blob: 4dcfa1fcd9a17809b1413dfc7274cff214d407ae [file] [log] [blame]
/*
* Copyright (c) 2023 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_video/h265/h265_sps_parser.h"
#include <algorithm>
#include <memory>
#include <vector>
#include "common_video/h265/h265_common.h"
#include "rtc_base/bit_buffer.h"
#include "rtc_base/logging.h"
#define IN_RANGE_OR_RETURN_NULL(val, min, max) \
do { \
if (!reader.Ok() || (val) < (min) || (val) > (max)) { \
RTC_LOG(LS_WARNING) << "Error in stream: invalid value, expected " #val \
" to be" \
<< " in range [" << (min) << ":" << (max) << "]" \
<< " found " << (val) << " instead"; \
return absl::nullopt; \
} \
} while (0)
#define IN_RANGE_OR_RETURN_FALSE(val, min, max) \
do { \
if (!reader.Ok() || (val) < (min) || (val) > (max)) { \
RTC_LOG(LS_WARNING) << "Error in stream: invalid value, expected " #val \
" to be" \
<< " in range [" << (min) << ":" << (max) << "]" \
<< " found " << (val) << " instead"; \
return false; \
} \
} while (0)
#define TRUE_OR_RETURN(a) \
do { \
if (!reader.Ok() || !(a)) { \
RTC_LOG(LS_WARNING) << "Error in stream: invalid value, expected " \
<< #a; \
return absl::nullopt; \
} \
} while (0)
namespace {
using OptionalSps = absl::optional<webrtc::H265SpsParser::SpsState>;
using OptionalShortTermRefPicSet =
absl::optional<webrtc::H265SpsParser::ShortTermRefPicSet>;
using OptionalProfileTierLevel =
absl::optional<webrtc::H265SpsParser::ProfileTierLevel>;
constexpr int kMaxNumSizeIds = 4;
constexpr int kMaxNumMatrixIds = 6;
constexpr int kMaxNumCoefs = 64;
} // namespace
namespace webrtc {
H265SpsParser::SpsState::SpsState() = default;
H265SpsParser::ShortTermRefPicSet::ShortTermRefPicSet() = default;
H265SpsParser::ProfileTierLevel::ProfileTierLevel() = default;
int H265SpsParser::GetMaxLumaPs(int general_level_idc) {
// From Table A.8 - General tier and level limits.
// |general_level_idc| is 30x the actual level.
if (general_level_idc <= 30) // level 1
return 36864;
if (general_level_idc <= 60) // level 2
return 122880;
if (general_level_idc <= 63) // level 2.1
return 245760;
if (general_level_idc <= 90) // level 3
return 552960;
if (general_level_idc <= 93) // level 3.1
return 983040;
if (general_level_idc <= 123) // level 4, 4.1
return 2228224;
if (general_level_idc <= 156) // level 5, 5.1, 5.2
return 8912896;
// level 6, 6.1, 6.2 - beyond that there's no actual limit.
return 35651584;
}
size_t H265SpsParser::GetDpbMaxPicBuf(int general_profile_idc) {
// From A.4.2 - Profile-specific level limits for the video profiles.
// If sps_curr_pic_ref_enabled_flag is required to be zero, than this is 6
// otherwise it is 7.
return (general_profile_idc >= kProfileIdcMain &&
general_profile_idc <= kProfileIdcHighThroughput)
? 6
: 7;
}
// General note: this is based off the 08/2021 version of the H.265 standard.
// You can find it on this page:
// http://www.itu.int/rec/T-REC-H.265
// Unpack RBSP and parse SPS state from the supplied buffer.
absl::optional<H265SpsParser::SpsState> H265SpsParser::ParseSps(
const uint8_t* data,
size_t length) {
RTC_DCHECK(data);
return ParseSpsInternal(H265::ParseRbsp(data, length));
}
bool H265SpsParser::ParseScalingListData(BitstreamReader& reader) {
uint32_t scaling_list_pred_mode_flag[kMaxNumSizeIds][kMaxNumMatrixIds];
int scaling_list_pred_matrix_id_delta[kMaxNumSizeIds][kMaxNumMatrixIds];
int32_t scaling_list_dc_coef_minus8[kMaxNumSizeIds][kMaxNumMatrixIds];
int32_t scaling_list[kMaxNumSizeIds][kMaxNumMatrixIds][kMaxNumCoefs];
for (int size_id = 0; size_id < kMaxNumSizeIds; size_id++) {
for (int matrix_id = 0; matrix_id < kMaxNumMatrixIds;
matrix_id += (size_id == 3) ? 3 : 1) {
// scaling_list_pred_mode_flag: u(1)
scaling_list_pred_mode_flag[size_id][matrix_id] = reader.Read<bool>();
if (!scaling_list_pred_mode_flag[size_id][matrix_id]) {
// scaling_list_pred_matrix_id_delta: ue(v)
scaling_list_pred_matrix_id_delta[size_id][matrix_id] =
reader.ReadExponentialGolomb();
if (size_id <= 2) {
IN_RANGE_OR_RETURN_FALSE(
scaling_list_pred_matrix_id_delta[size_id][matrix_id], 0,
matrix_id);
} else { // size_id == 3
IN_RANGE_OR_RETURN_FALSE(
scaling_list_pred_matrix_id_delta[size_id][matrix_id], 0,
matrix_id / 3);
}
} else {
int32_t next_coef = 8;
uint32_t coef_num = std::min(kMaxNumCoefs, 1 << (4 + (size_id << 1)));
if (size_id > 1) {
// scaling_list_dc_coef_minus8: se(v)
scaling_list_dc_coef_minus8[size_id - 2][matrix_id] =
reader.ReadSignedExponentialGolomb();
IN_RANGE_OR_RETURN_FALSE(
scaling_list_dc_coef_minus8[size_id - 2][matrix_id], -7, 247);
next_coef = scaling_list_dc_coef_minus8[size_id - 2][matrix_id] + 8;
}
for (uint32_t i = 0; i < coef_num; i++) {
// scaling_list_delta_coef: se(v)
int32_t scaling_list_delta_coef =
reader.ReadSignedExponentialGolomb();
IN_RANGE_OR_RETURN_FALSE(scaling_list_delta_coef, -128, 127);
next_coef = (next_coef + scaling_list_delta_coef + 256) % 256;
scaling_list[size_id][matrix_id][i] = next_coef;
}
}
}
}
return reader.Ok();
}
absl::optional<H265SpsParser::ShortTermRefPicSet>
H265SpsParser::ParseShortTermRefPicSet(
uint32_t st_rps_idx,
uint32_t num_short_term_ref_pic_sets,
const std::vector<H265SpsParser::ShortTermRefPicSet>&
short_term_ref_pic_set,
uint32_t sps_max_dec_pic_buffering_minus1,
BitstreamReader& reader) {
H265SpsParser::ShortTermRefPicSet st_ref_pic_set;
bool inter_ref_pic_set_prediction_flag = false;
if (st_rps_idx != 0) {
// inter_ref_pic_set_prediction_flag: u(1)
inter_ref_pic_set_prediction_flag = reader.Read<bool>();
}
if (inter_ref_pic_set_prediction_flag) {
uint32_t delta_idx_minus1 = 0;
if (st_rps_idx == num_short_term_ref_pic_sets) {
// delta_idx_minus1: ue(v)
delta_idx_minus1 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(delta_idx_minus1, 0, st_rps_idx - 1);
}
// delta_rps_sign: u(1)
int delta_rps_sign = reader.ReadBits(1);
// abs_delta_rps_minus1: ue(v)
int abs_delta_rps_minus1 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(abs_delta_rps_minus1, 0, 0x7FFF);
int delta_rps = (1 - 2 * delta_rps_sign) * (abs_delta_rps_minus1 + 1);
uint32_t ref_rps_idx = st_rps_idx - (delta_idx_minus1 + 1);
uint32_t num_delta_pocs =
short_term_ref_pic_set[ref_rps_idx].num_delta_pocs;
RTC_CHECK_LT(num_delta_pocs, kMaxShortTermRefPicSets);
const ShortTermRefPicSet& ref_set = short_term_ref_pic_set[ref_rps_idx];
bool used_by_curr_pic_flag[kMaxShortTermRefPicSets];
bool use_delta_flag[kMaxShortTermRefPicSets];
// 7.4.8 - use_delta_flag defaults to 1 if not present.
std::fill_n(use_delta_flag, kMaxShortTermRefPicSets, true);
for (uint32_t j = 0; j <= num_delta_pocs; j++) {
// used_by_curr_pic_flag: u(1)
used_by_curr_pic_flag[j] = reader.Read<bool>();
if (!used_by_curr_pic_flag[j]) {
// use_delta_flag: u(1)
use_delta_flag[j] = reader.Read<bool>();
}
}
// Calculate delta_poc_s{0,1}, used_by_curr_pic_s{0,1}, num_negative_pics
// and num_positive_pics.
// Equation 7-61
int i = 0;
RTC_CHECK_LE(ref_set.num_negative_pics + ref_set.num_positive_pics,
kMaxShortTermRefPicSets);
for (int j = ref_set.num_positive_pics - 1; j >= 0; --j) {
int d_poc = ref_set.delta_poc_s1[j] + delta_rps;
if (d_poc < 0 && use_delta_flag[ref_set.num_negative_pics + j]) {
st_ref_pic_set.delta_poc_s0[i] = d_poc;
st_ref_pic_set.used_by_curr_pic_s0[i++] =
used_by_curr_pic_flag[ref_set.num_negative_pics + j];
}
}
if (delta_rps < 0 && use_delta_flag[ref_set.num_delta_pocs]) {
st_ref_pic_set.delta_poc_s0[i] = delta_rps;
st_ref_pic_set.used_by_curr_pic_s0[i++] =
used_by_curr_pic_flag[ref_set.num_delta_pocs];
}
for (uint32_t j = 0; j < ref_set.num_negative_pics; ++j) {
int d_poc = ref_set.delta_poc_s0[j] + delta_rps;
if (d_poc < 0 && use_delta_flag[j]) {
st_ref_pic_set.delta_poc_s0[i] = d_poc;
st_ref_pic_set.used_by_curr_pic_s0[i++] = used_by_curr_pic_flag[j];
}
}
st_ref_pic_set.num_negative_pics = i;
// Equation 7-62
i = 0;
for (int j = ref_set.num_negative_pics - 1; j >= 0; --j) {
int d_poc = ref_set.delta_poc_s0[j] + delta_rps;
if (d_poc > 0 && use_delta_flag[j]) {
st_ref_pic_set.delta_poc_s1[i] = d_poc;
st_ref_pic_set.used_by_curr_pic_s1[i++] = used_by_curr_pic_flag[j];
}
}
if (delta_rps > 0 && use_delta_flag[ref_set.num_delta_pocs]) {
st_ref_pic_set.delta_poc_s1[i] = delta_rps;
st_ref_pic_set.used_by_curr_pic_s1[i++] =
used_by_curr_pic_flag[ref_set.num_delta_pocs];
}
for (uint32_t j = 0; j < ref_set.num_positive_pics; ++j) {
int d_poc = ref_set.delta_poc_s1[j] + delta_rps;
if (d_poc > 0 && use_delta_flag[ref_set.num_negative_pics + j]) {
st_ref_pic_set.delta_poc_s1[i] = d_poc;
st_ref_pic_set.used_by_curr_pic_s1[i++] =
used_by_curr_pic_flag[ref_set.num_negative_pics + j];
}
}
st_ref_pic_set.num_positive_pics = i;
} else {
// num_negative_pics: ue(v)
st_ref_pic_set.num_negative_pics = reader.ReadExponentialGolomb();
// num_positive_pics: ue(v)
st_ref_pic_set.num_positive_pics = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(st_ref_pic_set.num_negative_pics, 0,
sps_max_dec_pic_buffering_minus1);
IN_RANGE_OR_RETURN_NULL(
st_ref_pic_set.num_positive_pics, 0,
sps_max_dec_pic_buffering_minus1 - st_ref_pic_set.num_negative_pics);
for (uint32_t i = 0; i < st_ref_pic_set.num_negative_pics; i++) {
// delta_poc_s0_minus1: ue(v)
int delta_poc_s0_minus1;
delta_poc_s0_minus1 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(delta_poc_s0_minus1, 0, 0x7FFF);
if (i == 0) {
st_ref_pic_set.delta_poc_s0[i] = -(delta_poc_s0_minus1 + 1);
} else {
st_ref_pic_set.delta_poc_s0[i] =
st_ref_pic_set.delta_poc_s0[i - 1] - (delta_poc_s0_minus1 + 1);
}
// used_by_curr_pic_s0_flag: u(1)
st_ref_pic_set.used_by_curr_pic_s0[i] = reader.Read<bool>();
}
for (uint32_t i = 0; i < st_ref_pic_set.num_positive_pics; i++) {
// delta_poc_s1_minus1: ue(v)
int delta_poc_s1_minus1;
delta_poc_s1_minus1 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(delta_poc_s1_minus1, 0, 0x7FFF);
if (i == 0) {
st_ref_pic_set.delta_poc_s1[i] = delta_poc_s1_minus1 + 1;
} else {
st_ref_pic_set.delta_poc_s1[i] =
st_ref_pic_set.delta_poc_s1[i - 1] + delta_poc_s1_minus1 + 1;
}
// used_by_curr_pic_s1_flag: u(1)
st_ref_pic_set.used_by_curr_pic_s1[i] = reader.Read<bool>();
}
}
st_ref_pic_set.num_delta_pocs =
st_ref_pic_set.num_negative_pics + st_ref_pic_set.num_positive_pics;
if (!reader.Ok()) {
return absl::nullopt;
}
return OptionalShortTermRefPicSet(st_ref_pic_set);
}
absl::optional<H265SpsParser::ProfileTierLevel>
H265SpsParser::ParseProfileTierLevel(bool profile_present,
int max_num_sub_layers_minus1,
BitstreamReader& reader) {
H265SpsParser::ProfileTierLevel pf_tier_level;
// 7.4.4
if (profile_present) {
int general_profile_space;
general_profile_space = reader.ReadBits(2);
TRUE_OR_RETURN(general_profile_space == 0);
// general_tier_flag or reserved 0: u(1)
reader.ConsumeBits(1);
pf_tier_level.general_profile_idc = reader.ReadBits(5);
IN_RANGE_OR_RETURN_NULL(pf_tier_level.general_profile_idc, 0, 11);
uint16_t general_profile_compatibility_flag_high16;
uint16_t general_profile_compatibility_flag_low16;
general_profile_compatibility_flag_high16 = reader.ReadBits(16);
general_profile_compatibility_flag_low16 = reader.ReadBits(16);
pf_tier_level.general_profile_compatibility_flags =
(general_profile_compatibility_flag_high16 << 16) +
general_profile_compatibility_flag_low16;
pf_tier_level.general_progressive_source_flag = reader.ReadBits(1);
pf_tier_level.general_interlaced_source_flag = reader.ReadBits(1);
if (!reader.Ok() || (!pf_tier_level.general_progressive_source_flag &&
pf_tier_level.general_interlaced_source_flag)) {
RTC_LOG(LS_WARNING) << "Interlaced streams not supported";
return absl::nullopt;
}
pf_tier_level.general_non_packed_constraint_flag = reader.ReadBits(1);
pf_tier_level.general_frame_only_constraint_flag = reader.ReadBits(1);
// general_reserved_zero_7bits
reader.ConsumeBits(7);
pf_tier_level.general_one_picture_only_constraint_flag = reader.ReadBits(1);
// general_reserved_zero_35bits
reader.ConsumeBits(35);
// general_inbld_flag
reader.ConsumeBits(1);
}
pf_tier_level.general_level_idc = reader.ReadBits(8);
bool sub_layer_profile_present_flag[8];
bool sub_layer_level_present_flag[8];
for (int i = 0; i < max_num_sub_layers_minus1; ++i) {
sub_layer_profile_present_flag[i] = reader.ReadBits(1);
sub_layer_level_present_flag[i] = reader.ReadBits(1);
}
if (max_num_sub_layers_minus1 > 0) {
for (int i = max_num_sub_layers_minus1; i < 8; i++) {
reader.ConsumeBits(2);
}
}
for (int i = 0; i < max_num_sub_layers_minus1; i++) {
if (sub_layer_profile_present_flag[i]) {
// sub_layer_profile_space
reader.ConsumeBits(2);
// sub_layer_tier_flag
reader.ConsumeBits(1);
// sub_layer_profile_idc
reader.ConsumeBits(5);
// sub_layer_profile_compatibility_flag
reader.ConsumeBits(32);
// sub_layer_{progressive,interlaced}_source_flag
reader.ConsumeBits(2);
// Ignore sub_layer_non_packed_constraint_flag and
// sub_layer_frame_only_constraint_flag.
reader.ConsumeBits(2);
// Skip the compatibility flags, they are always 43 bits.
reader.ConsumeBits(43);
// sub_layer_inbld_flag
reader.ConsumeBits(1);
}
if (sub_layer_level_present_flag[i]) {
// sub_layer_level_idc
reader.ConsumeBits(8);
}
}
if (!reader.Ok()) {
return absl::nullopt;
}
return OptionalProfileTierLevel(pf_tier_level);
}
absl::optional<H265SpsParser::SpsState> H265SpsParser::ParseSpsInternal(
rtc::ArrayView<const uint8_t> buffer) {
BitstreamReader reader(buffer);
// Now, we need to use a bit buffer to parse through the actual H265 SPS
// format. See Section 7.3.2.2.1 ("General sequence parameter set data
// syntax") of the H.265 standard for a complete description.
// Since we only care about resolution, we ignore the majority of fields, but
// we still have to actively parse through a lot of the data, since many of
// the fields have variable size.
// We're particularly interested in:
// chroma_format_idc -> affects crop units
// pic_{width,height}_* -> resolution of the frame in macroblocks (16x16).
// frame_crop_*_offset -> crop information
SpsState sps;
// sps_video_parameter_set_id: u(4)
uint32_t sps_video_parameter_set_id = 0;
sps_video_parameter_set_id = reader.ReadBits(4);
IN_RANGE_OR_RETURN_NULL(sps_video_parameter_set_id, 0, 15);
// sps_max_sub_layers_minus1: u(3)
uint32_t sps_max_sub_layers_minus1 = 0;
sps_max_sub_layers_minus1 = reader.ReadBits(3);
IN_RANGE_OR_RETURN_NULL(sps_max_sub_layers_minus1, 0, kMaxSubLayers - 1);
sps.sps_max_sub_layers_minus1 = sps_max_sub_layers_minus1;
// sps_temporal_id_nesting_flag: u(1)
reader.ConsumeBits(1);
// profile_tier_level(1, sps_max_sub_layers_minus1).
OptionalProfileTierLevel profile_tier_level =
ParseProfileTierLevel(true, sps.sps_max_sub_layers_minus1, reader);
if (!profile_tier_level) {
return absl::nullopt;
}
// sps_seq_parameter_set_id: ue(v)
sps.sps_id = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.sps_id, 0, 15);
// chrome_format_idc: ue(v)
sps.chroma_format_idc = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.chroma_format_idc, 0, 3);
if (sps.chroma_format_idc == 3) {
// seperate_colour_plane_flag: u(1)
sps.separate_colour_plane_flag = reader.Read<bool>();
}
uint32_t pic_width_in_luma_samples = 0;
uint32_t pic_height_in_luma_samples = 0;
// pic_width_in_luma_samples: ue(v)
pic_width_in_luma_samples = reader.ReadExponentialGolomb();
TRUE_OR_RETURN(pic_width_in_luma_samples != 0);
// pic_height_in_luma_samples: ue(v)
pic_height_in_luma_samples = reader.ReadExponentialGolomb();
TRUE_OR_RETURN(pic_height_in_luma_samples != 0);
// Equation A-2: Calculate max_dpb_size.
uint32_t max_luma_ps = GetMaxLumaPs(profile_tier_level->general_level_idc);
uint32_t max_dpb_size;
uint32_t pic_size_in_samples_y = pic_height_in_luma_samples;
pic_size_in_samples_y *= pic_width_in_luma_samples;
size_t max_dpb_pic_buf =
GetDpbMaxPicBuf(profile_tier_level->general_profile_idc);
if (pic_size_in_samples_y <= (max_luma_ps >> 2))
max_dpb_size = std::min(4 * max_dpb_pic_buf, size_t{16});
else if (pic_size_in_samples_y <= (max_luma_ps >> 1))
max_dpb_size = std::min(2 * max_dpb_pic_buf, size_t{16});
else if (pic_size_in_samples_y <= ((3 * max_luma_ps) >> 2))
max_dpb_size = std::min((4 * max_dpb_pic_buf) / 3, size_t{16});
else
max_dpb_size = max_dpb_pic_buf;
// conformance_window_flag: u(1)
bool conformance_window_flag = reader.Read<bool>();
uint32_t conf_win_left_offset = 0;
uint32_t conf_win_right_offset = 0;
uint32_t conf_win_top_offset = 0;
uint32_t conf_win_bottom_offset = 0;
int sub_width_c =
((1 == sps.chroma_format_idc) || (2 == sps.chroma_format_idc)) &&
(0 == sps.separate_colour_plane_flag)
? 2
: 1;
int sub_height_c =
(1 == sps.chroma_format_idc) && (0 == sps.separate_colour_plane_flag) ? 2
: 1;
if (conformance_window_flag) {
// conf_win_left_offset: ue(v)
conf_win_left_offset = reader.ReadExponentialGolomb();
// conf_win_right_offset: ue(v)
conf_win_right_offset = reader.ReadExponentialGolomb();
// conf_win_top_offset: ue(v)
conf_win_top_offset = reader.ReadExponentialGolomb();
// conf_win_bottom_offset: ue(v)
conf_win_bottom_offset = reader.ReadExponentialGolomb();
uint32_t width_crop = conf_win_left_offset;
width_crop += conf_win_right_offset;
width_crop *= sub_width_c;
TRUE_OR_RETURN(width_crop < pic_width_in_luma_samples);
uint32_t height_crop = conf_win_top_offset;
height_crop += conf_win_bottom_offset;
height_crop *= sub_height_c;
TRUE_OR_RETURN(height_crop < pic_height_in_luma_samples);
}
// bit_depth_luma_minus8: ue(v)
sps.bit_depth_luma_minus8 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.bit_depth_luma_minus8, 0, 8);
// bit_depth_chroma_minus8: ue(v)
uint32_t bit_depth_chroma_minus8 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(bit_depth_chroma_minus8, 0, 8);
// log2_max_pic_order_cnt_lsb_minus4: ue(v)
sps.log2_max_pic_order_cnt_lsb_minus4 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.log2_max_pic_order_cnt_lsb_minus4, 0, 12);
uint32_t sps_sub_layer_ordering_info_present_flag = 0;
// sps_sub_layer_ordering_info_present_flag: u(1)
sps_sub_layer_ordering_info_present_flag = reader.Read<bool>();
uint32_t sps_max_num_reorder_pics[kMaxSubLayers];
for (uint32_t i = (sps_sub_layer_ordering_info_present_flag != 0)
? 0
: sps_max_sub_layers_minus1;
i <= sps_max_sub_layers_minus1; i++) {
// sps_max_dec_pic_buffering_minus1: ue(v)
sps.sps_max_dec_pic_buffering_minus1[i] = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.sps_max_dec_pic_buffering_minus1[i], 0,
max_dpb_size - 1);
// sps_max_num_reorder_pics: ue(v)
sps_max_num_reorder_pics[i] = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps_max_num_reorder_pics[i], 0,
sps.sps_max_dec_pic_buffering_minus1[i]);
if (i > 0) {
TRUE_OR_RETURN(sps.sps_max_dec_pic_buffering_minus1[i] >=
sps.sps_max_dec_pic_buffering_minus1[i - 1]);
TRUE_OR_RETURN(sps_max_num_reorder_pics[i] >=
sps_max_num_reorder_pics[i - 1]);
}
// sps_max_latency_increase_plus1: ue(v)
reader.ReadExponentialGolomb();
}
if (!sps_sub_layer_ordering_info_present_flag) {
// Fill in the default values for the other sublayers.
for (uint32_t i = 0; i < sps_max_sub_layers_minus1; ++i) {
sps.sps_max_dec_pic_buffering_minus1[i] =
sps.sps_max_dec_pic_buffering_minus1[sps_max_sub_layers_minus1];
}
}
// log2_min_luma_coding_block_size_minus3: ue(v)
sps.log2_min_luma_coding_block_size_minus3 = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.log2_min_luma_coding_block_size_minus3, 0, 27);
// log2_diff_max_min_luma_coding_block_size: ue(v)
sps.log2_diff_max_min_luma_coding_block_size = reader.ReadExponentialGolomb();
int min_cb_log2_size_y = sps.log2_min_luma_coding_block_size_minus3 + 3;
int ctb_log2_size_y = min_cb_log2_size_y;
ctb_log2_size_y += sps.log2_diff_max_min_luma_coding_block_size;
IN_RANGE_OR_RETURN_NULL(ctb_log2_size_y, 0, 30);
int min_cb_size_y = 1 << min_cb_log2_size_y;
int ctb_size_y = 1 << ctb_log2_size_y;
sps.pic_width_in_ctbs_y =
std::ceil(static_cast<float>(pic_width_in_luma_samples) / ctb_size_y);
sps.pic_height_in_ctbs_y =
std::ceil(static_cast<float>(pic_height_in_luma_samples) / ctb_size_y);
TRUE_OR_RETURN(pic_width_in_luma_samples % min_cb_size_y == 0);
TRUE_OR_RETURN(pic_height_in_luma_samples % min_cb_size_y == 0);
// log2_min_luma_transform_block_size_minus2: ue(v)
int log2_min_luma_transform_block_size_minus2 =
reader.ReadExponentialGolomb();
TRUE_OR_RETURN(log2_min_luma_transform_block_size_minus2 <
min_cb_log2_size_y - 2);
int min_tb_log2_size_y = log2_min_luma_transform_block_size_minus2 + 2;
// log2_diff_max_min_luma_transform_block_size: ue(v)
int log2_diff_max_min_luma_transform_block_size =
reader.ReadExponentialGolomb();
TRUE_OR_RETURN(log2_diff_max_min_luma_transform_block_size <=
std::min(ctb_log2_size_y, 5) - min_tb_log2_size_y);
// max_transform_hierarchy_depth_inter: ue(v)
int max_transform_hierarchy_depth_inter = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(max_transform_hierarchy_depth_inter, 0,
ctb_log2_size_y - min_tb_log2_size_y);
// max_transform_hierarchy_depth_intra: ue(v)
int max_transform_hierarchy_depth_intra = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(max_transform_hierarchy_depth_intra, 0,
ctb_log2_size_y - min_tb_log2_size_y);
// scaling_list_enabled_flag: u(1)
bool scaling_list_enabled_flag = reader.Read<bool>();
if (scaling_list_enabled_flag) {
// sps_scaling_list_data_present_flag: u(1)
bool sps_scaling_list_data_present_flag = reader.Read<bool>();
if (sps_scaling_list_data_present_flag) {
// scaling_list_data()
if (!ParseScalingListData(reader)) {
return absl::nullopt;
}
}
}
// amp_enabled_flag: u(1)
reader.ConsumeBits(1);
// sample_adaptive_offset_enabled_flag: u(1)
sps.sample_adaptive_offset_enabled_flag = reader.Read<bool>();
// pcm_enabled_flag: u(1)
bool pcm_enabled_flag = reader.Read<bool>();
if (pcm_enabled_flag) {
// pcm_sample_bit_depth_luma_minus1: u(4)
reader.ConsumeBits(4);
// pcm_sample_bit_depth_chroma_minus1: u(4)
reader.ConsumeBits(4);
// log2_min_pcm_luma_coding_block_size_minus3: ue(v)
int log2_min_pcm_luma_coding_block_size_minus3 =
reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(log2_min_pcm_luma_coding_block_size_minus3, 0, 2);
int log2_min_ipcm_cb_size_y =
log2_min_pcm_luma_coding_block_size_minus3 + 3;
IN_RANGE_OR_RETURN_NULL(log2_min_ipcm_cb_size_y,
std::min(min_cb_log2_size_y, 5),
std::min(ctb_log2_size_y, 5));
// log2_diff_max_min_pcm_luma_coding_block_size: ue(v)
int log2_diff_max_min_pcm_luma_coding_block_size =
reader.ReadExponentialGolomb();
TRUE_OR_RETURN(log2_diff_max_min_pcm_luma_coding_block_size <=
std::min(ctb_log2_size_y, 5) - log2_min_ipcm_cb_size_y);
// pcm_loop_filter_disabled_flag: u(1)
reader.ConsumeBits(1);
}
// num_short_term_ref_pic_sets: ue(v)
sps.num_short_term_ref_pic_sets = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.num_short_term_ref_pic_sets, 0,
kMaxShortTermRefPicSets);
sps.short_term_ref_pic_set.resize(sps.num_short_term_ref_pic_sets);
for (uint32_t st_rps_idx = 0; st_rps_idx < sps.num_short_term_ref_pic_sets;
st_rps_idx++) {
uint32_t sps_max_dec_pic_buffering_minus1 =
sps.sps_max_dec_pic_buffering_minus1[sps.sps_max_sub_layers_minus1];
// st_ref_pic_set()
OptionalShortTermRefPicSet ref_pic_set = ParseShortTermRefPicSet(
st_rps_idx, sps.num_short_term_ref_pic_sets, sps.short_term_ref_pic_set,
sps_max_dec_pic_buffering_minus1, reader);
if (ref_pic_set) {
sps.short_term_ref_pic_set[st_rps_idx] = *ref_pic_set;
} else {
return absl::nullopt;
}
}
// long_term_ref_pics_present_flag: u(1)
sps.long_term_ref_pics_present_flag = reader.Read<bool>();
if (sps.long_term_ref_pics_present_flag) {
// num_long_term_ref_pics_sps: ue(v)
sps.num_long_term_ref_pics_sps = reader.ReadExponentialGolomb();
IN_RANGE_OR_RETURN_NULL(sps.num_long_term_ref_pics_sps, 0,
kMaxLongTermRefPicSets);
sps.lt_ref_pic_poc_lsb_sps.resize(sps.num_long_term_ref_pics_sps, 0);
sps.used_by_curr_pic_lt_sps_flag.resize(sps.num_long_term_ref_pics_sps, 0);
for (uint32_t i = 0; i < sps.num_long_term_ref_pics_sps; i++) {
// lt_ref_pic_poc_lsb_sps: u(v)
uint32_t lt_ref_pic_poc_lsb_sps_bits =
sps.log2_max_pic_order_cnt_lsb_minus4 + 4;
sps.lt_ref_pic_poc_lsb_sps[i] =
reader.ReadBits(lt_ref_pic_poc_lsb_sps_bits);
// used_by_curr_pic_lt_sps_flag: u(1)
sps.used_by_curr_pic_lt_sps_flag[i] = reader.Read<bool>();
}
}
// sps_temporal_mvp_enabled_flag: u(1)
sps.sps_temporal_mvp_enabled_flag = reader.Read<bool>();
// Far enough! We don't use the rest of the SPS.
sps.vps_id = sps_video_parameter_set_id;
sps.pic_width_in_luma_samples = pic_width_in_luma_samples;
sps.pic_height_in_luma_samples = pic_height_in_luma_samples;
// Start with the resolution determined by the pic_width/pic_height fields.
sps.width = pic_width_in_luma_samples;
sps.height = pic_height_in_luma_samples;
if (conformance_window_flag) {
int sub_width_c =
((1 == sps.chroma_format_idc) || (2 == sps.chroma_format_idc)) &&
(0 == sps.separate_colour_plane_flag)
? 2
: 1;
int sub_height_c =
(1 == sps.chroma_format_idc) && (0 == sps.separate_colour_plane_flag)
? 2
: 1;
// the offset includes the pixel within conformance window. so don't need to
// +1 as per spec
sps.width -= sub_width_c * (conf_win_right_offset + conf_win_left_offset);
sps.height -= sub_height_c * (conf_win_top_offset + conf_win_bottom_offset);
}
if (!reader.Ok()) {
return absl::nullopt;
}
return OptionalSps(sps);
}
} // namespace webrtc