blob: 4ee2c75617ba49e7b3c625c85c4b5b4e46183add [file] [log] [blame]
/*
* Copyright 2006 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <time.h>
#if defined(WEBRTC_POSIX)
#include <netinet/in.h>
#endif
#include <memory>
#include "webrtc/base/arraysize.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/testclient.h"
#include "webrtc/base/testutils.h"
#include "webrtc/base/thread.h"
#include "webrtc/base/timeutils.h"
#include "webrtc/base/virtualsocketserver.h"
using namespace rtc;
// Sends at a constant rate but with random packet sizes.
struct Sender : public MessageHandler {
Sender(Thread* th, AsyncSocket* s, uint32_t rt)
: thread(th),
socket(new AsyncUDPSocket(s)),
done(false),
rate(rt),
count(0) {
last_send = rtc::TimeMillis();
thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1);
}
uint32_t NextDelay() {
uint32_t size = (rand() % 4096) + 1;
return 1000 * size / rate;
}
void OnMessage(Message* pmsg) {
ASSERT_EQ(1u, pmsg->message_id);
if (done)
return;
int64_t cur_time = rtc::TimeMillis();
int64_t delay = cur_time - last_send;
uint32_t size = static_cast<uint32_t>(rate * delay / 1000);
size = std::min<uint32_t>(size, 4096);
size = std::max<uint32_t>(size, sizeof(uint32_t));
count += size;
memcpy(dummy, &cur_time, sizeof(cur_time));
socket->Send(dummy, size, options);
last_send = cur_time;
thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1);
}
Thread* thread;
std::unique_ptr<AsyncUDPSocket> socket;
rtc::PacketOptions options;
bool done;
uint32_t rate; // bytes per second
uint32_t count;
int64_t last_send;
char dummy[4096];
};
struct Receiver : public MessageHandler, public sigslot::has_slots<> {
Receiver(Thread* th, AsyncSocket* s, uint32_t bw)
: thread(th),
socket(new AsyncUDPSocket(s)),
bandwidth(bw),
done(false),
count(0),
sec_count(0),
sum(0),
sum_sq(0),
samples(0) {
socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket);
thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1);
}
~Receiver() {
thread->Clear(this);
}
void OnReadPacket(AsyncPacketSocket* s, const char* data, size_t size,
const SocketAddress& remote_addr,
const PacketTime& packet_time) {
ASSERT_EQ(socket.get(), s);
ASSERT_GE(size, 4U);
count += size;
sec_count += size;
uint32_t send_time = *reinterpret_cast<const uint32_t*>(data);
uint32_t recv_time = rtc::TimeMillis();
uint32_t delay = recv_time - send_time;
sum += delay;
sum_sq += delay * delay;
samples += 1;
}
void OnMessage(Message* pmsg) {
ASSERT_EQ(1u, pmsg->message_id);
if (done)
return;
// It is always possible for us to receive more than expected because
// packets can be further delayed in delivery.
if (bandwidth > 0)
ASSERT_TRUE(sec_count <= 5 * bandwidth / 4);
sec_count = 0;
thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1);
}
Thread* thread;
std::unique_ptr<AsyncUDPSocket> socket;
uint32_t bandwidth;
bool done;
size_t count;
size_t sec_count;
double sum;
double sum_sq;
uint32_t samples;
};
class VirtualSocketServerTest : public testing::Test {
public:
VirtualSocketServerTest() : ss_(new VirtualSocketServer(NULL)),
kIPv4AnyAddress(IPAddress(INADDR_ANY), 0),
kIPv6AnyAddress(IPAddress(in6addr_any), 0) {
}
void CheckPortIncrementalization(const SocketAddress& post,
const SocketAddress& pre) {
EXPECT_EQ(post.port(), pre.port() + 1);
IPAddress post_ip = post.ipaddr();
IPAddress pre_ip = pre.ipaddr();
EXPECT_EQ(pre_ip.family(), post_ip.family());
if (post_ip.family() == AF_INET) {
in_addr pre_ipv4 = pre_ip.ipv4_address();
in_addr post_ipv4 = post_ip.ipv4_address();
EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr);
} else if (post_ip.family() == AF_INET6) {
in6_addr post_ip6 = post_ip.ipv6_address();
in6_addr pre_ip6 = pre_ip.ipv6_address();
uint32_t* post_as_ints = reinterpret_cast<uint32_t*>(&post_ip6.s6_addr);
uint32_t* pre_as_ints = reinterpret_cast<uint32_t*>(&pre_ip6.s6_addr);
EXPECT_EQ(post_as_ints[3], pre_as_ints[3]);
}
}
// Test a client can bind to the any address, and all sent packets will have
// the default route as the source address. Also, it can receive packets sent
// to the default route.
void TestDefaultRoute(const IPAddress& default_route) {
ss_->SetDefaultRoute(default_route);
// Create client1 bound to the any address.
AsyncSocket* socket =
ss_->CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
socket->Bind(EmptySocketAddressWithFamily(default_route.family()));
SocketAddress client1_any_addr = socket->GetLocalAddress();
EXPECT_TRUE(client1_any_addr.IsAnyIP());
TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));
// Create client2 bound to the default route.
AsyncSocket* socket2 =
ss_->CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
socket2->Bind(SocketAddress(default_route, 0));
SocketAddress client2_addr = socket2->GetLocalAddress();
EXPECT_FALSE(client2_addr.IsAnyIP());
TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));
// Client1 sends to client2, client2 should see the default route as
// client1's address.
SocketAddress client1_addr;
EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
EXPECT_EQ(client1_addr,
SocketAddress(default_route, client1_any_addr.port()));
// Client2 can send back to client1's default route address.
EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr));
EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
}
void BasicTest(const SocketAddress& initial_addr) {
AsyncSocket* socket = ss_->CreateAsyncSocket(initial_addr.family(),
SOCK_DGRAM);
socket->Bind(initial_addr);
SocketAddress server_addr = socket->GetLocalAddress();
// Make sure VSS didn't switch families on us.
EXPECT_EQ(server_addr.family(), initial_addr.family());
TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));
AsyncSocket* socket2 =
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));
SocketAddress client2_addr;
EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
SocketAddress client1_addr;
EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
EXPECT_EQ(client1_addr, server_addr);
SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family());
for (int i = 0; i < 10; i++) {
client2 = new TestClient(AsyncUDPSocket::Create(ss_, empty));
SocketAddress next_client2_addr;
EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr));
CheckPortIncrementalization(next_client2_addr, client2_addr);
// EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1);
SocketAddress server_addr2;
EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr));
EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2));
EXPECT_EQ(server_addr2, server_addr);
client2_addr = next_client2_addr;
}
}
// initial_addr should be made from either INADDR_ANY or in6addr_any.
void ConnectTest(const SocketAddress& initial_addr) {
testing::StreamSink sink;
SocketAddress accept_addr;
const SocketAddress kEmptyAddr =
EmptySocketAddressWithFamily(initial_addr.family());
// Create client
AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(),
SOCK_STREAM);
sink.Monitor(client);
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_TRUE(client->GetLocalAddress().IsNil());
// Create server
AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(),
SOCK_STREAM);
sink.Monitor(server);
EXPECT_NE(0, server->Listen(5)); // Bind required
EXPECT_EQ(0, server->Bind(initial_addr));
EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(0, server->Listen(5));
EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING);
// No pending server connections
EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
EXPECT_TRUE(NULL == server->Accept(&accept_addr));
EXPECT_EQ(AF_UNSPEC, accept_addr.family());
// Attempt connect to listening socket
EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
EXPECT_NE(client->GetLocalAddress(), kEmptyAddr); // Implicit Bind
EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family()); // Implicit Bind
EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress());
// Client is connecting
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
ss_->ProcessMessagesUntilIdle();
// Client still connecting
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
// Server has pending connection
EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
Socket* accepted = server->Accept(&accept_addr);
EXPECT_TRUE(NULL != accepted);
EXPECT_NE(accept_addr, kEmptyAddr);
EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr);
EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress());
EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress());
ss_->ProcessMessagesUntilIdle();
// Client has connected
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED);
EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN));
EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress());
}
void ConnectToNonListenerTest(const SocketAddress& initial_addr) {
testing::StreamSink sink;
SocketAddress accept_addr;
const SocketAddress nil_addr;
const SocketAddress empty_addr =
EmptySocketAddressWithFamily(initial_addr.family());
// Create client
AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(),
SOCK_STREAM);
sink.Monitor(client);
// Create server
AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(),
SOCK_STREAM);
sink.Monitor(server);
EXPECT_EQ(0, server->Bind(initial_addr));
EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
// Attempt connect to non-listening socket
EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
// No pending server connections
EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
EXPECT_TRUE(NULL == server->Accept(&accept_addr));
EXPECT_EQ(accept_addr, nil_addr);
// Connection failed
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR));
EXPECT_EQ(client->GetRemoteAddress(), nil_addr);
}
void CloseDuringConnectTest(const SocketAddress& initial_addr) {
testing::StreamSink sink;
SocketAddress accept_addr;
const SocketAddress empty_addr =
EmptySocketAddressWithFamily(initial_addr.family());
// Create client and server
std::unique_ptr<AsyncSocket> client(
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
sink.Monitor(client.get());
std::unique_ptr<AsyncSocket> server(
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
sink.Monitor(server.get());
// Initiate connect
EXPECT_EQ(0, server->Bind(initial_addr));
EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(0, server->Listen(5));
EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
// Server close before socket enters accept queue
EXPECT_FALSE(sink.Check(server.get(), testing::SSE_READ));
server->Close();
ss_->ProcessMessagesUntilIdle();
// Result: connection failed
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_TRUE(sink.Check(client.get(), testing::SSE_ERROR));
server.reset(ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
sink.Monitor(server.get());
// Initiate connect
EXPECT_EQ(0, server->Bind(initial_addr));
EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(0, server->Listen(5));
EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
// Server close while socket is in accept queue
EXPECT_TRUE(sink.Check(server.get(), testing::SSE_READ));
server->Close();
ss_->ProcessMessagesUntilIdle();
// Result: connection failed
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_TRUE(sink.Check(client.get(), testing::SSE_ERROR));
// New server
server.reset(ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
sink.Monitor(server.get());
// Initiate connect
EXPECT_EQ(0, server->Bind(initial_addr));
EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(0, server->Listen(5));
EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
// Server accepts connection
EXPECT_TRUE(sink.Check(server.get(), testing::SSE_READ));
std::unique_ptr<AsyncSocket> accepted(server->Accept(&accept_addr));
ASSERT_TRUE(NULL != accepted.get());
sink.Monitor(accepted.get());
// Client closes before connection complets
EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
// Connected message has not been processed yet.
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
client->Close();
ss_->ProcessMessagesUntilIdle();
// Result: accepted socket closes
EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_TRUE(sink.Check(accepted.get(), testing::SSE_CLOSE));
EXPECT_FALSE(sink.Check(client.get(), testing::SSE_CLOSE));
}
void CloseTest(const SocketAddress& initial_addr) {
testing::StreamSink sink;
const SocketAddress kEmptyAddr;
// Create clients
AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
sink.Monitor(a);
a->Bind(initial_addr);
EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
std::unique_ptr<AsyncSocket> b(
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
sink.Monitor(b.get());
b->Bind(initial_addr);
EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
EXPECT_TRUE(sink.Check(a, testing::SSE_OPEN));
EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED);
EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress());
EXPECT_TRUE(sink.Check(b.get(), testing::SSE_OPEN));
EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED);
EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress());
EXPECT_EQ(1, a->Send("a", 1));
b->Close();
EXPECT_EQ(1, a->Send("b", 1));
ss_->ProcessMessagesUntilIdle();
char buffer[10];
EXPECT_FALSE(sink.Check(b.get(), testing::SSE_READ));
EXPECT_EQ(-1, b->Recv(buffer, 10, nullptr));
EXPECT_TRUE(sink.Check(a, testing::SSE_CLOSE));
EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr);
// No signal for Closer
EXPECT_FALSE(sink.Check(b.get(), testing::SSE_CLOSE));
EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr);
}
void TcpSendTest(const SocketAddress& initial_addr) {
testing::StreamSink sink;
const SocketAddress kEmptyAddr;
// Connect two sockets
AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
sink.Monitor(a);
a->Bind(initial_addr);
EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
sink.Monitor(b);
b->Bind(initial_addr);
EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
const size_t kBufferSize = 2000;
ss_->set_send_buffer_capacity(kBufferSize);
ss_->set_recv_buffer_capacity(kBufferSize);
const size_t kDataSize = 5000;
char send_buffer[kDataSize], recv_buffer[kDataSize];
for (size_t i = 0; i < kDataSize; ++i)
send_buffer[i] = static_cast<char>(i % 256);
memset(recv_buffer, 0, sizeof(recv_buffer));
size_t send_pos = 0, recv_pos = 0;
// Can't send more than send buffer in one write
int result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
EXPECT_EQ(static_cast<int>(kBufferSize), result);
send_pos += result;
ss_->ProcessMessagesUntilIdle();
EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE));
EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
// Receive buffer is already filled, fill send buffer again
result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
EXPECT_EQ(static_cast<int>(kBufferSize), result);
send_pos += result;
ss_->ProcessMessagesUntilIdle();
EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE));
EXPECT_FALSE(sink.Check(b, testing::SSE_READ));
// No more room in send or receive buffer
result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
EXPECT_EQ(-1, result);
EXPECT_TRUE(a->IsBlocking());
// Read a subset of the data
result = b->Recv(recv_buffer + recv_pos, 500, nullptr);
EXPECT_EQ(500, result);
recv_pos += result;
ss_->ProcessMessagesUntilIdle();
EXPECT_TRUE(sink.Check(a, testing::SSE_WRITE));
EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
// Room for more on the sending side
result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
EXPECT_EQ(500, result);
send_pos += result;
// Empty the recv buffer
while (true) {
result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
if (result < 0) {
EXPECT_EQ(-1, result);
EXPECT_TRUE(b->IsBlocking());
break;
}
recv_pos += result;
}
ss_->ProcessMessagesUntilIdle();
EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
// Continue to empty the recv buffer
while (true) {
result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
if (result < 0) {
EXPECT_EQ(-1, result);
EXPECT_TRUE(b->IsBlocking());
break;
}
recv_pos += result;
}
// Send last of the data
result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
EXPECT_EQ(500, result);
send_pos += result;
ss_->ProcessMessagesUntilIdle();
EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
// Receive the last of the data
while (true) {
result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
if (result < 0) {
EXPECT_EQ(-1, result);
EXPECT_TRUE(b->IsBlocking());
break;
}
recv_pos += result;
}
ss_->ProcessMessagesUntilIdle();
EXPECT_FALSE(sink.Check(b, testing::SSE_READ));
// The received data matches the sent data
EXPECT_EQ(kDataSize, send_pos);
EXPECT_EQ(kDataSize, recv_pos);
EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize));
}
void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) {
const SocketAddress kEmptyAddr;
// Connect two sockets
AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(),
SOCK_STREAM);
AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(),
SOCK_STREAM);
a->Bind(initial_addr);
EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
b->Bind(initial_addr);
EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
// First, deliver all packets in 0 ms.
char buffer[2] = { 0, 0 };
const char cNumPackets = 10;
for (char i = 0; i < cNumPackets; ++i) {
buffer[0] = '0' + i;
EXPECT_EQ(1, a->Send(buffer, 1));
}
ss_->ProcessMessagesUntilIdle();
for (char i = 0; i < cNumPackets; ++i) {
EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
EXPECT_EQ(static_cast<char>('0' + i), buffer[0]);
}
// Next, deliver packets at random intervals
const uint32_t mean = 50;
const uint32_t stddev = 50;
ss_->set_delay_mean(mean);
ss_->set_delay_stddev(stddev);
ss_->UpdateDelayDistribution();
for (char i = 0; i < cNumPackets; ++i) {
buffer[0] = 'A' + i;
EXPECT_EQ(1, a->Send(buffer, 1));
}
ss_->ProcessMessagesUntilIdle();
for (char i = 0; i < cNumPackets; ++i) {
EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
EXPECT_EQ(static_cast<char>('A' + i), buffer[0]);
}
}
// It is important that initial_addr's port has to be 0 such that the
// incremental port behavior could ensure the 2 Binds result in different
// address.
void BandwidthTest(const SocketAddress& initial_addr) {
AsyncSocket* send_socket =
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
AsyncSocket* recv_socket =
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
ASSERT_EQ(0, send_socket->Bind(initial_addr));
ASSERT_EQ(0, recv_socket->Bind(initial_addr));
EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
uint32_t bandwidth = 64 * 1024;
ss_->set_bandwidth(bandwidth);
Thread* pthMain = Thread::Current();
Sender sender(pthMain, send_socket, 80 * 1024);
Receiver receiver(pthMain, recv_socket, bandwidth);
pthMain->ProcessMessages(5000);
sender.done = true;
pthMain->ProcessMessages(5000);
ASSERT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4);
ASSERT_TRUE(receiver.count <= 6 * bandwidth); // queue could drain for 1s
ss_->set_bandwidth(0);
}
// It is important that initial_addr's port has to be 0 such that the
// incremental port behavior could ensure the 2 Binds result in different
// address.
void DelayTest(const SocketAddress& initial_addr) {
time_t seed = ::time(NULL);
LOG(LS_VERBOSE) << "seed = " << seed;
srand(static_cast<unsigned int>(seed));
const uint32_t mean = 2000;
const uint32_t stddev = 500;
ss_->set_delay_mean(mean);
ss_->set_delay_stddev(stddev);
ss_->UpdateDelayDistribution();
AsyncSocket* send_socket =
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
AsyncSocket* recv_socket =
ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
ASSERT_EQ(0, send_socket->Bind(initial_addr));
ASSERT_EQ(0, recv_socket->Bind(initial_addr));
EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
Thread* pthMain = Thread::Current();
// Avg packet size is 2K, so at 200KB/s for 10s, we should see about
// 1000 packets, which is necessary to get a good distribution.
Sender sender(pthMain, send_socket, 100 * 2 * 1024);
Receiver receiver(pthMain, recv_socket, 0);
pthMain->ProcessMessages(10000);
sender.done = receiver.done = true;
ss_->ProcessMessagesUntilIdle();
const double sample_mean = receiver.sum / receiver.samples;
double num =
receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum;
double den = receiver.samples * (receiver.samples - 1);
const double sample_stddev = sqrt(num / den);
LOG(LS_VERBOSE) << "mean=" << sample_mean << " stddev=" << sample_stddev;
EXPECT_LE(500u, receiver.samples);
// We initially used a 0.1 fudge factor, but on the build machine, we
// have seen the value differ by as much as 0.13.
EXPECT_NEAR(mean, sample_mean, 0.15 * mean);
EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev);
ss_->set_delay_mean(0);
ss_->set_delay_stddev(0);
ss_->UpdateDelayDistribution();
}
// Test cross-family communication between a client bound to client_addr and a
// server bound to server_addr. shouldSucceed indicates if communication is
// expected to work or not.
void CrossFamilyConnectionTest(const SocketAddress& client_addr,
const SocketAddress& server_addr,
bool shouldSucceed) {
testing::StreamSink sink;
SocketAddress accept_address;
const SocketAddress kEmptyAddr;
// Client gets a IPv4 address
AsyncSocket* client = ss_->CreateAsyncSocket(client_addr.family(),
SOCK_STREAM);
sink.Monitor(client);
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr);
client->Bind(client_addr);
// Server gets a non-mapped non-any IPv6 address.
// IPv4 sockets should not be able to connect to this.
AsyncSocket* server = ss_->CreateAsyncSocket(server_addr.family(),
SOCK_STREAM);
sink.Monitor(server);
server->Bind(server_addr);
server->Listen(5);
if (shouldSucceed) {
EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
Socket* accepted = server->Accept(&accept_address);
EXPECT_TRUE(NULL != accepted);
EXPECT_NE(kEmptyAddr, accept_address);
ss_->ProcessMessagesUntilIdle();
EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN));
EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
} else {
// Check that the connection failed.
EXPECT_EQ(-1, client->Connect(server->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
EXPECT_TRUE(NULL == server->Accept(&accept_address));
EXPECT_EQ(accept_address, kEmptyAddr);
EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr);
}
}
// Test cross-family datagram sending between a client bound to client_addr
// and a server bound to server_addr. shouldSucceed indicates if sending is
// expected to succeed or not.
void CrossFamilyDatagramTest(const SocketAddress& client_addr,
const SocketAddress& server_addr,
bool shouldSucceed) {
AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_DGRAM);
socket->Bind(server_addr);
SocketAddress bound_server_addr = socket->GetLocalAddress();
TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));
AsyncSocket* socket2 = ss_->CreateAsyncSocket(SOCK_DGRAM);
socket2->Bind(client_addr);
TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));
SocketAddress client2_addr;
if (shouldSucceed) {
EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr));
EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
SocketAddress client1_addr;
EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
EXPECT_EQ(client1_addr, bound_server_addr);
} else {
EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr));
EXPECT_TRUE(client1->CheckNoPacket());
}
}
protected:
virtual void SetUp() {
Thread::Current()->set_socketserver(ss_);
}
virtual void TearDown() {
Thread::Current()->set_socketserver(NULL);
}
VirtualSocketServer* ss_;
const SocketAddress kIPv4AnyAddress;
const SocketAddress kIPv6AnyAddress;
};
TEST_F(VirtualSocketServerTest, basic_v4) {
SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000);
BasicTest(ipv4_test_addr);
}
TEST_F(VirtualSocketServerTest, basic_v6) {
SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000);
BasicTest(ipv6_test_addr);
}
TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) {
IPAddress ipv4_default_addr(0x01020304);
TestDefaultRoute(ipv4_default_addr);
}
TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) {
IPAddress ipv6_default_addr;
EXPECT_TRUE(
IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr));
TestDefaultRoute(ipv6_default_addr);
}
TEST_F(VirtualSocketServerTest, connect_v4) {
ConnectTest(kIPv4AnyAddress);
}
TEST_F(VirtualSocketServerTest, connect_v6) {
ConnectTest(kIPv6AnyAddress);
}
TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) {
ConnectToNonListenerTest(kIPv4AnyAddress);
}
TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) {
ConnectToNonListenerTest(kIPv6AnyAddress);
}
TEST_F(VirtualSocketServerTest, close_during_connect_v4) {
CloseDuringConnectTest(kIPv4AnyAddress);
}
TEST_F(VirtualSocketServerTest, close_during_connect_v6) {
CloseDuringConnectTest(kIPv6AnyAddress);
}
TEST_F(VirtualSocketServerTest, close_v4) {
CloseTest(kIPv4AnyAddress);
}
TEST_F(VirtualSocketServerTest, close_v6) {
CloseTest(kIPv6AnyAddress);
}
TEST_F(VirtualSocketServerTest, tcp_send_v4) {
TcpSendTest(kIPv4AnyAddress);
}
TEST_F(VirtualSocketServerTest, tcp_send_v6) {
TcpSendTest(kIPv6AnyAddress);
}
TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) {
TcpSendsPacketsInOrderTest(kIPv4AnyAddress);
}
TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) {
TcpSendsPacketsInOrderTest(kIPv6AnyAddress);
}
TEST_F(VirtualSocketServerTest, bandwidth_v4) {
BandwidthTest(kIPv4AnyAddress);
}
TEST_F(VirtualSocketServerTest, bandwidth_v6) {
BandwidthTest(kIPv6AnyAddress);
}
TEST_F(VirtualSocketServerTest, delay_v4) {
DelayTest(kIPv4AnyAddress);
}
// See: https://code.google.com/p/webrtc/issues/detail?id=2409
TEST_F(VirtualSocketServerTest, DISABLED_delay_v6) {
DelayTest(kIPv6AnyAddress);
}
// Works, receiving socket sees 127.0.0.2.
TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) {
CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0),
SocketAddress("0.0.0.0", 5000),
true);
}
// Fails.
TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) {
CrossFamilyConnectionTest(SocketAddress("::2", 0),
SocketAddress("0.0.0.0", 5000),
false);
}
// Fails.
TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) {
CrossFamilyConnectionTest(SocketAddress("::2", 0),
SocketAddress("::ffff:127.0.0.1", 5000),
false);
}
// Works. receiving socket sees ::ffff:127.0.0.2.
TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) {
CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
SocketAddress("::", 5000),
true);
}
// Fails.
TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) {
CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
SocketAddress("::1", 5000),
false);
}
// Works. Receiving socket sees ::ffff:127.0.0.1.
TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) {
CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0),
SocketAddress("::ffff:127.0.0.2", 5000),
true);
}
// Works, receiving socket sees a result from GetNextIP.
TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) {
CrossFamilyConnectionTest(SocketAddress("::", 0),
SocketAddress("0.0.0.0", 5000),
true);
}
// Works, receiving socket sees whatever GetNextIP gave the client.
TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) {
CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0),
SocketAddress("::", 5000),
true);
}
TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) {
CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0),
SocketAddress("::", 5000),
true);
}
TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) {
CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0),
SocketAddress("0.0.0.0", 5000),
true);
}
TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) {
CrossFamilyDatagramTest(SocketAddress("::2", 0),
SocketAddress("0.0.0.0", 5000),
false);
}
TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) {
CrossFamilyDatagramTest(SocketAddress("::2", 0),
SocketAddress("::ffff:127.0.0.1", 5000),
false);
}
TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) {
CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
SocketAddress("::", 5000),
true);
}
TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) {
CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
SocketAddress("::1", 5000),
false);
}
TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) {
CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0),
SocketAddress("::ffff:127.0.0.2", 5000),
true);
}
TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) {
CrossFamilyDatagramTest(SocketAddress("::", 0),
SocketAddress("0.0.0.0", 5000),
true);
}
TEST_F(VirtualSocketServerTest, SetSendingBlockedWithUdpSocket) {
AsyncSocket* socket1 =
ss_->CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM);
AsyncSocket* socket2 =
ss_->CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM);
socket1->Bind(kIPv4AnyAddress);
socket2->Bind(kIPv4AnyAddress);
TestClient* client1 = new TestClient(new AsyncUDPSocket(socket1));
ss_->SetSendingBlocked(true);
EXPECT_EQ(-1, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
EXPECT_TRUE(socket1->IsBlocking());
EXPECT_EQ(0, client1->ready_to_send_count());
ss_->SetSendingBlocked(false);
EXPECT_EQ(1, client1->ready_to_send_count());
EXPECT_EQ(3, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
}
TEST_F(VirtualSocketServerTest, SetSendingBlockedWithTcpSocket) {
constexpr size_t kBufferSize = 1024;
ss_->set_send_buffer_capacity(kBufferSize);
ss_->set_recv_buffer_capacity(kBufferSize);
testing::StreamSink sink;
AsyncSocket* socket1 =
ss_->CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM);
AsyncSocket* socket2 =
ss_->CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM);
sink.Monitor(socket1);
sink.Monitor(socket2);
socket1->Bind(kIPv4AnyAddress);
socket2->Bind(kIPv4AnyAddress);
// Connect sockets.
EXPECT_EQ(0, socket1->Connect(socket2->GetLocalAddress()));
EXPECT_EQ(0, socket2->Connect(socket1->GetLocalAddress()));
ss_->ProcessMessagesUntilIdle();
char data[kBufferSize] = {};
// First Send call will fill the send buffer but not send anything.
ss_->SetSendingBlocked(true);
EXPECT_EQ(static_cast<int>(kBufferSize), socket1->Send(data, kBufferSize));
ss_->ProcessMessagesUntilIdle();
EXPECT_FALSE(sink.Check(socket1, testing::SSE_WRITE));
EXPECT_FALSE(sink.Check(socket2, testing::SSE_READ));
EXPECT_FALSE(socket1->IsBlocking());
// Since the send buffer is full, next Send will result in EWOULDBLOCK.
EXPECT_EQ(-1, socket1->Send(data, kBufferSize));
EXPECT_FALSE(sink.Check(socket1, testing::SSE_WRITE));
EXPECT_FALSE(sink.Check(socket2, testing::SSE_READ));
EXPECT_TRUE(socket1->IsBlocking());
// When sending is unblocked, the buffered data should be sent and
// SignalWriteEvent should fire.
ss_->SetSendingBlocked(false);
ss_->ProcessMessagesUntilIdle();
EXPECT_TRUE(sink.Check(socket1, testing::SSE_WRITE));
EXPECT_TRUE(sink.Check(socket2, testing::SSE_READ));
}
TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) {
const uint32_t kTestMean[] = {10, 100, 333, 1000};
const double kTestDev[] = { 0.25, 0.1, 0.01 };
// TODO(deadbeef): The current code only works for 1000 data points or more.
const uint32_t kTestSamples[] = {/*10, 100,*/ 1000};
for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) {
for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) {
for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) {
ASSERT_LT(0u, kTestSamples[sidx]);
const uint32_t kStdDev =
static_cast<uint32_t>(kTestDev[didx] * kTestMean[midx]);
VirtualSocketServer::Function* f =
VirtualSocketServer::CreateDistribution(kTestMean[midx],
kStdDev,
kTestSamples[sidx]);
ASSERT_TRUE(NULL != f);
ASSERT_EQ(kTestSamples[sidx], f->size());
double sum = 0;
for (uint32_t i = 0; i < f->size(); ++i) {
sum += (*f)[i].second;
}
const double mean = sum / f->size();
double sum_sq_dev = 0;
for (uint32_t i = 0; i < f->size(); ++i) {
double dev = (*f)[i].second - mean;
sum_sq_dev += dev * dev;
}
const double stddev = sqrt(sum_sq_dev / f->size());
EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx])
<< "M=" << kTestMean[midx]
<< " SD=" << kStdDev
<< " N=" << kTestSamples[sidx];
EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev)
<< "M=" << kTestMean[midx]
<< " SD=" << kStdDev
<< " N=" << kTestSamples[sidx];
delete f;
}
}
}
}