| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/p2p/client/basicportallocator.h" |
| |
| #include <algorithm> |
| #include <string> |
| #include <vector> |
| |
| #include "webrtc/p2p/base/basicpacketsocketfactory.h" |
| #include "webrtc/p2p/base/common.h" |
| #include "webrtc/p2p/base/port.h" |
| #include "webrtc/p2p/base/relayport.h" |
| #include "webrtc/p2p/base/stunport.h" |
| #include "webrtc/p2p/base/tcpport.h" |
| #include "webrtc/p2p/base/turnport.h" |
| #include "webrtc/p2p/base/udpport.h" |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/common.h" |
| #include "webrtc/base/helpers.h" |
| #include "webrtc/base/logging.h" |
| |
| using rtc::CreateRandomId; |
| |
| namespace { |
| |
| enum { |
| MSG_CONFIG_START, |
| MSG_CONFIG_READY, |
| MSG_ALLOCATE, |
| MSG_ALLOCATION_PHASE, |
| MSG_SEQUENCEOBJECTS_CREATED, |
| MSG_CONFIG_STOP, |
| }; |
| |
| const int PHASE_UDP = 0; |
| const int PHASE_RELAY = 1; |
| const int PHASE_TCP = 2; |
| const int PHASE_SSLTCP = 3; |
| |
| const int kNumPhases = 4; |
| |
| // Gets protocol priority: UDP > TCP > SSLTCP. |
| int GetProtocolPriority(cricket::ProtocolType protocol) { |
| switch (protocol) { |
| case cricket::PROTO_UDP: |
| return 2; |
| case cricket::PROTO_TCP: |
| return 1; |
| case cricket::PROTO_SSLTCP: |
| return 0; |
| default: |
| RTC_DCHECK(false); |
| return 0; |
| } |
| } |
| // Gets address family priority: IPv6 > IPv4 > Unspecified. |
| int GetAddressFamilyPriority(int ip_family) { |
| switch (ip_family) { |
| case AF_INET6: |
| return 2; |
| case AF_INET: |
| return 1; |
| default: |
| RTC_DCHECK(false); |
| return 0; |
| } |
| } |
| |
| // Returns positive if a is better, negative if b is better, and 0 otherwise. |
| int ComparePort(const cricket::Port* a, const cricket::Port* b) { |
| int a_protocol = GetProtocolPriority(a->GetProtocol()); |
| int b_protocol = GetProtocolPriority(b->GetProtocol()); |
| int cmp_protocol = a_protocol - b_protocol; |
| if (cmp_protocol != 0) { |
| return cmp_protocol; |
| } |
| |
| int a_family = GetAddressFamilyPriority(a->Network()->GetBestIP().family()); |
| int b_family = GetAddressFamilyPriority(b->Network()->GetBestIP().family()); |
| return a_family - b_family; |
| } |
| |
| } // namespace |
| |
| namespace cricket { |
| const uint32_t DISABLE_ALL_PHASES = |
| PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY; |
| |
| // BasicPortAllocator |
| BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager, |
| rtc::PacketSocketFactory* socket_factory) |
| : network_manager_(network_manager), socket_factory_(socket_factory) { |
| ASSERT(network_manager_ != nullptr); |
| ASSERT(socket_factory_ != nullptr); |
| Construct(); |
| } |
| |
| BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager) |
| : network_manager_(network_manager), socket_factory_(nullptr) { |
| ASSERT(network_manager_ != nullptr); |
| Construct(); |
| } |
| |
| BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager, |
| rtc::PacketSocketFactory* socket_factory, |
| const ServerAddresses& stun_servers) |
| : network_manager_(network_manager), socket_factory_(socket_factory) { |
| ASSERT(socket_factory_ != NULL); |
| SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0, false); |
| Construct(); |
| } |
| |
| BasicPortAllocator::BasicPortAllocator( |
| rtc::NetworkManager* network_manager, |
| const ServerAddresses& stun_servers, |
| const rtc::SocketAddress& relay_address_udp, |
| const rtc::SocketAddress& relay_address_tcp, |
| const rtc::SocketAddress& relay_address_ssl) |
| : network_manager_(network_manager), socket_factory_(NULL) { |
| std::vector<RelayServerConfig> turn_servers; |
| RelayServerConfig config(RELAY_GTURN); |
| if (!relay_address_udp.IsNil()) { |
| config.ports.push_back(ProtocolAddress(relay_address_udp, PROTO_UDP)); |
| } |
| if (!relay_address_tcp.IsNil()) { |
| config.ports.push_back(ProtocolAddress(relay_address_tcp, PROTO_TCP)); |
| } |
| if (!relay_address_ssl.IsNil()) { |
| config.ports.push_back(ProtocolAddress(relay_address_ssl, PROTO_SSLTCP)); |
| } |
| |
| if (!config.ports.empty()) { |
| turn_servers.push_back(config); |
| } |
| |
| SetConfiguration(stun_servers, turn_servers, 0, false); |
| Construct(); |
| } |
| |
| void BasicPortAllocator::Construct() { |
| allow_tcp_listen_ = true; |
| } |
| |
| BasicPortAllocator::~BasicPortAllocator() { |
| } |
| |
| PortAllocatorSession* BasicPortAllocator::CreateSessionInternal( |
| const std::string& content_name, int component, |
| const std::string& ice_ufrag, const std::string& ice_pwd) { |
| return new BasicPortAllocatorSession( |
| this, content_name, component, ice_ufrag, ice_pwd); |
| } |
| |
| void BasicPortAllocator::AddTurnServer(const RelayServerConfig& turn_server) { |
| std::vector<RelayServerConfig> new_turn_servers = turn_servers(); |
| new_turn_servers.push_back(turn_server); |
| SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size(), |
| prune_turn_ports()); |
| } |
| |
| // BasicPortAllocatorSession |
| BasicPortAllocatorSession::BasicPortAllocatorSession( |
| BasicPortAllocator* allocator, |
| const std::string& content_name, |
| int component, |
| const std::string& ice_ufrag, |
| const std::string& ice_pwd) |
| : PortAllocatorSession(content_name, |
| component, |
| ice_ufrag, |
| ice_pwd, |
| allocator->flags()), |
| allocator_(allocator), |
| network_thread_(NULL), |
| socket_factory_(allocator->socket_factory()), |
| allocation_started_(false), |
| network_manager_started_(false), |
| allocation_sequences_created_(false), |
| prune_turn_ports_(allocator->prune_turn_ports()) { |
| allocator_->network_manager()->SignalNetworksChanged.connect( |
| this, &BasicPortAllocatorSession::OnNetworksChanged); |
| allocator_->network_manager()->StartUpdating(); |
| } |
| |
| BasicPortAllocatorSession::~BasicPortAllocatorSession() { |
| allocator_->network_manager()->StopUpdating(); |
| if (network_thread_ != NULL) |
| network_thread_->Clear(this); |
| |
| for (uint32_t i = 0; i < sequences_.size(); ++i) { |
| // AllocationSequence should clear it's map entry for turn ports before |
| // ports are destroyed. |
| sequences_[i]->Clear(); |
| } |
| |
| std::vector<PortData>::iterator it; |
| for (it = ports_.begin(); it != ports_.end(); it++) |
| delete it->port(); |
| |
| for (uint32_t i = 0; i < configs_.size(); ++i) |
| delete configs_[i]; |
| |
| for (uint32_t i = 0; i < sequences_.size(); ++i) |
| delete sequences_[i]; |
| } |
| |
| void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) { |
| if (filter == candidate_filter_) { |
| return; |
| } |
| // We assume the filter will only change from "ALL" to something else. |
| RTC_DCHECK(candidate_filter_ == CF_ALL); |
| candidate_filter_ = filter; |
| for (PortData& port : ports_) { |
| if (!port.has_pairable_candidate()) { |
| continue; |
| } |
| const auto& candidates = port.port()->Candidates(); |
| // Setting a filter may cause a ready port to become non-ready |
| // if it no longer has any pairable candidates. |
| if (!std::any_of(candidates.begin(), candidates.end(), |
| [this, &port](const Candidate& candidate) { |
| return CandidatePairable(candidate, port.port()); |
| })) { |
| port.set_has_pairable_candidate(false); |
| } |
| } |
| } |
| |
| void BasicPortAllocatorSession::StartGettingPorts() { |
| network_thread_ = rtc::Thread::Current(); |
| state_ = SessionState::GATHERING; |
| if (!socket_factory_) { |
| owned_socket_factory_.reset( |
| new rtc::BasicPacketSocketFactory(network_thread_)); |
| socket_factory_ = owned_socket_factory_.get(); |
| } |
| |
| network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_START); |
| |
| LOG(LS_INFO) << "Pruning turn ports " |
| << (prune_turn_ports_ ? "enabled" : "disabled"); |
| } |
| |
| void BasicPortAllocatorSession::StopGettingPorts() { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| ClearGettingPorts(); |
| // Note: this must be called after ClearGettingPorts because both may set the |
| // session state and we should set the state to STOPPED. |
| state_ = SessionState::STOPPED; |
| } |
| |
| void BasicPortAllocatorSession::ClearGettingPorts() { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| network_thread_->Clear(this, MSG_ALLOCATE); |
| for (uint32_t i = 0; i < sequences_.size(); ++i) { |
| sequences_[i]->Stop(); |
| } |
| network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_STOP); |
| state_ = SessionState::CLEARED; |
| } |
| |
| std::vector<rtc::Network*> BasicPortAllocatorSession::GetFailedNetworks() { |
| std::vector<rtc::Network*> networks = GetNetworks(); |
| |
| // A network interface may have both IPv4 and IPv6 networks. Only if |
| // neither of the networks has any connections, the network interface |
| // is considered failed and need to be regathered on. |
| std::set<std::string> networks_with_connection; |
| for (const PortData& data : ports_) { |
| Port* port = data.port(); |
| if (!port->connections().empty()) { |
| networks_with_connection.insert(port->Network()->name()); |
| } |
| } |
| |
| networks.erase( |
| std::remove_if(networks.begin(), networks.end(), |
| [networks_with_connection](rtc::Network* network) { |
| // If a network does not have any connection, it is |
| // considered failed. |
| return networks_with_connection.find(network->name()) != |
| networks_with_connection.end(); |
| }), |
| networks.end()); |
| return networks; |
| } |
| |
| void BasicPortAllocatorSession::RegatherOnFailedNetworks() { |
| // Find the list of networks that have no connection. |
| std::vector<rtc::Network*> failed_networks = GetFailedNetworks(); |
| if (failed_networks.empty()) { |
| return; |
| } |
| |
| // Mark a sequence as "network failed" if its network is in the list of failed |
| // networks, so that it won't be considered as equivalent when the session |
| // regathers ports and candidates. |
| for (AllocationSequence* sequence : sequences_) { |
| if (!sequence->network_failed() && |
| std::find(failed_networks.begin(), failed_networks.end(), |
| sequence->network()) != failed_networks.end()) { |
| sequence->set_network_failed(); |
| } |
| } |
| // Remove ports from being used locally and send signaling to remove |
| // the candidates on the remote side. |
| std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks); |
| if (!ports_to_prune.empty()) { |
| LOG(LS_INFO) << "Prune " << ports_to_prune.size() |
| << " ports because their networks failed"; |
| PrunePortsAndRemoveCandidates(ports_to_prune); |
| } |
| |
| if (allocation_started_ && network_manager_started_) { |
| DoAllocate(); |
| } |
| } |
| |
| std::vector<PortInterface*> BasicPortAllocatorSession::ReadyPorts() const { |
| std::vector<PortInterface*> ret; |
| for (const PortData& data : ports_) { |
| if (data.ready()) { |
| ret.push_back(data.port()); |
| } |
| } |
| return ret; |
| } |
| |
| std::vector<Candidate> BasicPortAllocatorSession::ReadyCandidates() const { |
| std::vector<Candidate> candidates; |
| for (const PortData& data : ports_) { |
| if (!data.ready()) { |
| continue; |
| } |
| GetCandidatesFromPort(data, &candidates); |
| } |
| return candidates; |
| } |
| |
| void BasicPortAllocatorSession::GetCandidatesFromPort( |
| const PortData& data, |
| std::vector<Candidate>* candidates) const { |
| RTC_CHECK(candidates != nullptr); |
| for (const Candidate& candidate : data.port()->Candidates()) { |
| if (!CheckCandidateFilter(candidate)) { |
| continue; |
| } |
| ProtocolType pvalue; |
| if (!StringToProto(candidate.protocol().c_str(), &pvalue) || |
| !data.sequence()->ProtocolEnabled(pvalue)) { |
| continue; |
| } |
| candidates->push_back(SanitizeRelatedAddress(candidate)); |
| } |
| } |
| |
| Candidate BasicPortAllocatorSession::SanitizeRelatedAddress( |
| const Candidate& c) const { |
| Candidate copy = c; |
| // If adapter enumeration is disabled or host candidates are disabled, |
| // clear the raddr of STUN candidates to avoid local address leakage. |
| bool filter_stun_related_address = |
| ((flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) && |
| (flags() & PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE)) || |
| !(candidate_filter_ & CF_HOST); |
| // If the candidate filter doesn't allow reflexive addresses, empty TURN raddr |
| // to avoid reflexive address leakage. |
| bool filter_turn_related_address = !(candidate_filter_ & CF_REFLEXIVE); |
| if ((c.type() == STUN_PORT_TYPE && filter_stun_related_address) || |
| (c.type() == RELAY_PORT_TYPE && filter_turn_related_address)) { |
| copy.set_related_address( |
| rtc::EmptySocketAddressWithFamily(copy.address().family())); |
| } |
| return copy; |
| } |
| |
| bool BasicPortAllocatorSession::CandidatesAllocationDone() const { |
| // Done only if all required AllocationSequence objects |
| // are created. |
| if (!allocation_sequences_created_) { |
| return false; |
| } |
| |
| // Check that all port allocation sequences are complete (not running). |
| if (std::any_of(sequences_.begin(), sequences_.end(), |
| [](const AllocationSequence* sequence) { |
| return sequence->state() == AllocationSequence::kRunning; |
| })) { |
| return false; |
| } |
| |
| // If all allocated ports are no longer gathering, session must have got all |
| // expected candidates. Session will trigger candidates allocation complete |
| // signal. |
| return std::none_of(ports_.begin(), ports_.end(), |
| [](const PortData& port) { return port.inprogress(); }); |
| } |
| |
| void BasicPortAllocatorSession::OnMessage(rtc::Message *message) { |
| switch (message->message_id) { |
| case MSG_CONFIG_START: |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| GetPortConfigurations(); |
| break; |
| case MSG_CONFIG_READY: |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| OnConfigReady(static_cast<PortConfiguration*>(message->pdata)); |
| break; |
| case MSG_ALLOCATE: |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| OnAllocate(); |
| break; |
| case MSG_SEQUENCEOBJECTS_CREATED: |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| OnAllocationSequenceObjectsCreated(); |
| break; |
| case MSG_CONFIG_STOP: |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| OnConfigStop(); |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| |
| void BasicPortAllocatorSession::UpdateIceParametersInternal() { |
| for (PortData& port : ports_) { |
| port.port()->set_content_name(content_name()); |
| port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd()); |
| } |
| } |
| |
| void BasicPortAllocatorSession::GetPortConfigurations() { |
| PortConfiguration* config = new PortConfiguration(allocator_->stun_servers(), |
| username(), |
| password()); |
| |
| for (const RelayServerConfig& turn_server : allocator_->turn_servers()) { |
| config->AddRelay(turn_server); |
| } |
| ConfigReady(config); |
| } |
| |
| void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) { |
| network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_READY, config); |
| } |
| |
| // Adds a configuration to the list. |
| void BasicPortAllocatorSession::OnConfigReady(PortConfiguration* config) { |
| if (config) { |
| configs_.push_back(config); |
| } |
| |
| AllocatePorts(); |
| } |
| |
| void BasicPortAllocatorSession::OnConfigStop() { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| |
| // If any of the allocated ports have not completed the candidates allocation, |
| // mark those as error. Since session doesn't need any new candidates |
| // at this stage of the allocation, it's safe to discard any new candidates. |
| bool send_signal = false; |
| for (std::vector<PortData>::iterator it = ports_.begin(); |
| it != ports_.end(); ++it) { |
| if (it->inprogress()) { |
| // Updating port state to error, which didn't finish allocating candidates |
| // yet. |
| it->set_error(); |
| send_signal = true; |
| } |
| } |
| |
| // Did we stop any running sequences? |
| for (std::vector<AllocationSequence*>::iterator it = sequences_.begin(); |
| it != sequences_.end() && !send_signal; ++it) { |
| if ((*it)->state() == AllocationSequence::kStopped) { |
| send_signal = true; |
| } |
| } |
| |
| // If we stopped anything that was running, send a done signal now. |
| if (send_signal) { |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| } |
| |
| void BasicPortAllocatorSession::AllocatePorts() { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| network_thread_->Post(RTC_FROM_HERE, this, MSG_ALLOCATE); |
| } |
| |
| void BasicPortAllocatorSession::OnAllocate() { |
| if (network_manager_started_) |
| DoAllocate(); |
| |
| allocation_started_ = true; |
| } |
| |
| std::vector<rtc::Network*> BasicPortAllocatorSession::GetNetworks() { |
| std::vector<rtc::Network*> networks; |
| rtc::NetworkManager* network_manager = allocator_->network_manager(); |
| ASSERT(network_manager != nullptr); |
| // If the network permission state is BLOCKED, we just act as if the flag has |
| // been passed in. |
| if (network_manager->enumeration_permission() == |
| rtc::NetworkManager::ENUMERATION_BLOCKED) { |
| set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); |
| } |
| // If the adapter enumeration is disabled, we'll just bind to any address |
| // instead of specific NIC. This is to ensure the same routing for http |
| // traffic by OS is also used here to avoid any local or public IP leakage |
| // during stun process. |
| if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) { |
| network_manager->GetAnyAddressNetworks(&networks); |
| } else { |
| network_manager->GetNetworks(&networks); |
| } |
| networks.erase(std::remove_if(networks.begin(), networks.end(), |
| [this](rtc::Network* network) { |
| return allocator_->network_ignore_mask() & |
| network->type(); |
| }), |
| networks.end()); |
| |
| if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) { |
| uint16_t lowest_cost = rtc::kNetworkCostMax; |
| for (rtc::Network* network : networks) { |
| lowest_cost = std::min<uint16_t>(lowest_cost, network->GetCost()); |
| } |
| networks.erase(std::remove_if(networks.begin(), networks.end(), |
| [lowest_cost](rtc::Network* network) { |
| return network->GetCost() > |
| lowest_cost + rtc::kNetworkCostLow; |
| }), |
| networks.end()); |
| } |
| return networks; |
| } |
| |
| // For each network, see if we have a sequence that covers it already. If not, |
| // create a new sequence to create the appropriate ports. |
| void BasicPortAllocatorSession::DoAllocate() { |
| bool done_signal_needed = false; |
| std::vector<rtc::Network*> networks = GetNetworks(); |
| |
| if (IsStopped()) { |
| return; |
| } |
| if (networks.empty()) { |
| LOG(LS_WARNING) << "Machine has no networks; no ports will be allocated"; |
| done_signal_needed = true; |
| } else { |
| LOG(LS_INFO) << "Allocate ports on "<< networks.size() << " networks"; |
| PortConfiguration* config = configs_.empty() ? nullptr : configs_.back(); |
| for (uint32_t i = 0; i < networks.size(); ++i) { |
| uint32_t sequence_flags = flags(); |
| if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { |
| // If all the ports are disabled we should just fire the allocation |
| // done event and return. |
| done_signal_needed = true; |
| break; |
| } |
| |
| if (!config || config->relays.empty()) { |
| // No relay ports specified in this config. |
| sequence_flags |= PORTALLOCATOR_DISABLE_RELAY; |
| } |
| |
| if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) && |
| networks[i]->GetBestIP().family() == AF_INET6) { |
| // Skip IPv6 networks unless the flag's been set. |
| continue; |
| } |
| |
| // Disable phases that would only create ports equivalent to |
| // ones that we have already made. |
| DisableEquivalentPhases(networks[i], config, &sequence_flags); |
| |
| if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { |
| // New AllocationSequence would have nothing to do, so don't make it. |
| continue; |
| } |
| |
| AllocationSequence* sequence = |
| new AllocationSequence(this, networks[i], config, sequence_flags); |
| sequence->SignalPortAllocationComplete.connect( |
| this, &BasicPortAllocatorSession::OnPortAllocationComplete); |
| sequence->Init(); |
| sequence->Start(); |
| sequences_.push_back(sequence); |
| done_signal_needed = true; |
| } |
| } |
| if (done_signal_needed) { |
| network_thread_->Post(RTC_FROM_HERE, this, MSG_SEQUENCEOBJECTS_CREATED); |
| } |
| } |
| |
| void BasicPortAllocatorSession::OnNetworksChanged() { |
| std::vector<rtc::Network*> networks = GetNetworks(); |
| std::vector<rtc::Network*> failed_networks; |
| for (AllocationSequence* sequence : sequences_) { |
| // Mark the sequence as "network failed" if its network is not in |
| // |networks|. |
| if (!sequence->network_failed() && |
| std::find(networks.begin(), networks.end(), sequence->network()) == |
| networks.end()) { |
| sequence->OnNetworkFailed(); |
| failed_networks.push_back(sequence->network()); |
| } |
| } |
| std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks); |
| if (!ports_to_prune.empty()) { |
| LOG(LS_INFO) << "Prune " << ports_to_prune.size() |
| << " ports because their networks were gone"; |
| PrunePortsAndRemoveCandidates(ports_to_prune); |
| } |
| |
| if (!network_manager_started_) { |
| LOG(LS_INFO) << "Network manager is started"; |
| network_manager_started_ = true; |
| } |
| if (allocation_started_) |
| DoAllocate(); |
| } |
| |
| void BasicPortAllocatorSession::DisableEquivalentPhases( |
| rtc::Network* network, |
| PortConfiguration* config, |
| uint32_t* flags) { |
| for (uint32_t i = 0; i < sequences_.size() && |
| (*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES; |
| ++i) { |
| sequences_[i]->DisableEquivalentPhases(network, config, flags); |
| } |
| } |
| |
| void BasicPortAllocatorSession::AddAllocatedPort(Port* port, |
| AllocationSequence * seq, |
| bool prepare_address) { |
| if (!port) |
| return; |
| |
| LOG(LS_INFO) << "Adding allocated port for " << content_name(); |
| port->set_content_name(content_name()); |
| port->set_component(component()); |
| port->set_generation(generation()); |
| if (allocator_->proxy().type != rtc::PROXY_NONE) |
| port->set_proxy(allocator_->user_agent(), allocator_->proxy()); |
| port->set_send_retransmit_count_attribute( |
| (flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0); |
| |
| PortData data(port, seq); |
| ports_.push_back(data); |
| |
| port->SignalCandidateReady.connect( |
| this, &BasicPortAllocatorSession::OnCandidateReady); |
| port->SignalPortComplete.connect(this, |
| &BasicPortAllocatorSession::OnPortComplete); |
| port->SignalDestroyed.connect(this, |
| &BasicPortAllocatorSession::OnPortDestroyed); |
| port->SignalPortError.connect( |
| this, &BasicPortAllocatorSession::OnPortError); |
| LOG_J(LS_INFO, port) << "Added port to allocator"; |
| |
| if (prepare_address) |
| port->PrepareAddress(); |
| } |
| |
| void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() { |
| allocation_sequences_created_ = true; |
| // Send candidate allocation complete signal if we have no sequences. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| void BasicPortAllocatorSession::OnCandidateReady( |
| Port* port, const Candidate& c) { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| PortData* data = FindPort(port); |
| ASSERT(data != NULL); |
| LOG_J(LS_INFO, port) << "Gathered candidate: " << c.ToSensitiveString(); |
| // Discarding any candidate signal if port allocation status is |
| // already done with gathering. |
| if (!data->inprogress()) { |
| LOG(LS_WARNING) |
| << "Discarding candidate because port is already done gathering."; |
| return; |
| } |
| |
| // Mark that the port has a pairable candidate, either because we have a |
| // usable candidate from the port, or simply because the port is bound to the |
| // any address and therefore has no host candidate. This will trigger the port |
| // to start creating candidate pairs (connections) and issue connectivity |
| // checks. If port has already been marked as having a pairable candidate, |
| // do nothing here. |
| // Note: We should check whether any candidates may become ready after this |
| // because there we will check whether the candidate is generated by the ready |
| // ports, which may include this port. |
| bool pruned = false; |
| if (CandidatePairable(c, port) && !data->has_pairable_candidate()) { |
| data->set_has_pairable_candidate(true); |
| |
| if (prune_turn_ports_ && port->Type() == RELAY_PORT_TYPE) { |
| pruned = PruneTurnPorts(port); |
| } |
| // If the current port is not pruned yet, SignalPortReady. |
| if (!data->pruned()) { |
| LOG_J(LS_INFO, port) << "Port ready."; |
| SignalPortReady(this, port); |
| port->KeepAliveUntilPruned(); |
| } |
| } |
| |
| ProtocolType pvalue; |
| bool candidate_protocol_enabled = |
| StringToProto(c.protocol().c_str(), &pvalue) && |
| data->sequence()->ProtocolEnabled(pvalue); |
| |
| if (data->ready() && CheckCandidateFilter(c) && candidate_protocol_enabled) { |
| std::vector<Candidate> candidates; |
| candidates.push_back(SanitizeRelatedAddress(c)); |
| SignalCandidatesReady(this, candidates); |
| } else if (!candidate_protocol_enabled) { |
| LOG(LS_INFO) |
| << "Not yet signaling candidate because protocol is not yet enabled."; |
| } else { |
| LOG(LS_INFO) << "Discarding candidate because it doesn't match filter."; |
| } |
| |
| // If we have pruned any port, maybe need to signal port allocation done. |
| if (pruned) { |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| } |
| |
| Port* BasicPortAllocatorSession::GetBestTurnPortForNetwork( |
| const std::string& network_name) const { |
| Port* best_turn_port = nullptr; |
| for (const PortData& data : ports_) { |
| if (data.port()->Network()->name() == network_name && |
| data.port()->Type() == RELAY_PORT_TYPE && data.ready() && |
| (!best_turn_port || ComparePort(data.port(), best_turn_port) > 0)) { |
| best_turn_port = data.port(); |
| } |
| } |
| return best_turn_port; |
| } |
| |
| bool BasicPortAllocatorSession::PruneTurnPorts(Port* newly_pairable_turn_port) { |
| // Note: We determine the same network based only on their network names. So |
| // if an IPv4 address and an IPv6 address have the same network name, they |
| // are considered the same network here. |
| const std::string& network_name = newly_pairable_turn_port->Network()->name(); |
| Port* best_turn_port = GetBestTurnPortForNetwork(network_name); |
| // |port| is already in the list of ports, so the best port cannot be nullptr. |
| RTC_CHECK(best_turn_port != nullptr); |
| |
| bool pruned = false; |
| std::vector<PortData*> ports_to_prune; |
| for (PortData& data : ports_) { |
| if (data.port()->Network()->name() == network_name && |
| data.port()->Type() == RELAY_PORT_TYPE && !data.pruned() && |
| ComparePort(data.port(), best_turn_port) < 0) { |
| pruned = true; |
| if (data.port() != newly_pairable_turn_port) { |
| // These ports will be pruned in PrunePortsAndRemoveCandidates. |
| ports_to_prune.push_back(&data); |
| } else { |
| data.Prune(); |
| } |
| } |
| } |
| |
| if (!ports_to_prune.empty()) { |
| LOG(LS_INFO) << "Prune " << ports_to_prune.size() |
| << " low-priority TURN ports"; |
| PrunePortsAndRemoveCandidates(ports_to_prune); |
| } |
| return pruned; |
| } |
| |
| void BasicPortAllocatorSession::PruneAllPorts() { |
| for (PortData& data : ports_) { |
| data.Prune(); |
| } |
| } |
| |
| void BasicPortAllocatorSession::OnPortComplete(Port* port) { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| LOG_J(LS_INFO, port) << "Port completed gathering candidates."; |
| PortData* data = FindPort(port); |
| ASSERT(data != NULL); |
| |
| // Ignore any late signals. |
| if (!data->inprogress()) { |
| return; |
| } |
| |
| // Moving to COMPLETE state. |
| data->set_complete(); |
| // Send candidate allocation complete signal if this was the last port. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| void BasicPortAllocatorSession::OnPortError(Port* port) { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| LOG_J(LS_INFO, port) << "Port encountered error while gathering candidates."; |
| PortData* data = FindPort(port); |
| ASSERT(data != NULL); |
| // We might have already given up on this port and stopped it. |
| if (!data->inprogress()) { |
| return; |
| } |
| |
| // SignalAddressError is currently sent from StunPort/TurnPort. |
| // But this signal itself is generic. |
| data->set_error(); |
| // Send candidate allocation complete signal if this was the last port. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| void BasicPortAllocatorSession::OnProtocolEnabled(AllocationSequence* seq, |
| ProtocolType proto) { |
| std::vector<Candidate> candidates; |
| for (std::vector<PortData>::iterator it = ports_.begin(); |
| it != ports_.end(); ++it) { |
| if (it->sequence() != seq) |
| continue; |
| |
| const std::vector<Candidate>& potentials = it->port()->Candidates(); |
| for (size_t i = 0; i < potentials.size(); ++i) { |
| if (!CheckCandidateFilter(potentials[i])) { |
| continue; |
| } |
| ProtocolType pvalue; |
| bool candidate_protocol_enabled = |
| StringToProto(potentials[i].protocol().c_str(), &pvalue) && |
| pvalue == proto; |
| if (candidate_protocol_enabled) { |
| LOG(LS_INFO) << "Signaling candidate because protocol was enabled: " |
| << potentials[i].ToSensitiveString(); |
| candidates.push_back(potentials[i]); |
| } |
| } |
| } |
| |
| if (!candidates.empty()) { |
| SignalCandidatesReady(this, candidates); |
| } |
| } |
| |
| bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const { |
| uint32_t filter = candidate_filter_; |
| |
| // When binding to any address, before sending packets out, the getsockname |
| // returns all 0s, but after sending packets, it'll be the NIC used to |
| // send. All 0s is not a valid ICE candidate address and should be filtered |
| // out. |
| if (c.address().IsAnyIP()) { |
| return false; |
| } |
| |
| if (c.type() == RELAY_PORT_TYPE) { |
| return ((filter & CF_RELAY) != 0); |
| } else if (c.type() == STUN_PORT_TYPE) { |
| return ((filter & CF_REFLEXIVE) != 0); |
| } else if (c.type() == LOCAL_PORT_TYPE) { |
| if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) { |
| // We allow host candidates if the filter allows server-reflexive |
| // candidates and the candidate is a public IP. Because we don't generate |
| // server-reflexive candidates if they have the same IP as the host |
| // candidate (i.e. when the host candidate is a public IP), filtering to |
| // only server-reflexive candidates won't work right when the host |
| // candidates have public IPs. |
| return true; |
| } |
| |
| return ((filter & CF_HOST) != 0); |
| } |
| return false; |
| } |
| |
| bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c, |
| const Port* port) const { |
| bool candidate_signalable = CheckCandidateFilter(c); |
| |
| // When device enumeration is disabled (to prevent non-default IP addresses |
| // from leaking), we ping from some local candidates even though we don't |
| // signal them. However, if host candidates are also disabled (for example, to |
| // prevent even default IP addresses from leaking), we still don't want to |
| // ping from them, even if device enumeration is disabled. Thus, we check for |
| // both device enumeration and host candidates being disabled. |
| bool network_enumeration_disabled = c.address().IsAnyIP(); |
| bool can_ping_from_candidate = |
| (port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME); |
| bool host_candidates_disabled = !(candidate_filter_ & CF_HOST); |
| |
| return candidate_signalable || |
| (network_enumeration_disabled && can_ping_from_candidate && |
| !host_candidates_disabled); |
| } |
| |
| void BasicPortAllocatorSession::OnPortAllocationComplete( |
| AllocationSequence* seq) { |
| // Send candidate allocation complete signal if all ports are done. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() { |
| if (CandidatesAllocationDone()) { |
| if (pooled()) { |
| LOG(LS_INFO) << "All candidates gathered for pooled session."; |
| } else { |
| LOG(LS_INFO) << "All candidates gathered for " << content_name() << ":" |
| << component() << ":" << generation(); |
| } |
| SignalCandidatesAllocationDone(this); |
| } |
| } |
| |
| void BasicPortAllocatorSession::OnPortDestroyed( |
| PortInterface* port) { |
| ASSERT(rtc::Thread::Current() == network_thread_); |
| for (std::vector<PortData>::iterator iter = ports_.begin(); |
| iter != ports_.end(); ++iter) { |
| if (port == iter->port()) { |
| ports_.erase(iter); |
| LOG_J(LS_INFO, port) << "Removed port from allocator (" |
| << static_cast<int>(ports_.size()) << " remaining)"; |
| return; |
| } |
| } |
| ASSERT(false); |
| } |
| |
| BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort( |
| Port* port) { |
| for (std::vector<PortData>::iterator it = ports_.begin(); |
| it != ports_.end(); ++it) { |
| if (it->port() == port) { |
| return &*it; |
| } |
| } |
| return NULL; |
| } |
| |
| std::vector<BasicPortAllocatorSession::PortData*> |
| BasicPortAllocatorSession::GetUnprunedPorts( |
| const std::vector<rtc::Network*>& networks) { |
| std::vector<PortData*> unpruned_ports; |
| for (PortData& port : ports_) { |
| if (!port.pruned() && |
| std::find(networks.begin(), networks.end(), |
| port.sequence()->network()) != networks.end()) { |
| unpruned_ports.push_back(&port); |
| } |
| } |
| return unpruned_ports; |
| } |
| |
| void BasicPortAllocatorSession::PrunePortsAndRemoveCandidates( |
| const std::vector<PortData*>& port_data_list) { |
| std::vector<PortInterface*> pruned_ports; |
| std::vector<Candidate> removed_candidates; |
| for (PortData* data : port_data_list) { |
| // Prune the port so that it may be destroyed. |
| data->Prune(); |
| pruned_ports.push_back(data->port()); |
| if (data->has_pairable_candidate()) { |
| GetCandidatesFromPort(*data, &removed_candidates); |
| // Mark the port as having no pairable candidates so that its candidates |
| // won't be removed multiple times. |
| data->set_has_pairable_candidate(false); |
| } |
| } |
| if (!pruned_ports.empty()) { |
| SignalPortsPruned(this, pruned_ports); |
| } |
| if (!removed_candidates.empty()) { |
| LOG(LS_INFO) << "Removed " << removed_candidates.size() << " candidates"; |
| SignalCandidatesRemoved(this, removed_candidates); |
| } |
| } |
| |
| // AllocationSequence |
| |
| AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session, |
| rtc::Network* network, |
| PortConfiguration* config, |
| uint32_t flags) |
| : session_(session), |
| network_(network), |
| ip_(network->GetBestIP()), |
| config_(config), |
| state_(kInit), |
| flags_(flags), |
| udp_socket_(), |
| udp_port_(NULL), |
| phase_(0) { |
| } |
| |
| void AllocationSequence::Init() { |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { |
| udp_socket_.reset(session_->socket_factory()->CreateUdpSocket( |
| rtc::SocketAddress(ip_, 0), session_->allocator()->min_port(), |
| session_->allocator()->max_port())); |
| if (udp_socket_) { |
| udp_socket_->SignalReadPacket.connect( |
| this, &AllocationSequence::OnReadPacket); |
| } |
| // Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP |
| // are next available options to setup a communication channel. |
| } |
| } |
| |
| void AllocationSequence::Clear() { |
| udp_port_ = NULL; |
| turn_ports_.clear(); |
| } |
| |
| void AllocationSequence::OnNetworkFailed() { |
| RTC_DCHECK(!network_failed_); |
| network_failed_ = true; |
| // Stop the allocation sequence if its network failed. |
| Stop(); |
| } |
| |
| AllocationSequence::~AllocationSequence() { |
| session_->network_thread()->Clear(this); |
| } |
| |
| void AllocationSequence::DisableEquivalentPhases(rtc::Network* network, |
| PortConfiguration* config, uint32_t* flags) { |
| if (network_failed_) { |
| // If the network of this allocation sequence has ever become failed, |
| // it won't be equivalent to the new network. |
| return; |
| } |
| |
| if (!((network == network_) && (ip_ == network->GetBestIP()))) { |
| // Different network setup; nothing is equivalent. |
| return; |
| } |
| |
| // Else turn off the stuff that we've already got covered. |
| |
| // Every config implicitly specifies local, so turn that off right away. |
| *flags |= PORTALLOCATOR_DISABLE_UDP; |
| *flags |= PORTALLOCATOR_DISABLE_TCP; |
| |
| if (config_ && config) { |
| if (config_->StunServers() == config->StunServers()) { |
| // Already got this STUN servers covered. |
| *flags |= PORTALLOCATOR_DISABLE_STUN; |
| } |
| if (!config_->relays.empty()) { |
| // Already got relays covered. |
| // NOTE: This will even skip a _different_ set of relay servers if we |
| // were to be given one, but that never happens in our codebase. Should |
| // probably get rid of the list in PortConfiguration and just keep a |
| // single relay server in each one. |
| *flags |= PORTALLOCATOR_DISABLE_RELAY; |
| } |
| } |
| } |
| |
| void AllocationSequence::Start() { |
| state_ = kRunning; |
| session_->network_thread()->Post(RTC_FROM_HERE, this, MSG_ALLOCATION_PHASE); |
| } |
| |
| void AllocationSequence::Stop() { |
| // If the port is completed, don't set it to stopped. |
| if (state_ == kRunning) { |
| state_ = kStopped; |
| session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE); |
| } |
| } |
| |
| void AllocationSequence::OnMessage(rtc::Message* msg) { |
| ASSERT(rtc::Thread::Current() == session_->network_thread()); |
| ASSERT(msg->message_id == MSG_ALLOCATION_PHASE); |
| |
| const char* const PHASE_NAMES[kNumPhases] = { |
| "Udp", "Relay", "Tcp", "SslTcp" |
| }; |
| |
| // Perform all of the phases in the current step. |
| LOG_J(LS_INFO, network_) << "Allocation Phase=" |
| << PHASE_NAMES[phase_]; |
| |
| switch (phase_) { |
| case PHASE_UDP: |
| CreateUDPPorts(); |
| CreateStunPorts(); |
| EnableProtocol(PROTO_UDP); |
| break; |
| |
| case PHASE_RELAY: |
| CreateRelayPorts(); |
| break; |
| |
| case PHASE_TCP: |
| CreateTCPPorts(); |
| EnableProtocol(PROTO_TCP); |
| break; |
| |
| case PHASE_SSLTCP: |
| state_ = kCompleted; |
| EnableProtocol(PROTO_SSLTCP); |
| break; |
| |
| default: |
| ASSERT(false); |
| } |
| |
| if (state() == kRunning) { |
| ++phase_; |
| session_->network_thread()->PostDelayed(RTC_FROM_HERE, |
| session_->allocator()->step_delay(), |
| this, MSG_ALLOCATION_PHASE); |
| } else { |
| // If all phases in AllocationSequence are completed, no allocation |
| // steps needed further. Canceling pending signal. |
| session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE); |
| SignalPortAllocationComplete(this); |
| } |
| } |
| |
| void AllocationSequence::EnableProtocol(ProtocolType proto) { |
| if (!ProtocolEnabled(proto)) { |
| protocols_.push_back(proto); |
| session_->OnProtocolEnabled(this, proto); |
| } |
| } |
| |
| bool AllocationSequence::ProtocolEnabled(ProtocolType proto) const { |
| for (ProtocolList::const_iterator it = protocols_.begin(); |
| it != protocols_.end(); ++it) { |
| if (*it == proto) |
| return true; |
| } |
| return false; |
| } |
| |
| void AllocationSequence::CreateUDPPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) { |
| LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping."; |
| return; |
| } |
| |
| // TODO(mallinath) - Remove UDPPort creating socket after shared socket |
| // is enabled completely. |
| UDPPort* port = NULL; |
| bool emit_local_candidate_for_anyaddress = |
| !IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) { |
| port = UDPPort::Create( |
| session_->network_thread(), session_->socket_factory(), network_, |
| udp_socket_.get(), session_->username(), session_->password(), |
| session_->allocator()->origin(), emit_local_candidate_for_anyaddress); |
| } else { |
| port = UDPPort::Create( |
| session_->network_thread(), session_->socket_factory(), network_, ip_, |
| session_->allocator()->min_port(), session_->allocator()->max_port(), |
| session_->username(), session_->password(), |
| session_->allocator()->origin(), emit_local_candidate_for_anyaddress); |
| } |
| |
| if (port) { |
| // If shared socket is enabled, STUN candidate will be allocated by the |
| // UDPPort. |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { |
| udp_port_ = port; |
| port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed); |
| |
| // If STUN is not disabled, setting stun server address to port. |
| if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { |
| if (config_ && !config_->StunServers().empty()) { |
| LOG(LS_INFO) << "AllocationSequence: UDPPort will be handling the " |
| << "STUN candidate generation."; |
| port->set_server_addresses(config_->StunServers()); |
| } |
| } |
| } |
| |
| session_->AddAllocatedPort(port, this, true); |
| } |
| } |
| |
| void AllocationSequence::CreateTCPPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) { |
| LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping."; |
| return; |
| } |
| |
| Port* port = TCPPort::Create(session_->network_thread(), |
| session_->socket_factory(), |
| network_, ip_, |
| session_->allocator()->min_port(), |
| session_->allocator()->max_port(), |
| session_->username(), session_->password(), |
| session_->allocator()->allow_tcp_listen()); |
| if (port) { |
| session_->AddAllocatedPort(port, this, true); |
| // Since TCPPort is not created using shared socket, |port| will not be |
| // added to the dequeue. |
| } |
| } |
| |
| void AllocationSequence::CreateStunPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { |
| LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping."; |
| return; |
| } |
| |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { |
| return; |
| } |
| |
| if (!(config_ && !config_->StunServers().empty())) { |
| LOG(LS_WARNING) |
| << "AllocationSequence: No STUN server configured, skipping."; |
| return; |
| } |
| |
| StunPort* port = StunPort::Create(session_->network_thread(), |
| session_->socket_factory(), |
| network_, ip_, |
| session_->allocator()->min_port(), |
| session_->allocator()->max_port(), |
| session_->username(), session_->password(), |
| config_->StunServers(), |
| session_->allocator()->origin()); |
| if (port) { |
| session_->AddAllocatedPort(port, this, true); |
| // Since StunPort is not created using shared socket, |port| will not be |
| // added to the dequeue. |
| } |
| } |
| |
| void AllocationSequence::CreateRelayPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) { |
| LOG(LS_VERBOSE) << "AllocationSequence: Relay ports disabled, skipping."; |
| return; |
| } |
| |
| // If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we |
| // ought to have a relay list for them here. |
| ASSERT(config_ && !config_->relays.empty()); |
| if (!(config_ && !config_->relays.empty())) { |
| LOG(LS_WARNING) |
| << "AllocationSequence: No relay server configured, skipping."; |
| return; |
| } |
| |
| for (RelayServerConfig& relay : config_->relays) { |
| if (relay.type == RELAY_GTURN) { |
| CreateGturnPort(relay); |
| } else if (relay.type == RELAY_TURN) { |
| CreateTurnPort(relay); |
| } else { |
| ASSERT(false); |
| } |
| } |
| } |
| |
| void AllocationSequence::CreateGturnPort(const RelayServerConfig& config) { |
| // TODO(mallinath) - Rename RelayPort to GTurnPort. |
| RelayPort* port = RelayPort::Create(session_->network_thread(), |
| session_->socket_factory(), |
| network_, ip_, |
| session_->allocator()->min_port(), |
| session_->allocator()->max_port(), |
| config_->username, config_->password); |
| if (port) { |
| // Since RelayPort is not created using shared socket, |port| will not be |
| // added to the dequeue. |
| // Note: We must add the allocated port before we add addresses because |
| // the latter will create candidates that need name and preference |
| // settings. However, we also can't prepare the address (normally |
| // done by AddAllocatedPort) until we have these addresses. So we |
| // wait to do that until below. |
| session_->AddAllocatedPort(port, this, false); |
| |
| // Add the addresses of this protocol. |
| PortList::const_iterator relay_port; |
| for (relay_port = config.ports.begin(); |
| relay_port != config.ports.end(); |
| ++relay_port) { |
| port->AddServerAddress(*relay_port); |
| port->AddExternalAddress(*relay_port); |
| } |
| // Start fetching an address for this port. |
| port->PrepareAddress(); |
| } |
| } |
| |
| void AllocationSequence::CreateTurnPort(const RelayServerConfig& config) { |
| PortList::const_iterator relay_port; |
| for (relay_port = config.ports.begin(); |
| relay_port != config.ports.end(); ++relay_port) { |
| TurnPort* port = NULL; |
| |
| // Skip UDP connections to relay servers if it's disallowed. |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) && |
| relay_port->proto == PROTO_UDP) { |
| continue; |
| } |
| |
| // Do not create a port if the server address family is known and does |
| // not match the local IP address family. |
| int server_ip_family = relay_port->address.ipaddr().family(); |
| int local_ip_family = ip_.family(); |
| if (server_ip_family != AF_UNSPEC && server_ip_family != local_ip_family) { |
| LOG(LS_INFO) << "Server and local address families are not compatible. " |
| << "Server address: " |
| << relay_port->address.ipaddr().ToString() |
| << " Local address: " << ip_.ToString(); |
| continue; |
| } |
| |
| |
| // Shared socket mode must be enabled only for UDP based ports. Hence |
| // don't pass shared socket for ports which will create TCP sockets. |
| // TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled |
| // due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537 |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && |
| relay_port->proto == PROTO_UDP && udp_socket_) { |
| port = TurnPort::Create(session_->network_thread(), |
| session_->socket_factory(), |
| network_, udp_socket_.get(), |
| session_->username(), session_->password(), |
| *relay_port, config.credentials, config.priority, |
| session_->allocator()->origin()); |
| turn_ports_.push_back(port); |
| // Listen to the port destroyed signal, to allow AllocationSequence to |
| // remove entrt from it's map. |
| port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed); |
| } else { |
| port = TurnPort::Create(session_->network_thread(), |
| session_->socket_factory(), |
| network_, ip_, |
| session_->allocator()->min_port(), |
| session_->allocator()->max_port(), |
| session_->username(), |
| session_->password(), |
| *relay_port, config.credentials, config.priority, |
| session_->allocator()->origin()); |
| } |
| ASSERT(port != NULL); |
| session_->AddAllocatedPort(port, this, true); |
| } |
| } |
| |
| void AllocationSequence::OnReadPacket( |
| rtc::AsyncPacketSocket* socket, const char* data, size_t size, |
| const rtc::SocketAddress& remote_addr, |
| const rtc::PacketTime& packet_time) { |
| ASSERT(socket == udp_socket_.get()); |
| |
| bool turn_port_found = false; |
| |
| // Try to find the TurnPort that matches the remote address. Note that the |
| // message could be a STUN binding response if the TURN server is also used as |
| // a STUN server. We don't want to parse every message here to check if it is |
| // a STUN binding response, so we pass the message to TurnPort regardless of |
| // the message type. The TurnPort will just ignore the message since it will |
| // not find any request by transaction ID. |
| for (TurnPort* port : turn_ports_) { |
| if (port->server_address().address == remote_addr) { |
| if (port->HandleIncomingPacket(socket, data, size, remote_addr, |
| packet_time)) { |
| return; |
| } |
| turn_port_found = true; |
| } |
| } |
| |
| if (udp_port_) { |
| const ServerAddresses& stun_servers = udp_port_->server_addresses(); |
| |
| // Pass the packet to the UdpPort if there is no matching TurnPort, or if |
| // the TURN server is also a STUN server. |
| if (!turn_port_found || |
| stun_servers.find(remote_addr) != stun_servers.end()) { |
| RTC_DCHECK(udp_port_->SharedSocket()); |
| udp_port_->HandleIncomingPacket(socket, data, size, remote_addr, |
| packet_time); |
| } |
| } |
| } |
| |
| void AllocationSequence::OnPortDestroyed(PortInterface* port) { |
| if (udp_port_ == port) { |
| udp_port_ = NULL; |
| return; |
| } |
| |
| auto it = std::find(turn_ports_.begin(), turn_ports_.end(), port); |
| if (it != turn_ports_.end()) { |
| turn_ports_.erase(it); |
| } else { |
| LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port."; |
| ASSERT(false); |
| } |
| } |
| |
| // PortConfiguration |
| PortConfiguration::PortConfiguration( |
| const rtc::SocketAddress& stun_address, |
| const std::string& username, |
| const std::string& password) |
| : stun_address(stun_address), username(username), password(password) { |
| if (!stun_address.IsNil()) |
| stun_servers.insert(stun_address); |
| } |
| |
| PortConfiguration::PortConfiguration(const ServerAddresses& stun_servers, |
| const std::string& username, |
| const std::string& password) |
| : stun_servers(stun_servers), |
| username(username), |
| password(password) { |
| if (!stun_servers.empty()) |
| stun_address = *(stun_servers.begin()); |
| } |
| |
| ServerAddresses PortConfiguration::StunServers() { |
| if (!stun_address.IsNil() && |
| stun_servers.find(stun_address) == stun_servers.end()) { |
| stun_servers.insert(stun_address); |
| } |
| // Every UDP TURN server should also be used as a STUN server. |
| ServerAddresses turn_servers = GetRelayServerAddresses(RELAY_TURN, PROTO_UDP); |
| for (const rtc::SocketAddress& turn_server : turn_servers) { |
| if (stun_servers.find(turn_server) == stun_servers.end()) { |
| stun_servers.insert(turn_server); |
| } |
| } |
| return stun_servers; |
| } |
| |
| void PortConfiguration::AddRelay(const RelayServerConfig& config) { |
| relays.push_back(config); |
| } |
| |
| bool PortConfiguration::SupportsProtocol( |
| const RelayServerConfig& relay, ProtocolType type) const { |
| PortList::const_iterator relay_port; |
| for (relay_port = relay.ports.begin(); |
| relay_port != relay.ports.end(); |
| ++relay_port) { |
| if (relay_port->proto == type) |
| return true; |
| } |
| return false; |
| } |
| |
| bool PortConfiguration::SupportsProtocol(RelayType turn_type, |
| ProtocolType type) const { |
| for (size_t i = 0; i < relays.size(); ++i) { |
| if (relays[i].type == turn_type && |
| SupportsProtocol(relays[i], type)) |
| return true; |
| } |
| return false; |
| } |
| |
| ServerAddresses PortConfiguration::GetRelayServerAddresses( |
| RelayType turn_type, ProtocolType type) const { |
| ServerAddresses servers; |
| for (size_t i = 0; i < relays.size(); ++i) { |
| if (relays[i].type == turn_type && SupportsProtocol(relays[i], type)) { |
| servers.insert(relays[i].ports.front().address); |
| } |
| } |
| return servers; |
| } |
| |
| } // namespace cricket |