blob: dba68f177e5120a496a39d603d622971ac776ac4 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/client/basicportallocator.h"
#include <algorithm>
#include <string>
#include <vector>
#include "webrtc/p2p/base/basicpacketsocketfactory.h"
#include "webrtc/p2p/base/common.h"
#include "webrtc/p2p/base/port.h"
#include "webrtc/p2p/base/relayport.h"
#include "webrtc/p2p/base/stunport.h"
#include "webrtc/p2p/base/tcpport.h"
#include "webrtc/p2p/base/turnport.h"
#include "webrtc/p2p/base/udpport.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/common.h"
#include "webrtc/base/helpers.h"
#include "webrtc/base/logging.h"
using rtc::CreateRandomId;
namespace {
enum {
MSG_CONFIG_START,
MSG_CONFIG_READY,
MSG_ALLOCATE,
MSG_ALLOCATION_PHASE,
MSG_SEQUENCEOBJECTS_CREATED,
MSG_CONFIG_STOP,
};
const int PHASE_UDP = 0;
const int PHASE_RELAY = 1;
const int PHASE_TCP = 2;
const int PHASE_SSLTCP = 3;
const int kNumPhases = 4;
// Gets protocol priority: UDP > TCP > SSLTCP.
int GetProtocolPriority(cricket::ProtocolType protocol) {
switch (protocol) {
case cricket::PROTO_UDP:
return 2;
case cricket::PROTO_TCP:
return 1;
case cricket::PROTO_SSLTCP:
return 0;
default:
RTC_DCHECK(false);
return 0;
}
}
// Gets address family priority: IPv6 > IPv4 > Unspecified.
int GetAddressFamilyPriority(int ip_family) {
switch (ip_family) {
case AF_INET6:
return 2;
case AF_INET:
return 1;
default:
RTC_DCHECK(false);
return 0;
}
}
// Returns positive if a is better, negative if b is better, and 0 otherwise.
int ComparePort(const cricket::Port* a, const cricket::Port* b) {
int a_protocol = GetProtocolPriority(a->GetProtocol());
int b_protocol = GetProtocolPriority(b->GetProtocol());
int cmp_protocol = a_protocol - b_protocol;
if (cmp_protocol != 0) {
return cmp_protocol;
}
int a_family = GetAddressFamilyPriority(a->Network()->GetBestIP().family());
int b_family = GetAddressFamilyPriority(b->Network()->GetBestIP().family());
return a_family - b_family;
}
} // namespace
namespace cricket {
const uint32_t DISABLE_ALL_PHASES =
PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY;
// BasicPortAllocator
BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory)
: network_manager_(network_manager), socket_factory_(socket_factory) {
ASSERT(network_manager_ != nullptr);
ASSERT(socket_factory_ != nullptr);
Construct();
}
BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager)
: network_manager_(network_manager), socket_factory_(nullptr) {
ASSERT(network_manager_ != nullptr);
Construct();
}
BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory,
const ServerAddresses& stun_servers)
: network_manager_(network_manager), socket_factory_(socket_factory) {
ASSERT(socket_factory_ != NULL);
SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0, false);
Construct();
}
BasicPortAllocator::BasicPortAllocator(
rtc::NetworkManager* network_manager,
const ServerAddresses& stun_servers,
const rtc::SocketAddress& relay_address_udp,
const rtc::SocketAddress& relay_address_tcp,
const rtc::SocketAddress& relay_address_ssl)
: network_manager_(network_manager), socket_factory_(NULL) {
std::vector<RelayServerConfig> turn_servers;
RelayServerConfig config(RELAY_GTURN);
if (!relay_address_udp.IsNil()) {
config.ports.push_back(ProtocolAddress(relay_address_udp, PROTO_UDP));
}
if (!relay_address_tcp.IsNil()) {
config.ports.push_back(ProtocolAddress(relay_address_tcp, PROTO_TCP));
}
if (!relay_address_ssl.IsNil()) {
config.ports.push_back(ProtocolAddress(relay_address_ssl, PROTO_SSLTCP));
}
if (!config.ports.empty()) {
turn_servers.push_back(config);
}
SetConfiguration(stun_servers, turn_servers, 0, false);
Construct();
}
void BasicPortAllocator::Construct() {
allow_tcp_listen_ = true;
}
BasicPortAllocator::~BasicPortAllocator() {
}
PortAllocatorSession* BasicPortAllocator::CreateSessionInternal(
const std::string& content_name, int component,
const std::string& ice_ufrag, const std::string& ice_pwd) {
return new BasicPortAllocatorSession(
this, content_name, component, ice_ufrag, ice_pwd);
}
void BasicPortAllocator::AddTurnServer(const RelayServerConfig& turn_server) {
std::vector<RelayServerConfig> new_turn_servers = turn_servers();
new_turn_servers.push_back(turn_server);
SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size(),
prune_turn_ports());
}
// BasicPortAllocatorSession
BasicPortAllocatorSession::BasicPortAllocatorSession(
BasicPortAllocator* allocator,
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd)
: PortAllocatorSession(content_name,
component,
ice_ufrag,
ice_pwd,
allocator->flags()),
allocator_(allocator),
network_thread_(NULL),
socket_factory_(allocator->socket_factory()),
allocation_started_(false),
network_manager_started_(false),
allocation_sequences_created_(false),
prune_turn_ports_(allocator->prune_turn_ports()) {
allocator_->network_manager()->SignalNetworksChanged.connect(
this, &BasicPortAllocatorSession::OnNetworksChanged);
allocator_->network_manager()->StartUpdating();
}
BasicPortAllocatorSession::~BasicPortAllocatorSession() {
allocator_->network_manager()->StopUpdating();
if (network_thread_ != NULL)
network_thread_->Clear(this);
for (uint32_t i = 0; i < sequences_.size(); ++i) {
// AllocationSequence should clear it's map entry for turn ports before
// ports are destroyed.
sequences_[i]->Clear();
}
std::vector<PortData>::iterator it;
for (it = ports_.begin(); it != ports_.end(); it++)
delete it->port();
for (uint32_t i = 0; i < configs_.size(); ++i)
delete configs_[i];
for (uint32_t i = 0; i < sequences_.size(); ++i)
delete sequences_[i];
}
void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) {
if (filter == candidate_filter_) {
return;
}
// We assume the filter will only change from "ALL" to something else.
RTC_DCHECK(candidate_filter_ == CF_ALL);
candidate_filter_ = filter;
for (PortData& port : ports_) {
if (!port.has_pairable_candidate()) {
continue;
}
const auto& candidates = port.port()->Candidates();
// Setting a filter may cause a ready port to become non-ready
// if it no longer has any pairable candidates.
if (!std::any_of(candidates.begin(), candidates.end(),
[this, &port](const Candidate& candidate) {
return CandidatePairable(candidate, port.port());
})) {
port.set_has_pairable_candidate(false);
}
}
}
void BasicPortAllocatorSession::StartGettingPorts() {
network_thread_ = rtc::Thread::Current();
state_ = SessionState::GATHERING;
if (!socket_factory_) {
owned_socket_factory_.reset(
new rtc::BasicPacketSocketFactory(network_thread_));
socket_factory_ = owned_socket_factory_.get();
}
network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_START);
LOG(LS_INFO) << "Pruning turn ports "
<< (prune_turn_ports_ ? "enabled" : "disabled");
}
void BasicPortAllocatorSession::StopGettingPorts() {
ASSERT(rtc::Thread::Current() == network_thread_);
ClearGettingPorts();
// Note: this must be called after ClearGettingPorts because both may set the
// session state and we should set the state to STOPPED.
state_ = SessionState::STOPPED;
}
void BasicPortAllocatorSession::ClearGettingPorts() {
ASSERT(rtc::Thread::Current() == network_thread_);
network_thread_->Clear(this, MSG_ALLOCATE);
for (uint32_t i = 0; i < sequences_.size(); ++i) {
sequences_[i]->Stop();
}
network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_STOP);
state_ = SessionState::CLEARED;
}
std::vector<rtc::Network*> BasicPortAllocatorSession::GetFailedNetworks() {
std::vector<rtc::Network*> networks = GetNetworks();
// A network interface may have both IPv4 and IPv6 networks. Only if
// neither of the networks has any connections, the network interface
// is considered failed and need to be regathered on.
std::set<std::string> networks_with_connection;
for (const PortData& data : ports_) {
Port* port = data.port();
if (!port->connections().empty()) {
networks_with_connection.insert(port->Network()->name());
}
}
networks.erase(
std::remove_if(networks.begin(), networks.end(),
[networks_with_connection](rtc::Network* network) {
// If a network does not have any connection, it is
// considered failed.
return networks_with_connection.find(network->name()) !=
networks_with_connection.end();
}),
networks.end());
return networks;
}
void BasicPortAllocatorSession::RegatherOnFailedNetworks() {
// Find the list of networks that have no connection.
std::vector<rtc::Network*> failed_networks = GetFailedNetworks();
if (failed_networks.empty()) {
return;
}
// Mark a sequence as "network failed" if its network is in the list of failed
// networks, so that it won't be considered as equivalent when the session
// regathers ports and candidates.
for (AllocationSequence* sequence : sequences_) {
if (!sequence->network_failed() &&
std::find(failed_networks.begin(), failed_networks.end(),
sequence->network()) != failed_networks.end()) {
sequence->set_network_failed();
}
}
// Remove ports from being used locally and send signaling to remove
// the candidates on the remote side.
std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks);
if (!ports_to_prune.empty()) {
LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " ports because their networks failed";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
if (allocation_started_ && network_manager_started_) {
DoAllocate();
}
}
std::vector<PortInterface*> BasicPortAllocatorSession::ReadyPorts() const {
std::vector<PortInterface*> ret;
for (const PortData& data : ports_) {
if (data.ready()) {
ret.push_back(data.port());
}
}
return ret;
}
std::vector<Candidate> BasicPortAllocatorSession::ReadyCandidates() const {
std::vector<Candidate> candidates;
for (const PortData& data : ports_) {
if (!data.ready()) {
continue;
}
GetCandidatesFromPort(data, &candidates);
}
return candidates;
}
void BasicPortAllocatorSession::GetCandidatesFromPort(
const PortData& data,
std::vector<Candidate>* candidates) const {
RTC_CHECK(candidates != nullptr);
for (const Candidate& candidate : data.port()->Candidates()) {
if (!CheckCandidateFilter(candidate)) {
continue;
}
ProtocolType pvalue;
if (!StringToProto(candidate.protocol().c_str(), &pvalue) ||
!data.sequence()->ProtocolEnabled(pvalue)) {
continue;
}
candidates->push_back(SanitizeRelatedAddress(candidate));
}
}
Candidate BasicPortAllocatorSession::SanitizeRelatedAddress(
const Candidate& c) const {
Candidate copy = c;
// If adapter enumeration is disabled or host candidates are disabled,
// clear the raddr of STUN candidates to avoid local address leakage.
bool filter_stun_related_address =
((flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) &&
(flags() & PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE)) ||
!(candidate_filter_ & CF_HOST);
// If the candidate filter doesn't allow reflexive addresses, empty TURN raddr
// to avoid reflexive address leakage.
bool filter_turn_related_address = !(candidate_filter_ & CF_REFLEXIVE);
if ((c.type() == STUN_PORT_TYPE && filter_stun_related_address) ||
(c.type() == RELAY_PORT_TYPE && filter_turn_related_address)) {
copy.set_related_address(
rtc::EmptySocketAddressWithFamily(copy.address().family()));
}
return copy;
}
bool BasicPortAllocatorSession::CandidatesAllocationDone() const {
// Done only if all required AllocationSequence objects
// are created.
if (!allocation_sequences_created_) {
return false;
}
// Check that all port allocation sequences are complete (not running).
if (std::any_of(sequences_.begin(), sequences_.end(),
[](const AllocationSequence* sequence) {
return sequence->state() == AllocationSequence::kRunning;
})) {
return false;
}
// If all allocated ports are no longer gathering, session must have got all
// expected candidates. Session will trigger candidates allocation complete
// signal.
return std::none_of(ports_.begin(), ports_.end(),
[](const PortData& port) { return port.inprogress(); });
}
void BasicPortAllocatorSession::OnMessage(rtc::Message *message) {
switch (message->message_id) {
case MSG_CONFIG_START:
ASSERT(rtc::Thread::Current() == network_thread_);
GetPortConfigurations();
break;
case MSG_CONFIG_READY:
ASSERT(rtc::Thread::Current() == network_thread_);
OnConfigReady(static_cast<PortConfiguration*>(message->pdata));
break;
case MSG_ALLOCATE:
ASSERT(rtc::Thread::Current() == network_thread_);
OnAllocate();
break;
case MSG_SEQUENCEOBJECTS_CREATED:
ASSERT(rtc::Thread::Current() == network_thread_);
OnAllocationSequenceObjectsCreated();
break;
case MSG_CONFIG_STOP:
ASSERT(rtc::Thread::Current() == network_thread_);
OnConfigStop();
break;
default:
ASSERT(false);
}
}
void BasicPortAllocatorSession::UpdateIceParametersInternal() {
for (PortData& port : ports_) {
port.port()->set_content_name(content_name());
port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd());
}
}
void BasicPortAllocatorSession::GetPortConfigurations() {
PortConfiguration* config = new PortConfiguration(allocator_->stun_servers(),
username(),
password());
for (const RelayServerConfig& turn_server : allocator_->turn_servers()) {
config->AddRelay(turn_server);
}
ConfigReady(config);
}
void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) {
network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_READY, config);
}
// Adds a configuration to the list.
void BasicPortAllocatorSession::OnConfigReady(PortConfiguration* config) {
if (config) {
configs_.push_back(config);
}
AllocatePorts();
}
void BasicPortAllocatorSession::OnConfigStop() {
ASSERT(rtc::Thread::Current() == network_thread_);
// If any of the allocated ports have not completed the candidates allocation,
// mark those as error. Since session doesn't need any new candidates
// at this stage of the allocation, it's safe to discard any new candidates.
bool send_signal = false;
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->inprogress()) {
// Updating port state to error, which didn't finish allocating candidates
// yet.
it->set_error();
send_signal = true;
}
}
// Did we stop any running sequences?
for (std::vector<AllocationSequence*>::iterator it = sequences_.begin();
it != sequences_.end() && !send_signal; ++it) {
if ((*it)->state() == AllocationSequence::kStopped) {
send_signal = true;
}
}
// If we stopped anything that was running, send a done signal now.
if (send_signal) {
MaybeSignalCandidatesAllocationDone();
}
}
void BasicPortAllocatorSession::AllocatePorts() {
ASSERT(rtc::Thread::Current() == network_thread_);
network_thread_->Post(RTC_FROM_HERE, this, MSG_ALLOCATE);
}
void BasicPortAllocatorSession::OnAllocate() {
if (network_manager_started_)
DoAllocate();
allocation_started_ = true;
}
std::vector<rtc::Network*> BasicPortAllocatorSession::GetNetworks() {
std::vector<rtc::Network*> networks;
rtc::NetworkManager* network_manager = allocator_->network_manager();
ASSERT(network_manager != nullptr);
// If the network permission state is BLOCKED, we just act as if the flag has
// been passed in.
if (network_manager->enumeration_permission() ==
rtc::NetworkManager::ENUMERATION_BLOCKED) {
set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
}
// If the adapter enumeration is disabled, we'll just bind to any address
// instead of specific NIC. This is to ensure the same routing for http
// traffic by OS is also used here to avoid any local or public IP leakage
// during stun process.
if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) {
network_manager->GetAnyAddressNetworks(&networks);
} else {
network_manager->GetNetworks(&networks);
}
networks.erase(std::remove_if(networks.begin(), networks.end(),
[this](rtc::Network* network) {
return allocator_->network_ignore_mask() &
network->type();
}),
networks.end());
if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) {
uint16_t lowest_cost = rtc::kNetworkCostMax;
for (rtc::Network* network : networks) {
lowest_cost = std::min<uint16_t>(lowest_cost, network->GetCost());
}
networks.erase(std::remove_if(networks.begin(), networks.end(),
[lowest_cost](rtc::Network* network) {
return network->GetCost() >
lowest_cost + rtc::kNetworkCostLow;
}),
networks.end());
}
return networks;
}
// For each network, see if we have a sequence that covers it already. If not,
// create a new sequence to create the appropriate ports.
void BasicPortAllocatorSession::DoAllocate() {
bool done_signal_needed = false;
std::vector<rtc::Network*> networks = GetNetworks();
if (IsStopped()) {
return;
}
if (networks.empty()) {
LOG(LS_WARNING) << "Machine has no networks; no ports will be allocated";
done_signal_needed = true;
} else {
LOG(LS_INFO) << "Allocate ports on "<< networks.size() << " networks";
PortConfiguration* config = configs_.empty() ? nullptr : configs_.back();
for (uint32_t i = 0; i < networks.size(); ++i) {
uint32_t sequence_flags = flags();
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// If all the ports are disabled we should just fire the allocation
// done event and return.
done_signal_needed = true;
break;
}
if (!config || config->relays.empty()) {
// No relay ports specified in this config.
sequence_flags |= PORTALLOCATOR_DISABLE_RELAY;
}
if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) &&
networks[i]->GetBestIP().family() == AF_INET6) {
// Skip IPv6 networks unless the flag's been set.
continue;
}
// Disable phases that would only create ports equivalent to
// ones that we have already made.
DisableEquivalentPhases(networks[i], config, &sequence_flags);
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// New AllocationSequence would have nothing to do, so don't make it.
continue;
}
AllocationSequence* sequence =
new AllocationSequence(this, networks[i], config, sequence_flags);
sequence->SignalPortAllocationComplete.connect(
this, &BasicPortAllocatorSession::OnPortAllocationComplete);
sequence->Init();
sequence->Start();
sequences_.push_back(sequence);
done_signal_needed = true;
}
}
if (done_signal_needed) {
network_thread_->Post(RTC_FROM_HERE, this, MSG_SEQUENCEOBJECTS_CREATED);
}
}
void BasicPortAllocatorSession::OnNetworksChanged() {
std::vector<rtc::Network*> networks = GetNetworks();
std::vector<rtc::Network*> failed_networks;
for (AllocationSequence* sequence : sequences_) {
// Mark the sequence as "network failed" if its network is not in
// |networks|.
if (!sequence->network_failed() &&
std::find(networks.begin(), networks.end(), sequence->network()) ==
networks.end()) {
sequence->OnNetworkFailed();
failed_networks.push_back(sequence->network());
}
}
std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks);
if (!ports_to_prune.empty()) {
LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " ports because their networks were gone";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
if (!network_manager_started_) {
LOG(LS_INFO) << "Network manager is started";
network_manager_started_ = true;
}
if (allocation_started_)
DoAllocate();
}
void BasicPortAllocatorSession::DisableEquivalentPhases(
rtc::Network* network,
PortConfiguration* config,
uint32_t* flags) {
for (uint32_t i = 0; i < sequences_.size() &&
(*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES;
++i) {
sequences_[i]->DisableEquivalentPhases(network, config, flags);
}
}
void BasicPortAllocatorSession::AddAllocatedPort(Port* port,
AllocationSequence * seq,
bool prepare_address) {
if (!port)
return;
LOG(LS_INFO) << "Adding allocated port for " << content_name();
port->set_content_name(content_name());
port->set_component(component());
port->set_generation(generation());
if (allocator_->proxy().type != rtc::PROXY_NONE)
port->set_proxy(allocator_->user_agent(), allocator_->proxy());
port->set_send_retransmit_count_attribute(
(flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0);
PortData data(port, seq);
ports_.push_back(data);
port->SignalCandidateReady.connect(
this, &BasicPortAllocatorSession::OnCandidateReady);
port->SignalPortComplete.connect(this,
&BasicPortAllocatorSession::OnPortComplete);
port->SignalDestroyed.connect(this,
&BasicPortAllocatorSession::OnPortDestroyed);
port->SignalPortError.connect(
this, &BasicPortAllocatorSession::OnPortError);
LOG_J(LS_INFO, port) << "Added port to allocator";
if (prepare_address)
port->PrepareAddress();
}
void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() {
allocation_sequences_created_ = true;
// Send candidate allocation complete signal if we have no sequences.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnCandidateReady(
Port* port, const Candidate& c) {
ASSERT(rtc::Thread::Current() == network_thread_);
PortData* data = FindPort(port);
ASSERT(data != NULL);
LOG_J(LS_INFO, port) << "Gathered candidate: " << c.ToSensitiveString();
// Discarding any candidate signal if port allocation status is
// already done with gathering.
if (!data->inprogress()) {
LOG(LS_WARNING)
<< "Discarding candidate because port is already done gathering.";
return;
}
// Mark that the port has a pairable candidate, either because we have a
// usable candidate from the port, or simply because the port is bound to the
// any address and therefore has no host candidate. This will trigger the port
// to start creating candidate pairs (connections) and issue connectivity
// checks. If port has already been marked as having a pairable candidate,
// do nothing here.
// Note: We should check whether any candidates may become ready after this
// because there we will check whether the candidate is generated by the ready
// ports, which may include this port.
bool pruned = false;
if (CandidatePairable(c, port) && !data->has_pairable_candidate()) {
data->set_has_pairable_candidate(true);
if (prune_turn_ports_ && port->Type() == RELAY_PORT_TYPE) {
pruned = PruneTurnPorts(port);
}
// If the current port is not pruned yet, SignalPortReady.
if (!data->pruned()) {
LOG_J(LS_INFO, port) << "Port ready.";
SignalPortReady(this, port);
port->KeepAliveUntilPruned();
}
}
ProtocolType pvalue;
bool candidate_protocol_enabled =
StringToProto(c.protocol().c_str(), &pvalue) &&
data->sequence()->ProtocolEnabled(pvalue);
if (data->ready() && CheckCandidateFilter(c) && candidate_protocol_enabled) {
std::vector<Candidate> candidates;
candidates.push_back(SanitizeRelatedAddress(c));
SignalCandidatesReady(this, candidates);
} else if (!candidate_protocol_enabled) {
LOG(LS_INFO)
<< "Not yet signaling candidate because protocol is not yet enabled.";
} else {
LOG(LS_INFO) << "Discarding candidate because it doesn't match filter.";
}
// If we have pruned any port, maybe need to signal port allocation done.
if (pruned) {
MaybeSignalCandidatesAllocationDone();
}
}
Port* BasicPortAllocatorSession::GetBestTurnPortForNetwork(
const std::string& network_name) const {
Port* best_turn_port = nullptr;
for (const PortData& data : ports_) {
if (data.port()->Network()->name() == network_name &&
data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
(!best_turn_port || ComparePort(data.port(), best_turn_port) > 0)) {
best_turn_port = data.port();
}
}
return best_turn_port;
}
bool BasicPortAllocatorSession::PruneTurnPorts(Port* newly_pairable_turn_port) {
// Note: We determine the same network based only on their network names. So
// if an IPv4 address and an IPv6 address have the same network name, they
// are considered the same network here.
const std::string& network_name = newly_pairable_turn_port->Network()->name();
Port* best_turn_port = GetBestTurnPortForNetwork(network_name);
// |port| is already in the list of ports, so the best port cannot be nullptr.
RTC_CHECK(best_turn_port != nullptr);
bool pruned = false;
std::vector<PortData*> ports_to_prune;
for (PortData& data : ports_) {
if (data.port()->Network()->name() == network_name &&
data.port()->Type() == RELAY_PORT_TYPE && !data.pruned() &&
ComparePort(data.port(), best_turn_port) < 0) {
pruned = true;
if (data.port() != newly_pairable_turn_port) {
// These ports will be pruned in PrunePortsAndRemoveCandidates.
ports_to_prune.push_back(&data);
} else {
data.Prune();
}
}
}
if (!ports_to_prune.empty()) {
LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " low-priority TURN ports";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
return pruned;
}
void BasicPortAllocatorSession::PruneAllPorts() {
for (PortData& data : ports_) {
data.Prune();
}
}
void BasicPortAllocatorSession::OnPortComplete(Port* port) {
ASSERT(rtc::Thread::Current() == network_thread_);
LOG_J(LS_INFO, port) << "Port completed gathering candidates.";
PortData* data = FindPort(port);
ASSERT(data != NULL);
// Ignore any late signals.
if (!data->inprogress()) {
return;
}
// Moving to COMPLETE state.
data->set_complete();
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnPortError(Port* port) {
ASSERT(rtc::Thread::Current() == network_thread_);
LOG_J(LS_INFO, port) << "Port encountered error while gathering candidates.";
PortData* data = FindPort(port);
ASSERT(data != NULL);
// We might have already given up on this port and stopped it.
if (!data->inprogress()) {
return;
}
// SignalAddressError is currently sent from StunPort/TurnPort.
// But this signal itself is generic.
data->set_error();
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnProtocolEnabled(AllocationSequence* seq,
ProtocolType proto) {
std::vector<Candidate> candidates;
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->sequence() != seq)
continue;
const std::vector<Candidate>& potentials = it->port()->Candidates();
for (size_t i = 0; i < potentials.size(); ++i) {
if (!CheckCandidateFilter(potentials[i])) {
continue;
}
ProtocolType pvalue;
bool candidate_protocol_enabled =
StringToProto(potentials[i].protocol().c_str(), &pvalue) &&
pvalue == proto;
if (candidate_protocol_enabled) {
LOG(LS_INFO) << "Signaling candidate because protocol was enabled: "
<< potentials[i].ToSensitiveString();
candidates.push_back(potentials[i]);
}
}
}
if (!candidates.empty()) {
SignalCandidatesReady(this, candidates);
}
}
bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const {
uint32_t filter = candidate_filter_;
// When binding to any address, before sending packets out, the getsockname
// returns all 0s, but after sending packets, it'll be the NIC used to
// send. All 0s is not a valid ICE candidate address and should be filtered
// out.
if (c.address().IsAnyIP()) {
return false;
}
if (c.type() == RELAY_PORT_TYPE) {
return ((filter & CF_RELAY) != 0);
} else if (c.type() == STUN_PORT_TYPE) {
return ((filter & CF_REFLEXIVE) != 0);
} else if (c.type() == LOCAL_PORT_TYPE) {
if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) {
// We allow host candidates if the filter allows server-reflexive
// candidates and the candidate is a public IP. Because we don't generate
// server-reflexive candidates if they have the same IP as the host
// candidate (i.e. when the host candidate is a public IP), filtering to
// only server-reflexive candidates won't work right when the host
// candidates have public IPs.
return true;
}
return ((filter & CF_HOST) != 0);
}
return false;
}
bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c,
const Port* port) const {
bool candidate_signalable = CheckCandidateFilter(c);
// When device enumeration is disabled (to prevent non-default IP addresses
// from leaking), we ping from some local candidates even though we don't
// signal them. However, if host candidates are also disabled (for example, to
// prevent even default IP addresses from leaking), we still don't want to
// ping from them, even if device enumeration is disabled. Thus, we check for
// both device enumeration and host candidates being disabled.
bool network_enumeration_disabled = c.address().IsAnyIP();
bool can_ping_from_candidate =
(port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME);
bool host_candidates_disabled = !(candidate_filter_ & CF_HOST);
return candidate_signalable ||
(network_enumeration_disabled && can_ping_from_candidate &&
!host_candidates_disabled);
}
void BasicPortAllocatorSession::OnPortAllocationComplete(
AllocationSequence* seq) {
// Send candidate allocation complete signal if all ports are done.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() {
if (CandidatesAllocationDone()) {
if (pooled()) {
LOG(LS_INFO) << "All candidates gathered for pooled session.";
} else {
LOG(LS_INFO) << "All candidates gathered for " << content_name() << ":"
<< component() << ":" << generation();
}
SignalCandidatesAllocationDone(this);
}
}
void BasicPortAllocatorSession::OnPortDestroyed(
PortInterface* port) {
ASSERT(rtc::Thread::Current() == network_thread_);
for (std::vector<PortData>::iterator iter = ports_.begin();
iter != ports_.end(); ++iter) {
if (port == iter->port()) {
ports_.erase(iter);
LOG_J(LS_INFO, port) << "Removed port from allocator ("
<< static_cast<int>(ports_.size()) << " remaining)";
return;
}
}
ASSERT(false);
}
BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort(
Port* port) {
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->port() == port) {
return &*it;
}
}
return NULL;
}
std::vector<BasicPortAllocatorSession::PortData*>
BasicPortAllocatorSession::GetUnprunedPorts(
const std::vector<rtc::Network*>& networks) {
std::vector<PortData*> unpruned_ports;
for (PortData& port : ports_) {
if (!port.pruned() &&
std::find(networks.begin(), networks.end(),
port.sequence()->network()) != networks.end()) {
unpruned_ports.push_back(&port);
}
}
return unpruned_ports;
}
void BasicPortAllocatorSession::PrunePortsAndRemoveCandidates(
const std::vector<PortData*>& port_data_list) {
std::vector<PortInterface*> pruned_ports;
std::vector<Candidate> removed_candidates;
for (PortData* data : port_data_list) {
// Prune the port so that it may be destroyed.
data->Prune();
pruned_ports.push_back(data->port());
if (data->has_pairable_candidate()) {
GetCandidatesFromPort(*data, &removed_candidates);
// Mark the port as having no pairable candidates so that its candidates
// won't be removed multiple times.
data->set_has_pairable_candidate(false);
}
}
if (!pruned_ports.empty()) {
SignalPortsPruned(this, pruned_ports);
}
if (!removed_candidates.empty()) {
LOG(LS_INFO) << "Removed " << removed_candidates.size() << " candidates";
SignalCandidatesRemoved(this, removed_candidates);
}
}
// AllocationSequence
AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session,
rtc::Network* network,
PortConfiguration* config,
uint32_t flags)
: session_(session),
network_(network),
ip_(network->GetBestIP()),
config_(config),
state_(kInit),
flags_(flags),
udp_socket_(),
udp_port_(NULL),
phase_(0) {
}
void AllocationSequence::Init() {
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
rtc::SocketAddress(ip_, 0), session_->allocator()->min_port(),
session_->allocator()->max_port()));
if (udp_socket_) {
udp_socket_->SignalReadPacket.connect(
this, &AllocationSequence::OnReadPacket);
}
// Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP
// are next available options to setup a communication channel.
}
}
void AllocationSequence::Clear() {
udp_port_ = NULL;
turn_ports_.clear();
}
void AllocationSequence::OnNetworkFailed() {
RTC_DCHECK(!network_failed_);
network_failed_ = true;
// Stop the allocation sequence if its network failed.
Stop();
}
AllocationSequence::~AllocationSequence() {
session_->network_thread()->Clear(this);
}
void AllocationSequence::DisableEquivalentPhases(rtc::Network* network,
PortConfiguration* config, uint32_t* flags) {
if (network_failed_) {
// If the network of this allocation sequence has ever become failed,
// it won't be equivalent to the new network.
return;
}
if (!((network == network_) && (ip_ == network->GetBestIP()))) {
// Different network setup; nothing is equivalent.
return;
}
// Else turn off the stuff that we've already got covered.
// Every config implicitly specifies local, so turn that off right away.
*flags |= PORTALLOCATOR_DISABLE_UDP;
*flags |= PORTALLOCATOR_DISABLE_TCP;
if (config_ && config) {
if (config_->StunServers() == config->StunServers()) {
// Already got this STUN servers covered.
*flags |= PORTALLOCATOR_DISABLE_STUN;
}
if (!config_->relays.empty()) {
// Already got relays covered.
// NOTE: This will even skip a _different_ set of relay servers if we
// were to be given one, but that never happens in our codebase. Should
// probably get rid of the list in PortConfiguration and just keep a
// single relay server in each one.
*flags |= PORTALLOCATOR_DISABLE_RELAY;
}
}
}
void AllocationSequence::Start() {
state_ = kRunning;
session_->network_thread()->Post(RTC_FROM_HERE, this, MSG_ALLOCATION_PHASE);
}
void AllocationSequence::Stop() {
// If the port is completed, don't set it to stopped.
if (state_ == kRunning) {
state_ = kStopped;
session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
}
}
void AllocationSequence::OnMessage(rtc::Message* msg) {
ASSERT(rtc::Thread::Current() == session_->network_thread());
ASSERT(msg->message_id == MSG_ALLOCATION_PHASE);
const char* const PHASE_NAMES[kNumPhases] = {
"Udp", "Relay", "Tcp", "SslTcp"
};
// Perform all of the phases in the current step.
LOG_J(LS_INFO, network_) << "Allocation Phase="
<< PHASE_NAMES[phase_];
switch (phase_) {
case PHASE_UDP:
CreateUDPPorts();
CreateStunPorts();
EnableProtocol(PROTO_UDP);
break;
case PHASE_RELAY:
CreateRelayPorts();
break;
case PHASE_TCP:
CreateTCPPorts();
EnableProtocol(PROTO_TCP);
break;
case PHASE_SSLTCP:
state_ = kCompleted;
EnableProtocol(PROTO_SSLTCP);
break;
default:
ASSERT(false);
}
if (state() == kRunning) {
++phase_;
session_->network_thread()->PostDelayed(RTC_FROM_HERE,
session_->allocator()->step_delay(),
this, MSG_ALLOCATION_PHASE);
} else {
// If all phases in AllocationSequence are completed, no allocation
// steps needed further. Canceling pending signal.
session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
SignalPortAllocationComplete(this);
}
}
void AllocationSequence::EnableProtocol(ProtocolType proto) {
if (!ProtocolEnabled(proto)) {
protocols_.push_back(proto);
session_->OnProtocolEnabled(this, proto);
}
}
bool AllocationSequence::ProtocolEnabled(ProtocolType proto) const {
for (ProtocolList::const_iterator it = protocols_.begin();
it != protocols_.end(); ++it) {
if (*it == proto)
return true;
}
return false;
}
void AllocationSequence::CreateUDPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) {
LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping.";
return;
}
// TODO(mallinath) - Remove UDPPort creating socket after shared socket
// is enabled completely.
UDPPort* port = NULL;
bool emit_local_candidate_for_anyaddress =
!IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) {
port = UDPPort::Create(
session_->network_thread(), session_->socket_factory(), network_,
udp_socket_.get(), session_->username(), session_->password(),
session_->allocator()->origin(), emit_local_candidate_for_anyaddress);
} else {
port = UDPPort::Create(
session_->network_thread(), session_->socket_factory(), network_, ip_,
session_->allocator()->min_port(), session_->allocator()->max_port(),
session_->username(), session_->password(),
session_->allocator()->origin(), emit_local_candidate_for_anyaddress);
}
if (port) {
// If shared socket is enabled, STUN candidate will be allocated by the
// UDPPort.
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_port_ = port;
port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed);
// If STUN is not disabled, setting stun server address to port.
if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
if (config_ && !config_->StunServers().empty()) {
LOG(LS_INFO) << "AllocationSequence: UDPPort will be handling the "
<< "STUN candidate generation.";
port->set_server_addresses(config_->StunServers());
}
}
}
session_->AddAllocatedPort(port, this, true);
}
}
void AllocationSequence::CreateTCPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) {
LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping.";
return;
}
Port* port = TCPPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(), session_->password(),
session_->allocator()->allow_tcp_listen());
if (port) {
session_->AddAllocatedPort(port, this, true);
// Since TCPPort is not created using shared socket, |port| will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateStunPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping.";
return;
}
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
return;
}
if (!(config_ && !config_->StunServers().empty())) {
LOG(LS_WARNING)
<< "AllocationSequence: No STUN server configured, skipping.";
return;
}
StunPort* port = StunPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(), session_->password(),
config_->StunServers(),
session_->allocator()->origin());
if (port) {
session_->AddAllocatedPort(port, this, true);
// Since StunPort is not created using shared socket, |port| will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateRelayPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) {
LOG(LS_VERBOSE) << "AllocationSequence: Relay ports disabled, skipping.";
return;
}
// If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we
// ought to have a relay list for them here.
ASSERT(config_ && !config_->relays.empty());
if (!(config_ && !config_->relays.empty())) {
LOG(LS_WARNING)
<< "AllocationSequence: No relay server configured, skipping.";
return;
}
for (RelayServerConfig& relay : config_->relays) {
if (relay.type == RELAY_GTURN) {
CreateGturnPort(relay);
} else if (relay.type == RELAY_TURN) {
CreateTurnPort(relay);
} else {
ASSERT(false);
}
}
}
void AllocationSequence::CreateGturnPort(const RelayServerConfig& config) {
// TODO(mallinath) - Rename RelayPort to GTurnPort.
RelayPort* port = RelayPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
config_->username, config_->password);
if (port) {
// Since RelayPort is not created using shared socket, |port| will not be
// added to the dequeue.
// Note: We must add the allocated port before we add addresses because
// the latter will create candidates that need name and preference
// settings. However, we also can't prepare the address (normally
// done by AddAllocatedPort) until we have these addresses. So we
// wait to do that until below.
session_->AddAllocatedPort(port, this, false);
// Add the addresses of this protocol.
PortList::const_iterator relay_port;
for (relay_port = config.ports.begin();
relay_port != config.ports.end();
++relay_port) {
port->AddServerAddress(*relay_port);
port->AddExternalAddress(*relay_port);
}
// Start fetching an address for this port.
port->PrepareAddress();
}
}
void AllocationSequence::CreateTurnPort(const RelayServerConfig& config) {
PortList::const_iterator relay_port;
for (relay_port = config.ports.begin();
relay_port != config.ports.end(); ++relay_port) {
TurnPort* port = NULL;
// Skip UDP connections to relay servers if it's disallowed.
if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) &&
relay_port->proto == PROTO_UDP) {
continue;
}
// Do not create a port if the server address family is known and does
// not match the local IP address family.
int server_ip_family = relay_port->address.ipaddr().family();
int local_ip_family = ip_.family();
if (server_ip_family != AF_UNSPEC && server_ip_family != local_ip_family) {
LOG(LS_INFO) << "Server and local address families are not compatible. "
<< "Server address: "
<< relay_port->address.ipaddr().ToString()
<< " Local address: " << ip_.ToString();
continue;
}
// Shared socket mode must be enabled only for UDP based ports. Hence
// don't pass shared socket for ports which will create TCP sockets.
// TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled
// due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) &&
relay_port->proto == PROTO_UDP && udp_socket_) {
port = TurnPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, udp_socket_.get(),
session_->username(), session_->password(),
*relay_port, config.credentials, config.priority,
session_->allocator()->origin());
turn_ports_.push_back(port);
// Listen to the port destroyed signal, to allow AllocationSequence to
// remove entrt from it's map.
port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed);
} else {
port = TurnPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(),
session_->password(),
*relay_port, config.credentials, config.priority,
session_->allocator()->origin());
}
ASSERT(port != NULL);
session_->AddAllocatedPort(port, this, true);
}
}
void AllocationSequence::OnReadPacket(
rtc::AsyncPacketSocket* socket, const char* data, size_t size,
const rtc::SocketAddress& remote_addr,
const rtc::PacketTime& packet_time) {
ASSERT(socket == udp_socket_.get());
bool turn_port_found = false;
// Try to find the TurnPort that matches the remote address. Note that the
// message could be a STUN binding response if the TURN server is also used as
// a STUN server. We don't want to parse every message here to check if it is
// a STUN binding response, so we pass the message to TurnPort regardless of
// the message type. The TurnPort will just ignore the message since it will
// not find any request by transaction ID.
for (TurnPort* port : turn_ports_) {
if (port->server_address().address == remote_addr) {
if (port->HandleIncomingPacket(socket, data, size, remote_addr,
packet_time)) {
return;
}
turn_port_found = true;
}
}
if (udp_port_) {
const ServerAddresses& stun_servers = udp_port_->server_addresses();
// Pass the packet to the UdpPort if there is no matching TurnPort, or if
// the TURN server is also a STUN server.
if (!turn_port_found ||
stun_servers.find(remote_addr) != stun_servers.end()) {
RTC_DCHECK(udp_port_->SharedSocket());
udp_port_->HandleIncomingPacket(socket, data, size, remote_addr,
packet_time);
}
}
}
void AllocationSequence::OnPortDestroyed(PortInterface* port) {
if (udp_port_ == port) {
udp_port_ = NULL;
return;
}
auto it = std::find(turn_ports_.begin(), turn_ports_.end(), port);
if (it != turn_ports_.end()) {
turn_ports_.erase(it);
} else {
LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port.";
ASSERT(false);
}
}
// PortConfiguration
PortConfiguration::PortConfiguration(
const rtc::SocketAddress& stun_address,
const std::string& username,
const std::string& password)
: stun_address(stun_address), username(username), password(password) {
if (!stun_address.IsNil())
stun_servers.insert(stun_address);
}
PortConfiguration::PortConfiguration(const ServerAddresses& stun_servers,
const std::string& username,
const std::string& password)
: stun_servers(stun_servers),
username(username),
password(password) {
if (!stun_servers.empty())
stun_address = *(stun_servers.begin());
}
ServerAddresses PortConfiguration::StunServers() {
if (!stun_address.IsNil() &&
stun_servers.find(stun_address) == stun_servers.end()) {
stun_servers.insert(stun_address);
}
// Every UDP TURN server should also be used as a STUN server.
ServerAddresses turn_servers = GetRelayServerAddresses(RELAY_TURN, PROTO_UDP);
for (const rtc::SocketAddress& turn_server : turn_servers) {
if (stun_servers.find(turn_server) == stun_servers.end()) {
stun_servers.insert(turn_server);
}
}
return stun_servers;
}
void PortConfiguration::AddRelay(const RelayServerConfig& config) {
relays.push_back(config);
}
bool PortConfiguration::SupportsProtocol(
const RelayServerConfig& relay, ProtocolType type) const {
PortList::const_iterator relay_port;
for (relay_port = relay.ports.begin();
relay_port != relay.ports.end();
++relay_port) {
if (relay_port->proto == type)
return true;
}
return false;
}
bool PortConfiguration::SupportsProtocol(RelayType turn_type,
ProtocolType type) const {
for (size_t i = 0; i < relays.size(); ++i) {
if (relays[i].type == turn_type &&
SupportsProtocol(relays[i], type))
return true;
}
return false;
}
ServerAddresses PortConfiguration::GetRelayServerAddresses(
RelayType turn_type, ProtocolType type) const {
ServerAddresses servers;
for (size_t i = 0; i < relays.size(); ++i) {
if (relays[i].type == turn_type && SupportsProtocol(relays[i], type)) {
servers.insert(relays[i].ports.front().address);
}
}
return servers;
}
} // namespace cricket