blob: 2a1a55c0e5491f1e4a5ec088a28083e14a580cc2 [file] [log] [blame]
/*
* Copyright 2012 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// To generate bind.h from bind.h.pump, execute:
// /home/build/google3/third_party/gtest/scripts/pump.py bind.h.pump
// Bind() is an overloaded function that converts method calls into function
// objects (aka functors). The method object is captured as a scoped_refptr<> if
// possible, and as a raw pointer otherwise. Any arguments to the method are
// captured by value. The return value of Bind is a stateful, nullary function
// object. Care should be taken about the lifetime of objects captured by
// Bind(); the returned functor knows nothing about the lifetime of a non
// ref-counted method object or any arguments passed by pointer, and calling the
// functor with a destroyed object will surely do bad things.
//
// Example usage:
// struct Foo {
// int Test1() { return 42; }
// int Test2() const { return 52; }
// int Test3(int x) { return x*x; }
// float Test4(int x, float y) { return x + y; }
// };
//
// int main() {
// Foo foo;
// cout << rtc::Bind(&Foo::Test1, &foo)() << endl;
// cout << rtc::Bind(&Foo::Test2, &foo)() << endl;
// cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl;
// cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl;
// }
//
// Example usage of ref counted objects:
// struct Bar {
// int AddRef();
// int Release();
//
// void Test() {}
// void BindThis() {
// // The functor passed to AsyncInvoke() will keep this object alive.
// invoker.AsyncInvoke(RTC_FROM_HERE,rtc::Bind(&Bar::Test, this));
// }
// };
//
// int main() {
// rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>();
// auto functor = rtc::Bind(&Bar::Test, bar);
// bar = nullptr;
// // The functor stores an internal scoped_refptr<Bar>, so this is safe.
// functor();
// }
//
#ifndef WEBRTC_BASE_BIND_H_
#define WEBRTC_BASE_BIND_H_
#include "webrtc/base/scoped_ref_ptr.h"
#include "webrtc/base/template_util.h"
#define NONAME
namespace rtc {
namespace detail {
// This is needed because the template parameters in Bind can't be resolved
// if they're used both as parameters of the function pointer type and as
// parameters to Bind itself: the function pointer parameters are exact
// matches to the function prototype, but the parameters to bind have
// references stripped. This trick allows the compiler to dictate the Bind
// parameter types rather than deduce them.
template <class T> struct identity { typedef T type; };
// IsRefCounted<T>::value will be true for types that can be used in
// rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef()
// and Release(), regardless of their return types. AddRef() and Release() can
// be defined in T or any superclass of T.
template <typename T>
class IsRefCounted {
// This is a complex implementation detail done with SFINAE.
// Define types such that sizeof(Yes) != sizeof(No).
struct Yes { char dummy[1]; };
struct No { char dummy[2]; };
// Define two overloaded template functions with return types of different
// size. This way, we can use sizeof() on the return type to determine which
// function the compiler would have chosen. One function will be preferred
// over the other if it is possible to create it without compiler errors,
// otherwise the compiler will simply remove it, and default to the less
// preferred function.
template <typename R>
static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42));
template <typename C> static No test(...);
public:
// Trick the compiler to tell if it's possible to call AddRef() and Release().
static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes);
};
// TernaryTypeOperator is a helper class to select a type based on a static bool
// value.
template <bool condition, typename IfTrueT, typename IfFalseT>
struct TernaryTypeOperator {};
template <typename IfTrueT, typename IfFalseT>
struct TernaryTypeOperator<true, IfTrueT, IfFalseT> {
typedef IfTrueT type;
};
template <typename IfTrueT, typename IfFalseT>
struct TernaryTypeOperator<false, IfTrueT, IfFalseT> {
typedef IfFalseT type;
};
// PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T*
// otherwise.
template <class T>
struct PointerType {
typedef typename TernaryTypeOperator<IsRefCounted<T>::value,
scoped_refptr<T>,
T*>::type type;
};
} // namespace detail
$var n = 9
$range i 0..n
$for i [[
$range j 1..i
template <class ObjectT, class MethodT, class R$for j [[,
class P$j]]>
class MethodFunctor$i {
public:
MethodFunctor$i(MethodT method, ObjectT* object$for j [[,
P$j p$j]])
: method_(method), object_(object)$for j [[,
p$(j)_(p$j)]] {}
R operator()() const {
return (object_->*method_)($for j , [[p$(j)_]]); }
private:
MethodT method_;
typename detail::PointerType<ObjectT>::type object_;$for j [[
typename rtc::remove_reference<P$j>::type p$(j)_;]]
};
template <class FunctorT, class R$for j [[,
class P$j]]>
class Functor$i {
public:
$if i == 0 [[explicit ]]
Functor$i(const FunctorT& functor$for j [[, P$j p$j]])
: functor_(functor)$for j [[,
p$(j)_(p$j)]] {}
R operator()() const {
return functor_($for j , [[p$(j)_]]); }
private:
FunctorT functor_;$for j [[
typename rtc::remove_reference<P$j>::type p$(j)_;]]
};
#define FP_T(x) R (ObjectT::*x)($for j , [[P$j]])
template <class ObjectT, class R$for j [[,
class P$j]]>
MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
Bind(FP_T(method), ObjectT* object$for j [[,
typename detail::identity<P$j>::type p$j]]) {
return MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
method, object$for j [[, p$j]]);
}
#undef FP_T
#define FP_T(x) R (ObjectT::*x)($for j , [[P$j]]) const
template <class ObjectT, class R$for j [[,
class P$j]]>
MethodFunctor$i<const ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
Bind(FP_T(method), const ObjectT* object$for j [[,
typename detail::identity<P$j>::type p$j]]) {
return MethodFunctor$i<const ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
method, object$for j [[, p$j]]);
}
#undef FP_T
#define FP_T(x) R (ObjectT::*x)($for j , [[P$j]])
template <class ObjectT, class R$for j [[,
class P$j]]>
MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
Bind(FP_T(method), const scoped_refptr<ObjectT>& object$for j [[,
typename detail::identity<P$j>::type p$j]]) {
return MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
method, object.get()$for j [[, p$j]]);
}
#undef FP_T
#define FP_T(x) R (*x)($for j , [[P$j]])
template <class R$for j [[,
class P$j]]>
Functor$i<FP_T(NONAME), R$for j [[, P$j]]>
Bind(FP_T(function)$for j [[,
typename detail::identity<P$j>::type p$j]]) {
return Functor$i<FP_T(NONAME), R$for j [[, P$j]]>(
function$for j [[, p$j]]);
}
#undef FP_T
]]
} // namespace rtc
#undef NONAME
#endif // WEBRTC_BASE_BIND_H_