
filter_frequency_response,
size_t delay_headroom_samples) {
const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize;
for (auto& block_freq_resp : filter_frequency_response) {
block_freq_resp.fill(0.f);
}
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
filter_frequency_response[delay_headroom_blocks][k] = kEchoPathGain;
}
}
} // namespace
TEST(ErleEstimator, VerifyErleIncreaseAndHold) {
std::array<float, kFftLengthBy2Plus1> X2;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> Y2;
EchoCanceller3Config config;
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::vector<std::array<float, kFftLengthBy2Plus1>> filter_frequency_response(
config.filter.main.length_blocks);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
GetFilterFreq(filter_frequency_response, config.delay.delay_headroom_samples);
ErleEstimator estimator(0, config);
FormFarendTimeFrame(x[0]);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
// Verifies that the ERLE estimate is properly increased to higher values.
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2,
kTrueErle);
for (size_t k = 0; k < 200; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.max_l, config.erle.max_h);
FormNearendFrame(x[0], &X2, &E2, &Y2);
// Verifies that the ERLE is not immediately decreased during nearend
// activity.
for (size_t k = 0; k < 50; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.max_l, config.erle.max_h);
}
TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
std::array<float, kFftLengthBy2Plus1> X2;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> Y2;
EchoCanceller3Config config;
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::vector<std::array<float, kFftLengthBy2Plus1>> filter_frequency_response(
config.filter.main.length_blocks);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
GetFilterFreq(filter_frequency_response, config.delay.delay_headroom_samples);
ErleEstimator estimator(0, config);
FormFarendTimeFrame(x[0]);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
for (size_t burst = 0; burst < 20; ++burst) {
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2,
kTrueErleOnsets);
for (size_t k = 0; k < 10; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2,
kTrueErle);
for (size_t k = 0; k < 200; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
FormNearendFrame(x[0], &X2, &E2, &Y2);
for (size_t k = 0; k < 300; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
}
VerifyErleBands(estimator.ErleOnsets(), config.erle.min, config.erle.min);
FormNearendFrame(x[0], &X2, &E2, &Y2);
for (size_t k = 0; k < 1000; k++) {
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
// Verifies that during ne activity, Erle converges to the Erle for onsets.
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.min, config.erle.min);
}
} // namespace webrtc