blob: 7d792180d4c8c9cbbcb09c5a5725f4e78c0788da [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/frame_buffer2.h"
#include <algorithm>
#include <cstring>
#include <limits>
#include <vector>
#include "modules/video_coding/frame_object.h"
#include "modules/video_coding/jitter_estimator.h"
#include "modules/video_coding/sequence_number_util.h"
#include "modules/video_coding/timing.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/random.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
using testing::_;
using testing::Return;
namespace webrtc {
namespace video_coding {
class VCMTimingFake : public VCMTiming {
public:
explicit VCMTimingFake(Clock* clock) : VCMTiming(clock) {}
int64_t RenderTimeMs(uint32_t frame_timestamp,
int64_t now_ms) const override {
if (last_ms_ == -1) {
last_ms_ = now_ms + kDelayMs;
last_timestamp_ = frame_timestamp;
}
uint32_t diff = MinDiff(frame_timestamp, last_timestamp_);
if (AheadOf(frame_timestamp, last_timestamp_))
last_ms_ += diff / 90;
else
last_ms_ -= diff / 90;
last_timestamp_ = frame_timestamp;
return last_ms_;
}
uint32_t MaxWaitingTime(int64_t render_time_ms,
int64_t now_ms) const override {
return std::max<int>(0, render_time_ms - now_ms - kDecodeTime);
}
bool GetTimings(int* decode_ms,
int* max_decode_ms,
int* current_delay_ms,
int* target_delay_ms,
int* jitter_buffer_ms,
int* min_playout_delay_ms,
int* render_delay_ms) const override {
return true;
}
private:
static constexpr int kDelayMs = 50;
static constexpr int kDecodeTime = kDelayMs / 2;
mutable uint32_t last_timestamp_ = 0;
mutable int64_t last_ms_ = -1;
};
class VCMJitterEstimatorMock : public VCMJitterEstimator {
public:
explicit VCMJitterEstimatorMock(Clock* clock) : VCMJitterEstimator(clock) {}
MOCK_METHOD1(UpdateRtt, void(int64_t rttMs));
MOCK_METHOD3(UpdateEstimate,
void(int64_t frameDelayMs,
uint32_t frameSizeBytes,
bool incompleteFrame));
MOCK_METHOD1(GetJitterEstimate, int(double rttMultiplier));
};
class FrameObjectFake : public FrameObject {
public:
bool GetBitstream(uint8_t* destination) const override { return true; }
uint32_t Timestamp() const override { return timestamp; }
int64_t ReceivedTime() const override { return 0; }
int64_t RenderTime() const override { return _renderTimeMs; }
// In EncodedImage |_length| is used to descibe its size and |_size| to
// describe its capacity.
void SetSize(int size) { _length = size; }
};
class VCMReceiveStatisticsCallbackMock : public VCMReceiveStatisticsCallback {
public:
MOCK_METHOD2(OnReceiveRatesUpdated,
void(uint32_t bitRate, uint32_t frameRate));
MOCK_METHOD3(OnCompleteFrame,
void(bool is_keyframe,
size_t size_bytes,
VideoContentType content_type));
MOCK_METHOD1(OnDiscardedPacketsUpdated, void(int discarded_packets));
MOCK_METHOD1(OnFrameCountsUpdated, void(const FrameCounts& frame_counts));
MOCK_METHOD7(OnFrameBufferTimingsUpdated,
void(int decode_ms,
int max_decode_ms,
int current_delay_ms,
int target_delay_ms,
int jitter_buffer_ms,
int min_playout_delay_ms,
int render_delay_ms));
MOCK_METHOD1(OnTimingFrameInfoUpdated, void(const TimingFrameInfo& info));
};
class TestFrameBuffer2 : public ::testing::Test {
protected:
static constexpr int kMaxReferences = 5;
static constexpr int kFps1 = 1000;
static constexpr int kFps10 = kFps1 / 10;
static constexpr int kFps20 = kFps1 / 20;
TestFrameBuffer2()
: clock_(0),
timing_(&clock_),
jitter_estimator_(&clock_),
buffer_(&clock_, &jitter_estimator_, &timing_, &stats_callback_),
rand_(0x34678213),
tear_down_(false),
extract_thread_(&ExtractLoop, this, "Extract Thread"),
trigger_extract_event_(false, false),
crit_acquired_event_(false, false) {}
void SetUp() override { extract_thread_.Start(); }
void TearDown() override {
tear_down_ = true;
trigger_extract_event_.Set();
extract_thread_.Stop();
}
template <typename... T>
int InsertFrame(uint16_t picture_id,
uint8_t spatial_layer,
int64_t ts_ms,
bool inter_layer_predicted,
T... refs) {
static_assert(sizeof...(refs) <= kMaxReferences,
"To many references specified for FrameObject.");
std::array<uint16_t, sizeof...(refs)> references = {
{rtc::checked_cast<uint16_t>(refs)...}};
std::unique_ptr<FrameObjectFake> frame(new FrameObjectFake());
frame->picture_id = picture_id;
frame->spatial_layer = spatial_layer;
frame->timestamp = ts_ms * 90;
frame->num_references = references.size();
frame->inter_layer_predicted = inter_layer_predicted;
for (size_t r = 0; r < references.size(); ++r)
frame->references[r] = references[r];
return buffer_.InsertFrame(std::move(frame));
}
void ExtractFrame(int64_t max_wait_time = 0, bool keyframe_required = false) {
crit_.Enter();
if (max_wait_time == 0) {
std::unique_ptr<FrameObject> frame;
FrameBuffer::ReturnReason res =
buffer_.NextFrame(0, &frame, keyframe_required);
if (res != FrameBuffer::ReturnReason::kStopped)
frames_.emplace_back(std::move(frame));
crit_.Leave();
} else {
max_wait_time_ = max_wait_time;
trigger_extract_event_.Set();
crit_.Leave();
// Make sure |crit_| is aquired by |extract_thread_| before returning.
crit_acquired_event_.Wait(rtc::Event::kForever);
}
}
void CheckFrame(size_t index, int picture_id, int spatial_layer) {
rtc::CritScope lock(&crit_);
ASSERT_LT(index, frames_.size());
ASSERT_TRUE(frames_[index]);
ASSERT_EQ(picture_id, frames_[index]->picture_id);
ASSERT_EQ(spatial_layer, frames_[index]->spatial_layer);
}
void CheckNoFrame(size_t index) {
rtc::CritScope lock(&crit_);
ASSERT_LT(index, frames_.size());
ASSERT_FALSE(frames_[index]);
}
static void ExtractLoop(void* obj) {
TestFrameBuffer2* tfb = static_cast<TestFrameBuffer2*>(obj);
while (true) {
tfb->trigger_extract_event_.Wait(rtc::Event::kForever);
{
rtc::CritScope lock(&tfb->crit_);
tfb->crit_acquired_event_.Set();
if (tfb->tear_down_)
return;
std::unique_ptr<FrameObject> frame;
FrameBuffer::ReturnReason res =
tfb->buffer_.NextFrame(tfb->max_wait_time_, &frame);
if (res != FrameBuffer::ReturnReason::kStopped)
tfb->frames_.emplace_back(std::move(frame));
}
}
}
uint32_t Rand() { return rand_.Rand<uint32_t>(); }
SimulatedClock clock_;
VCMTimingFake timing_;
::testing::NiceMock<VCMJitterEstimatorMock> jitter_estimator_;
FrameBuffer buffer_;
std::vector<std::unique_ptr<FrameObject>> frames_;
Random rand_;
::testing::NiceMock<VCMReceiveStatisticsCallbackMock> stats_callback_;
int64_t max_wait_time_;
bool tear_down_;
rtc::PlatformThread extract_thread_;
rtc::Event trigger_extract_event_;
rtc::Event crit_acquired_event_;
rtc::CriticalSection crit_;
};
// Following tests are timing dependent. Either the timeouts have to
// be increased by a large margin, which would slow down all trybots,
// or we disable them for the very slow ones, like we do here.
#if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER)
TEST_F(TestFrameBuffer2, WaitForFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
ExtractFrame(50);
InsertFrame(pid, 0, ts, false);
CheckFrame(0, pid, 0);
}
TEST_F(TestFrameBuffer2, OneSuperFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false);
ExtractFrame();
InsertFrame(pid, 1, ts, true);
ExtractFrame();
CheckFrame(0, pid, 0);
CheckFrame(1, pid, 1);
}
TEST_F(TestFrameBuffer2, SetPlayoutDelay) {
const PlayoutDelay kPlayoutDelayMs = {123, 321};
std::unique_ptr<FrameObjectFake> test_frame(new FrameObjectFake());
test_frame->SetPlayoutDelay(kPlayoutDelayMs);
buffer_.InsertFrame(std::move(test_frame));
EXPECT_EQ(kPlayoutDelayMs.min_ms, timing_.min_playout_delay());
EXPECT_EQ(kPlayoutDelayMs.max_ms, timing_.max_playout_delay());
}
// Flaky test, see bugs.webrtc.org/7068.
TEST_F(TestFrameBuffer2, DISABLED_OneUnorderedSuperFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
ExtractFrame(50);
InsertFrame(pid, 1, ts, true);
InsertFrame(pid, 0, ts, false);
ExtractFrame();
CheckFrame(0, pid, 0);
CheckFrame(1, pid, 1);
}
TEST_F(TestFrameBuffer2, DISABLED_OneLayerStreamReordered) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false);
ExtractFrame();
CheckFrame(0, pid, 0);
for (int i = 1; i < 10; i += 2) {
ExtractFrame(50);
InsertFrame(pid + i + 1, 0, ts + (i + 1) * kFps10, false, pid + i);
clock_.AdvanceTimeMilliseconds(kFps10);
InsertFrame(pid + i, 0, ts + i * kFps10, false, pid + i - 1);
clock_.AdvanceTimeMilliseconds(kFps10);
ExtractFrame();
CheckFrame(i, pid + i, 0);
CheckFrame(i + 1, pid + i + 1, 0);
}
}
#endif // Timing dependent tests.
TEST_F(TestFrameBuffer2, ExtractFromEmptyBuffer) {
ExtractFrame();
CheckNoFrame(0);
}
TEST_F(TestFrameBuffer2, MissingFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false);
InsertFrame(pid + 2, 0, ts, false, pid);
InsertFrame(pid + 3, 0, ts, false, pid + 1, pid + 2);
ExtractFrame();
ExtractFrame();
ExtractFrame();
CheckFrame(0, pid, 0);
CheckFrame(1, pid + 2, 0);
CheckNoFrame(2);
}
TEST_F(TestFrameBuffer2, OneLayerStream) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false);
ExtractFrame();
CheckFrame(0, pid, 0);
for (int i = 1; i < 10; ++i) {
InsertFrame(pid + i, 0, ts + i * kFps10, false, pid + i - 1);
ExtractFrame();
clock_.AdvanceTimeMilliseconds(kFps10);
CheckFrame(i, pid + i, 0);
}
}
TEST_F(TestFrameBuffer2, DropTemporalLayerSlowDecoder) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false);
InsertFrame(pid + 1, 0, ts + kFps20, false, pid);
for (int i = 2; i < 10; i += 2) {
uint32_t ts_tl0 = ts + i / 2 * kFps10;
InsertFrame(pid + i, 0, ts_tl0, false, pid + i - 2);
InsertFrame(pid + i + 1, 0, ts_tl0 + kFps20, false, pid + i, pid + i - 1);
}
for (int i = 0; i < 10; ++i) {
ExtractFrame();
clock_.AdvanceTimeMilliseconds(60);
}
CheckFrame(0, pid, 0);
CheckFrame(1, pid + 1, 0);
CheckFrame(2, pid + 2, 0);
CheckFrame(3, pid + 4, 0);
CheckFrame(4, pid + 6, 0);
CheckFrame(5, pid + 8, 0);
CheckNoFrame(6);
CheckNoFrame(7);
CheckNoFrame(8);
CheckNoFrame(9);
}
TEST_F(TestFrameBuffer2, DropSpatialLayerSlowDecoder) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false);
InsertFrame(pid, 1, ts, false);
for (int i = 1; i < 6; ++i) {
uint32_t ts_tl0 = ts + i * kFps10;
InsertFrame(pid + i, 0, ts_tl0, false, pid + i - 1);
InsertFrame(pid + i, 1, ts_tl0, false, pid + i - 1);
}
ExtractFrame();
ExtractFrame();
clock_.AdvanceTimeMilliseconds(55);
for (int i = 2; i < 12; ++i) {
ExtractFrame();
clock_.AdvanceTimeMilliseconds(55);
}
CheckFrame(0, pid, 0);
CheckFrame(1, pid, 1);
CheckFrame(2, pid + 1, 0);
CheckFrame(3, pid + 1, 1);
CheckFrame(4, pid + 2, 0);
CheckFrame(5, pid + 2, 1);
CheckFrame(6, pid + 3, 0);
CheckFrame(7, pid + 4, 0);
CheckFrame(8, pid + 5, 0);
CheckNoFrame(9);
CheckNoFrame(10);
CheckNoFrame(11);
}
TEST_F(TestFrameBuffer2, InsertLateFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
InsertFrame(pid, 0, ts, false);
ExtractFrame();
InsertFrame(pid + 2, 0, ts, false);
ExtractFrame();
InsertFrame(pid + 1, 0, ts, false, pid);
ExtractFrame();
CheckFrame(0, pid, 0);
CheckFrame(1, pid + 2, 0);
CheckNoFrame(2);
}
TEST_F(TestFrameBuffer2, ProtectionMode) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_CALL(jitter_estimator_, GetJitterEstimate(1.0));
InsertFrame(pid, 0, ts, false);
ExtractFrame();
buffer_.SetProtectionMode(kProtectionNackFEC);
EXPECT_CALL(jitter_estimator_, GetJitterEstimate(0.0));
InsertFrame(pid + 1, 0, ts, false);
ExtractFrame();
}
TEST_F(TestFrameBuffer2, NoContinuousFrame) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(-1, InsertFrame(pid + 1, 0, ts, false, pid));
}
TEST_F(TestFrameBuffer2, LastContinuousFrameSingleLayer) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(pid, InsertFrame(pid, 0, ts, false));
EXPECT_EQ(pid, InsertFrame(pid + 2, 0, ts, false, pid + 1));
EXPECT_EQ(pid + 2, InsertFrame(pid + 1, 0, ts, false, pid));
EXPECT_EQ(pid + 2, InsertFrame(pid + 4, 0, ts, false, pid + 3));
EXPECT_EQ(pid + 5, InsertFrame(pid + 5, 0, ts, false));
}
TEST_F(TestFrameBuffer2, LastContinuousFrameTwoLayers) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(pid, InsertFrame(pid, 0, ts, false));
EXPECT_EQ(pid, InsertFrame(pid, 1, ts, true));
EXPECT_EQ(pid, InsertFrame(pid + 1, 1, ts, true, pid));
EXPECT_EQ(pid, InsertFrame(pid + 2, 0, ts, false, pid + 1));
EXPECT_EQ(pid, InsertFrame(pid + 2, 1, ts, true, pid + 1));
EXPECT_EQ(pid, InsertFrame(pid + 3, 0, ts, false, pid + 2));
EXPECT_EQ(pid + 3, InsertFrame(pid + 1, 0, ts, false, pid));
EXPECT_EQ(pid + 3, InsertFrame(pid + 3, 1, ts, true, pid + 2));
}
TEST_F(TestFrameBuffer2, PictureIdJumpBack) {
uint16_t pid = Rand();
uint32_t ts = Rand();
EXPECT_EQ(pid, InsertFrame(pid, 0, ts, false));
EXPECT_EQ(pid + 1, InsertFrame(pid + 1, 0, ts + 1, false, pid));
ExtractFrame();
CheckFrame(0, pid, 0);
// Jump back in pid but increase ts.
EXPECT_EQ(pid - 1, InsertFrame(pid - 1, 0, ts + 2, false));
ExtractFrame();
ExtractFrame();
CheckFrame(1, pid - 1, 0);
CheckNoFrame(2);
}
TEST_F(TestFrameBuffer2, StatsCallback) {
uint16_t pid = Rand();
uint32_t ts = Rand();
const int kFrameSize = 5000;
EXPECT_CALL(stats_callback_,
OnCompleteFrame(true, kFrameSize, VideoContentType::UNSPECIFIED));
EXPECT_CALL(stats_callback_,
OnFrameBufferTimingsUpdated(_, _, _, _, _, _, _));
{
std::unique_ptr<FrameObjectFake> frame(new FrameObjectFake());
frame->SetSize(kFrameSize);
frame->picture_id = pid;
frame->spatial_layer = 0;
frame->timestamp = ts;
frame->num_references = 0;
frame->inter_layer_predicted = false;
EXPECT_EQ(buffer_.InsertFrame(std::move(frame)), pid);
}
ExtractFrame();
CheckFrame(0, pid, 0);
}
TEST_F(TestFrameBuffer2, ForwardJumps) {
EXPECT_EQ(5453, InsertFrame(5453, 0, 1, false));
ExtractFrame();
EXPECT_EQ(5454, InsertFrame(5454, 0, 1, false, 5453));
ExtractFrame();
EXPECT_EQ(15670, InsertFrame(15670, 0, 1, false));
ExtractFrame();
EXPECT_EQ(29804, InsertFrame(29804, 0, 1, false));
ExtractFrame();
EXPECT_EQ(29805, InsertFrame(29805, 0, 1, false, 29804));
ExtractFrame();
EXPECT_EQ(29806, InsertFrame(29806, 0, 1, false, 29805));
ExtractFrame();
EXPECT_EQ(33819, InsertFrame(33819, 0, 1, false));
ExtractFrame();
EXPECT_EQ(41248, InsertFrame(41248, 0, 1, false));
ExtractFrame();
}
TEST_F(TestFrameBuffer2, DuplicateFrames) {
EXPECT_EQ(22256, InsertFrame(22256, 0, 1, false));
ExtractFrame();
EXPECT_EQ(22256, InsertFrame(22256, 0, 1, false));
}
// TODO(philipel): implement more unittests related to invalid references.
TEST_F(TestFrameBuffer2, InvalidReferences) {
EXPECT_EQ(-1, InsertFrame(0, 0, 1000, false, 2));
EXPECT_EQ(1, InsertFrame(1, 0, 2000, false));
ExtractFrame();
EXPECT_EQ(2, InsertFrame(2, 0, 3000, false, 1));
}
TEST_F(TestFrameBuffer2, KeyframeRequired) {
EXPECT_EQ(1, InsertFrame(1, 0, 1000, false));
EXPECT_EQ(2, InsertFrame(2, 0, 2000, false, 1));
EXPECT_EQ(3, InsertFrame(3, 0, 3000, false));
ExtractFrame();
ExtractFrame(0, true);
ExtractFrame();
CheckFrame(0, 1, 0);
CheckFrame(1, 3, 0);
CheckNoFrame(2);
}
} // namespace video_coding
} // namespace webrtc