blob: 07c016712421c8b0943a956abaef66abaa9d5623 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <string.h>
#include <algorithm>
#include <cstdint>
#include <string>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "api/scoped_refptr.h"
#include "api/video/video_content_type.h"
#include "api/video/video_frame_buffer.h"
#include "api/video/video_timing.h"
#include "api/video_codecs/create_vp8_temporal_layers.h"
#include "api/video_codecs/vp8_temporal_layers.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "modules/video_coding/codecs/vp8/libvpx_vp8_encoder.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "modules/video_coding/utility/simulcast_utility.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/field_trial.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "vpx/vp8cx.h"
namespace webrtc {
namespace {
#if defined(WEBRTC_IOS)
const char kVP8IosMaxNumberOfThreadFieldTrial[] =
"WebRTC-VP8IosMaxNumberOfThread";
const char kVP8IosMaxNumberOfThreadFieldTrialParameter[] = "max_thread";
#endif
// QP is obtained from VP8-bitstream for HW, so the QP corresponds to the
// bitstream range of [0, 127] and not the user-level range of [0,63].
constexpr int kLowVp8QpThreshold = 29;
constexpr int kHighVp8QpThreshold = 95;
constexpr int kTokenPartitions = VP8_ONE_TOKENPARTITION;
constexpr uint32_t kVp832ByteAlign = 32u;
// VP8 denoiser states.
enum denoiserState : uint32_t {
kDenoiserOff,
kDenoiserOnYOnly,
kDenoiserOnYUV,
kDenoiserOnYUVAggressive,
// Adaptive mode defaults to kDenoiserOnYUV on key frame, but may switch
// to kDenoiserOnYUVAggressive based on a computed noise metric.
kDenoiserOnAdaptive
};
// Greatest common divisior
static int GCD(int a, int b) {
int c = a % b;
while (c != 0) {
a = b;
b = c;
c = a % b;
}
return b;
}
static_assert(Vp8EncoderConfig::kMaxPeriodicity == VPX_TS_MAX_PERIODICITY,
"Vp8EncoderConfig::kMaxPeriodicity must be kept in sync with the "
"constant in libvpx.");
static_assert(Vp8EncoderConfig::kMaxLayers == VPX_TS_MAX_LAYERS,
"Vp8EncoderConfig::kMaxLayers must be kept in sync with the "
"constant in libvpx.");
static Vp8EncoderConfig GetEncoderConfig(vpx_codec_enc_cfg* vpx_config) {
Vp8EncoderConfig config;
config.ts_number_layers = vpx_config->ts_number_layers;
memcpy(config.ts_target_bitrate, vpx_config->ts_target_bitrate,
sizeof(unsigned int) * Vp8EncoderConfig::kMaxLayers);
memcpy(config.ts_rate_decimator, vpx_config->ts_rate_decimator,
sizeof(unsigned int) * Vp8EncoderConfig::kMaxLayers);
config.ts_periodicity = vpx_config->ts_periodicity;
memcpy(config.ts_layer_id, vpx_config->ts_layer_id,
sizeof(unsigned int) * Vp8EncoderConfig::kMaxPeriodicity);
config.rc_target_bitrate = vpx_config->rc_target_bitrate;
config.rc_min_quantizer = vpx_config->rc_min_quantizer;
config.rc_max_quantizer = vpx_config->rc_max_quantizer;
return config;
}
static void FillInEncoderConfig(vpx_codec_enc_cfg* vpx_config,
const Vp8EncoderConfig& config) {
vpx_config->ts_number_layers = config.ts_number_layers;
memcpy(vpx_config->ts_target_bitrate, config.ts_target_bitrate,
sizeof(unsigned int) * Vp8EncoderConfig::kMaxLayers);
memcpy(vpx_config->ts_rate_decimator, config.ts_rate_decimator,
sizeof(unsigned int) * Vp8EncoderConfig::kMaxLayers);
vpx_config->ts_periodicity = config.ts_periodicity;
memcpy(vpx_config->ts_layer_id, config.ts_layer_id,
sizeof(unsigned int) * Vp8EncoderConfig::kMaxPeriodicity);
vpx_config->rc_target_bitrate = config.rc_target_bitrate;
vpx_config->rc_min_quantizer = config.rc_min_quantizer;
vpx_config->rc_max_quantizer = config.rc_max_quantizer;
}
bool UpdateVpxConfiguration(Vp8TemporalLayers* temporal_layers,
vpx_codec_enc_cfg_t* cfg) {
Vp8EncoderConfig config = GetEncoderConfig(cfg);
const bool res = temporal_layers->UpdateConfiguration(&config);
if (res)
FillInEncoderConfig(cfg, config);
return res;
}
} // namespace
std::unique_ptr<VideoEncoder> VP8Encoder::Create() {
return absl::make_unique<LibvpxVp8Encoder>();
}
vpx_enc_frame_flags_t LibvpxVp8Encoder::EncodeFlags(
const Vp8FrameConfig& references) {
RTC_DCHECK(!references.drop_frame);
vpx_enc_frame_flags_t flags = 0;
if ((references.last_buffer_flags &
Vp8FrameConfig::BufferFlags::kReference) == 0)
flags |= VP8_EFLAG_NO_REF_LAST;
if ((references.last_buffer_flags & Vp8FrameConfig::BufferFlags::kUpdate) ==
0)
flags |= VP8_EFLAG_NO_UPD_LAST;
if ((references.golden_buffer_flags &
Vp8FrameConfig::BufferFlags::kReference) == 0)
flags |= VP8_EFLAG_NO_REF_GF;
if ((references.golden_buffer_flags & Vp8FrameConfig::BufferFlags::kUpdate) ==
0)
flags |= VP8_EFLAG_NO_UPD_GF;
if ((references.arf_buffer_flags & Vp8FrameConfig::BufferFlags::kReference) ==
0)
flags |= VP8_EFLAG_NO_REF_ARF;
if ((references.arf_buffer_flags & Vp8FrameConfig::BufferFlags::kUpdate) == 0)
flags |= VP8_EFLAG_NO_UPD_ARF;
if (references.freeze_entropy)
flags |= VP8_EFLAG_NO_UPD_ENTROPY;
return flags;
}
LibvpxVp8Encoder::LibvpxVp8Encoder()
: LibvpxVp8Encoder(LibvpxInterface::CreateEncoder()) {}
LibvpxVp8Encoder::LibvpxVp8Encoder(std::unique_ptr<LibvpxInterface> interface)
: libvpx_(std::move(interface)),
experimental_cpu_speed_config_arm_(CpuSpeedExperiment::GetConfigs()),
trusted_rate_controller_(RateControlSettings::ParseFromFieldTrials()
.LibvpxVp8TrustedRateController()),
encoded_complete_callback_(nullptr),
inited_(false),
timestamp_(0),
qp_max_(56), // Setting for max quantizer.
cpu_speed_default_(-6),
number_of_cores_(0),
rc_max_intra_target_(0),
key_frame_request_(kMaxSimulcastStreams, false) {
temporal_layers_.reserve(kMaxSimulcastStreams);
raw_images_.reserve(kMaxSimulcastStreams);
encoded_images_.reserve(kMaxSimulcastStreams);
send_stream_.reserve(kMaxSimulcastStreams);
cpu_speed_.assign(kMaxSimulcastStreams, cpu_speed_default_);
encoders_.reserve(kMaxSimulcastStreams);
configurations_.reserve(kMaxSimulcastStreams);
downsampling_factors_.reserve(kMaxSimulcastStreams);
}
LibvpxVp8Encoder::~LibvpxVp8Encoder() {
Release();
}
int LibvpxVp8Encoder::Release() {
int ret_val = WEBRTC_VIDEO_CODEC_OK;
while (!encoded_images_.empty()) {
EncodedImage& image = encoded_images_.back();
delete[] image.data();
encoded_images_.pop_back();
}
while (!encoders_.empty()) {
vpx_codec_ctx_t& encoder = encoders_.back();
if (inited_) {
if (libvpx_->codec_destroy(&encoder)) {
ret_val = WEBRTC_VIDEO_CODEC_MEMORY;
}
}
encoders_.pop_back();
}
configurations_.clear();
send_stream_.clear();
cpu_speed_.clear();
while (!raw_images_.empty()) {
libvpx_->img_free(&raw_images_.back());
raw_images_.pop_back();
}
temporal_layers_.clear();
inited_ = false;
return ret_val;
}
int LibvpxVp8Encoder::SetRateAllocation(const VideoBitrateAllocation& bitrate,
uint32_t new_framerate) {
if (!inited_)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
if (encoders_[0].err)
return WEBRTC_VIDEO_CODEC_ERROR;
if (new_framerate < 1)
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
if (bitrate.get_sum_bps() == 0) {
// Encoder paused, turn off all encoding.
const int num_streams = static_cast<size_t>(encoders_.size());
for (int i = 0; i < num_streams; ++i)
SetStreamState(false, i);
return WEBRTC_VIDEO_CODEC_OK;
}
// At this point, bitrate allocation should already match codec settings.
if (codec_.maxBitrate > 0)
RTC_DCHECK_LE(bitrate.get_sum_kbps(), codec_.maxBitrate);
RTC_DCHECK_GE(bitrate.get_sum_kbps(), codec_.minBitrate);
if (codec_.numberOfSimulcastStreams > 0)
RTC_DCHECK_GE(bitrate.get_sum_kbps(), codec_.simulcastStream[0].minBitrate);
codec_.maxFramerate = new_framerate;
if (encoders_.size() > 1) {
// If we have more than 1 stream, reduce the qp_max for the low resolution
// stream if frame rate is not too low. The trade-off with lower qp_max is
// possibly more dropped frames, so we only do this if the frame rate is
// above some threshold (base temporal layer is down to 1/4 for 3 layers).
// We may want to condition this on bitrate later.
if (new_framerate > 20) {
configurations_[encoders_.size() - 1].rc_max_quantizer = 45;
} else {
// Go back to default value set in InitEncode.
configurations_[encoders_.size() - 1].rc_max_quantizer = qp_max_;
}
}
size_t stream_idx = encoders_.size() - 1;
for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) {
unsigned int target_bitrate_kbps =
bitrate.GetSpatialLayerSum(stream_idx) / 1000;
bool send_stream = target_bitrate_kbps > 0;
if (send_stream || encoders_.size() > 1)
SetStreamState(send_stream, stream_idx);
configurations_[i].rc_target_bitrate = target_bitrate_kbps;
if (send_stream) {
temporal_layers_[stream_idx]->OnRatesUpdated(
bitrate.GetTemporalLayerAllocation(stream_idx), new_framerate);
}
UpdateVpxConfiguration(temporal_layers_[stream_idx].get(),
&configurations_[i]);
if (libvpx_->codec_enc_config_set(&encoders_[i], &configurations_[i])) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
return WEBRTC_VIDEO_CODEC_OK;
}
void LibvpxVp8Encoder::SetStreamState(bool send_stream, int stream_idx) {
if (send_stream && !send_stream_[stream_idx]) {
// Need a key frame if we have not sent this stream before.
key_frame_request_[stream_idx] = true;
}
send_stream_[stream_idx] = send_stream;
}
void LibvpxVp8Encoder::SetupTemporalLayers(const VideoCodec& codec) {
RTC_DCHECK(temporal_layers_.empty());
int num_streams = SimulcastUtility::NumberOfSimulcastStreams(codec);
for (int i = 0; i < num_streams; ++i) {
Vp8TemporalLayersType type;
int num_temporal_layers =
SimulcastUtility::NumberOfTemporalLayers(codec, i);
if (SimulcastUtility::IsConferenceModeScreenshare(codec) && i == 0) {
type = Vp8TemporalLayersType::kBitrateDynamic;
// Legacy screenshare layers supports max 2 layers.
num_temporal_layers = std::max<int>(2, num_temporal_layers);
} else {
type = Vp8TemporalLayersType::kFixedPattern;
}
temporal_layers_.emplace_back(
CreateVp8TemporalLayers(type, num_temporal_layers));
}
}
int LibvpxVp8Encoder::InitEncode(const VideoCodec* inst,
int number_of_cores,
size_t /*maxPayloadSize */) {
if (inst == NULL) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width <= 1 || inst->height <= 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->VP8().automaticResizeOn && inst->numberOfSimulcastStreams > 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int retVal = Release();
if (retVal < 0) {
return retVal;
}
int number_of_streams = SimulcastUtility::NumberOfSimulcastStreams(*inst);
if (number_of_streams > 1 &&
(!SimulcastUtility::ValidSimulcastResolutions(*inst, number_of_streams) ||
!SimulcastUtility::ValidSimulcastTemporalLayers(*inst,
number_of_streams))) {
return WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED;
}
SetupTemporalLayers(*inst);
number_of_cores_ = number_of_cores;
timestamp_ = 0;
codec_ = *inst;
// Code expects simulcastStream resolutions to be correct, make sure they are
// filled even when there are no simulcast layers.
if (codec_.numberOfSimulcastStreams == 0) {
codec_.simulcastStream[0].width = codec_.width;
codec_.simulcastStream[0].height = codec_.height;
}
encoded_images_.resize(number_of_streams);
encoders_.resize(number_of_streams);
configurations_.resize(number_of_streams);
downsampling_factors_.resize(number_of_streams);
raw_images_.resize(number_of_streams);
send_stream_.resize(number_of_streams);
send_stream_[0] = true; // For non-simulcast case.
cpu_speed_.resize(number_of_streams);
std::fill(key_frame_request_.begin(), key_frame_request_.end(), false);
int idx = number_of_streams - 1;
for (int i = 0; i < (number_of_streams - 1); ++i, --idx) {
int gcd = GCD(inst->simulcastStream[idx].width,
inst->simulcastStream[idx - 1].width);
downsampling_factors_[i].num = inst->simulcastStream[idx].width / gcd;
downsampling_factors_[i].den = inst->simulcastStream[idx - 1].width / gcd;
send_stream_[i] = false;
}
if (number_of_streams > 1) {
send_stream_[number_of_streams - 1] = false;
downsampling_factors_[number_of_streams - 1].num = 1;
downsampling_factors_[number_of_streams - 1].den = 1;
}
for (int i = 0; i < number_of_streams; ++i) {
// allocate memory for encoded image
if (encoded_images_[i].data() != nullptr) {
delete[] encoded_images_[i].data();
}
size_t frame_capacity =
CalcBufferSize(VideoType::kI420, codec_.width, codec_.height);
encoded_images_[i].set_buffer(new uint8_t[frame_capacity], frame_capacity);
encoded_images_[i]._completeFrame = true;
}
// populate encoder configuration with default values
if (libvpx_->codec_enc_config_default(vpx_codec_vp8_cx(), &configurations_[0],
0)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
// setting the time base of the codec
configurations_[0].g_timebase.num = 1;
configurations_[0].g_timebase.den = 90000;
configurations_[0].g_lag_in_frames = 0; // 0- no frame lagging
// Set the error resilience mode for temporal layers (but not simulcast).
configurations_[0].g_error_resilient =
(SimulcastUtility::NumberOfTemporalLayers(*inst, 0) > 1)
? VPX_ERROR_RESILIENT_DEFAULT
: 0;
// rate control settings
configurations_[0].rc_dropframe_thresh = FrameDropThreshold(0);
configurations_[0].rc_end_usage = VPX_CBR;
configurations_[0].g_pass = VPX_RC_ONE_PASS;
// Handle resizing outside of libvpx.
configurations_[0].rc_resize_allowed = 0;
configurations_[0].rc_min_quantizer = 2;
if (inst->qpMax >= configurations_[0].rc_min_quantizer) {
qp_max_ = inst->qpMax;
}
configurations_[0].rc_max_quantizer = qp_max_;
configurations_[0].rc_undershoot_pct = 100;
configurations_[0].rc_overshoot_pct = 15;
configurations_[0].rc_buf_initial_sz = 500;
configurations_[0].rc_buf_optimal_sz = 600;
configurations_[0].rc_buf_sz = 1000;
// Set the maximum target size of any key-frame.
rc_max_intra_target_ = MaxIntraTarget(configurations_[0].rc_buf_optimal_sz);
if (inst->VP8().keyFrameInterval > 0) {
configurations_[0].kf_mode = VPX_KF_AUTO;
configurations_[0].kf_max_dist = inst->VP8().keyFrameInterval;
} else {
configurations_[0].kf_mode = VPX_KF_DISABLED;
}
// Allow the user to set the complexity for the base stream.
switch (inst->VP8().complexity) {
case VideoCodecComplexity::kComplexityHigh:
cpu_speed_[0] = -5;
break;
case VideoCodecComplexity::kComplexityHigher:
cpu_speed_[0] = -4;
break;
case VideoCodecComplexity::kComplexityMax:
cpu_speed_[0] = -3;
break;
default:
cpu_speed_[0] = -6;
break;
}
cpu_speed_default_ = cpu_speed_[0];
// Set encoding complexity (cpu_speed) based on resolution and/or platform.
cpu_speed_[0] = GetCpuSpeed(inst->width, inst->height);
for (int i = 1; i < number_of_streams; ++i) {
cpu_speed_[i] =
GetCpuSpeed(inst->simulcastStream[number_of_streams - 1 - i].width,
inst->simulcastStream[number_of_streams - 1 - i].height);
}
configurations_[0].g_w = inst->width;
configurations_[0].g_h = inst->height;
// Determine number of threads based on the image size and #cores.
// TODO(fbarchard): Consider number of Simulcast layers.
configurations_[0].g_threads = NumberOfThreads(
configurations_[0].g_w, configurations_[0].g_h, number_of_cores);
// Creating a wrapper to the image - setting image data to NULL.
// Actual pointer will be set in encode. Setting align to 1, as it
// is meaningless (no memory allocation is done here).
libvpx_->img_wrap(&raw_images_[0], VPX_IMG_FMT_I420, inst->width,
inst->height, 1, NULL);
// Note the order we use is different from webm, we have lowest resolution
// at position 0 and they have highest resolution at position 0.
int stream_idx = encoders_.size() - 1;
SimulcastRateAllocator init_allocator(codec_);
VideoBitrateAllocation allocation = init_allocator.GetAllocation(
inst->startBitrate * 1000, inst->maxFramerate);
std::vector<uint32_t> stream_bitrates;
for (int i = 0; i == 0 || i < inst->numberOfSimulcastStreams; ++i) {
uint32_t bitrate = allocation.GetSpatialLayerSum(i) / 1000;
stream_bitrates.push_back(bitrate);
}
configurations_[0].rc_target_bitrate = stream_bitrates[stream_idx];
if (stream_bitrates[stream_idx] > 0) {
temporal_layers_[stream_idx]->OnRatesUpdated(
allocation.GetTemporalLayerAllocation(stream_idx), inst->maxFramerate);
}
UpdateVpxConfiguration(temporal_layers_[stream_idx].get(),
&configurations_[0]);
configurations_[0].rc_dropframe_thresh = FrameDropThreshold(stream_idx);
--stream_idx;
for (size_t i = 1; i < encoders_.size(); ++i, --stream_idx) {
memcpy(&configurations_[i], &configurations_[0],
sizeof(configurations_[0]));
configurations_[i].g_w = inst->simulcastStream[stream_idx].width;
configurations_[i].g_h = inst->simulcastStream[stream_idx].height;
// Use 1 thread for lower resolutions.
configurations_[i].g_threads = 1;
configurations_[i].rc_dropframe_thresh = FrameDropThreshold(stream_idx);
// Setting alignment to 32 - as that ensures at least 16 for all
// planes (32 for Y, 16 for U,V). Libvpx sets the requested stride for
// the y plane, but only half of it to the u and v planes.
libvpx_->img_alloc(&raw_images_[i], VPX_IMG_FMT_I420,
inst->simulcastStream[stream_idx].width,
inst->simulcastStream[stream_idx].height,
kVp832ByteAlign);
SetStreamState(stream_bitrates[stream_idx] > 0, stream_idx);
configurations_[i].rc_target_bitrate = stream_bitrates[stream_idx];
if (stream_bitrates[stream_idx] > 0) {
temporal_layers_[stream_idx]->OnRatesUpdated(
allocation.GetTemporalLayerAllocation(stream_idx),
inst->maxFramerate);
}
UpdateVpxConfiguration(temporal_layers_[stream_idx].get(),
&configurations_[i]);
}
return InitAndSetControlSettings();
}
int LibvpxVp8Encoder::GetCpuSpeed(int width, int height) {
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \
defined(WEBRTC_ANDROID)
// On mobile platform, use a lower speed setting for lower resolutions for
// CPUs with 4 or more cores.
RTC_DCHECK_GT(number_of_cores_, 0);
if (number_of_cores_ <= 3)
return -12;
if (experimental_cpu_speed_config_arm_) {
return CpuSpeedExperiment::GetValue(width * height,
*experimental_cpu_speed_config_arm_);
}
if (width * height <= 352 * 288)
return -8;
else if (width * height <= 640 * 480)
return -10;
else
return -12;
#else
// For non-ARM, increase encoding complexity (i.e., use lower speed setting)
// if resolution is below CIF. Otherwise, keep the default/user setting
// (|cpu_speed_default_|) set on InitEncode via VP8().complexity.
if (width * height < 352 * 288)
return (cpu_speed_default_ < -4) ? -4 : cpu_speed_default_;
else
return cpu_speed_default_;
#endif
}
int LibvpxVp8Encoder::NumberOfThreads(int width, int height, int cpus) {
#if defined(WEBRTC_ANDROID)
if (width * height >= 320 * 180) {
if (cpus >= 4) {
// 3 threads for CPUs with 4 and more cores since most of times only 4
// cores will be active.
return 3;
} else if (cpus == 3 || cpus == 2) {
return 2;
} else {
return 1;
}
}
return 1;
#else
#if defined(WEBRTC_IOS)
std::string trial_string =
field_trial::FindFullName(kVP8IosMaxNumberOfThreadFieldTrial);
FieldTrialParameter<int> max_thread_number(
kVP8IosMaxNumberOfThreadFieldTrialParameter, 0);
ParseFieldTrial({&max_thread_number}, trial_string);
if (max_thread_number.Get() > 0) {
if (width * height < 320 * 180) {
return 1; // Use single thread for small screens
}
// thread number must be less than or equal to the number of CPUs.
return std::min(cpus, max_thread_number.Get());
}
#endif // defined(WEBRTC_IOS)
if (width * height >= 1920 * 1080 && cpus > 8) {
return 8; // 8 threads for 1080p on high perf machines.
} else if (width * height > 1280 * 960 && cpus >= 6) {
// 3 threads for 1080p.
return 3;
} else if (width * height > 640 * 480 && cpus >= 3) {
// Default 2 threads for qHD/HD, but allow 3 if core count is high enough,
// as this will allow more margin for high-core/low clock machines or if
// not built with highest optimization.
if (cpus >= 6) {
return 3;
}
return 2;
} else {
// 1 thread for VGA or less.
return 1;
}
#endif
}
int LibvpxVp8Encoder::InitAndSetControlSettings() {
vpx_codec_flags_t flags = 0;
flags |= VPX_CODEC_USE_OUTPUT_PARTITION;
if (encoders_.size() > 1) {
int error = libvpx_->codec_enc_init_multi(
&encoders_[0], vpx_codec_vp8_cx(), &configurations_[0],
encoders_.size(), flags, &downsampling_factors_[0]);
if (error) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
} else {
if (libvpx_->codec_enc_init(&encoders_[0], vpx_codec_vp8_cx(),
&configurations_[0], flags)) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
}
// Enable denoising for the highest resolution stream, and for
// the second highest resolution if we are doing more than 2
// spatial layers/streams.
// TODO(holmer): Investigate possibility of adding a libvpx API
// for getting the denoised frame from the encoder and using that
// when encoding lower resolution streams. Would it work with the
// multi-res encoding feature?
denoiserState denoiser_state = kDenoiserOnYOnly;
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \
defined(WEBRTC_ANDROID)
denoiser_state = kDenoiserOnYOnly;
#else
denoiser_state = kDenoiserOnAdaptive;
#endif
libvpx_->codec_control(
&encoders_[0], VP8E_SET_NOISE_SENSITIVITY,
codec_.VP8()->denoisingOn ? denoiser_state : kDenoiserOff);
if (encoders_.size() > 2) {
libvpx_->codec_control(
&encoders_[1], VP8E_SET_NOISE_SENSITIVITY,
codec_.VP8()->denoisingOn ? denoiser_state : kDenoiserOff);
}
for (size_t i = 0; i < encoders_.size(); ++i) {
// Allow more screen content to be detected as static.
libvpx_->codec_control(
&(encoders_[i]), VP8E_SET_STATIC_THRESHOLD,
codec_.mode == VideoCodecMode::kScreensharing ? 300u : 1u);
libvpx_->codec_control(&(encoders_[i]), VP8E_SET_CPUUSED, cpu_speed_[i]);
libvpx_->codec_control(
&(encoders_[i]), VP8E_SET_TOKEN_PARTITIONS,
static_cast<vp8e_token_partitions>(kTokenPartitions));
libvpx_->codec_control(&(encoders_[i]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
// VP8E_SET_SCREEN_CONTENT_MODE 2 = screen content with more aggressive
// rate control (drop frames on large target bitrate overshoot)
libvpx_->codec_control(
&(encoders_[i]), VP8E_SET_SCREEN_CONTENT_MODE,
codec_.mode == VideoCodecMode::kScreensharing ? 2u : 0u);
}
inited_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
uint32_t LibvpxVp8Encoder::MaxIntraTarget(uint32_t optimalBuffersize) {
// Set max to the optimal buffer level (normalized by target BR),
// and scaled by a scalePar.
// Max target size = scalePar * optimalBufferSize * targetBR[Kbps].
// This values is presented in percentage of perFrameBw:
// perFrameBw = targetBR[Kbps] * 1000 / frameRate.
// The target in % is as follows:
float scalePar = 0.5;
uint32_t targetPct = optimalBuffersize * scalePar * codec_.maxFramerate / 10;
// Don't go below 3 times the per frame bandwidth.
const uint32_t minIntraTh = 300;
return (targetPct < minIntraTh) ? minIntraTh : targetPct;
}
uint32_t LibvpxVp8Encoder::FrameDropThreshold(size_t spatial_idx) const {
bool enable_frame_dropping = codec_.VP8().frameDroppingOn;
// If temporal layers are used, they get to override the frame dropping
// setting, as eg. ScreenshareLayers does not work as intended with frame
// dropping on and DefaultTemporalLayers will have performance issues with
// frame dropping off.
if (temporal_layers_.size() <= spatial_idx) {
enable_frame_dropping =
temporal_layers_[spatial_idx]->SupportsEncoderFrameDropping();
}
return enable_frame_dropping ? 30 : 0;
}
int LibvpxVp8Encoder::Encode(const VideoFrame& frame,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_EQ(frame.width(), codec_.width);
RTC_DCHECK_EQ(frame.height(), codec_.height);
if (!inited_)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
if (encoded_complete_callback_ == NULL)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
rtc::scoped_refptr<I420BufferInterface> input_image =
frame.video_frame_buffer()->ToI420();
// Since we are extracting raw pointers from |input_image| to
// |raw_images_[0]|, the resolution of these frames must match.
RTC_DCHECK_EQ(input_image->width(), raw_images_[0].d_w);
RTC_DCHECK_EQ(input_image->height(), raw_images_[0].d_h);
// Image in vpx_image_t format.
// Input image is const. VP8's raw image is not defined as const.
raw_images_[0].planes[VPX_PLANE_Y] =
const_cast<uint8_t*>(input_image->DataY());
raw_images_[0].planes[VPX_PLANE_U] =
const_cast<uint8_t*>(input_image->DataU());
raw_images_[0].planes[VPX_PLANE_V] =
const_cast<uint8_t*>(input_image->DataV());
raw_images_[0].stride[VPX_PLANE_Y] = input_image->StrideY();
raw_images_[0].stride[VPX_PLANE_U] = input_image->StrideU();
raw_images_[0].stride[VPX_PLANE_V] = input_image->StrideV();
for (size_t i = 1; i < encoders_.size(); ++i) {
// Scale the image down a number of times by downsampling factor
libyuv::I420Scale(
raw_images_[i - 1].planes[VPX_PLANE_Y],
raw_images_[i - 1].stride[VPX_PLANE_Y],
raw_images_[i - 1].planes[VPX_PLANE_U],
raw_images_[i - 1].stride[VPX_PLANE_U],
raw_images_[i - 1].planes[VPX_PLANE_V],
raw_images_[i - 1].stride[VPX_PLANE_V], raw_images_[i - 1].d_w,
raw_images_[i - 1].d_h, raw_images_[i].planes[VPX_PLANE_Y],
raw_images_[i].stride[VPX_PLANE_Y], raw_images_[i].planes[VPX_PLANE_U],
raw_images_[i].stride[VPX_PLANE_U], raw_images_[i].planes[VPX_PLANE_V],
raw_images_[i].stride[VPX_PLANE_V], raw_images_[i].d_w,
raw_images_[i].d_h, libyuv::kFilterBilinear);
}
bool send_key_frame = false;
for (size_t i = 0; i < key_frame_request_.size() && i < send_stream_.size();
++i) {
if (key_frame_request_[i] && send_stream_[i]) {
send_key_frame = true;
break;
}
}
if (!send_key_frame && frame_types) {
for (size_t i = 0; i < frame_types->size() && i < send_stream_.size();
++i) {
if ((*frame_types)[i] == kVideoFrameKey && send_stream_[i]) {
send_key_frame = true;
break;
}
}
}
vpx_enc_frame_flags_t flags[kMaxSimulcastStreams];
Vp8FrameConfig tl_configs[kMaxSimulcastStreams];
for (size_t i = 0; i < encoders_.size(); ++i) {
tl_configs[i] = temporal_layers_[i]->UpdateLayerConfig(frame.timestamp());
if (tl_configs[i].drop_frame) {
if (send_key_frame) {
continue;
}
// Drop this frame.
return WEBRTC_VIDEO_CODEC_OK;
}
flags[i] = EncodeFlags(tl_configs[i]);
}
if (send_key_frame) {
// Adapt the size of the key frame when in screenshare with 1 temporal
// layer.
if (encoders_.size() == 1 &&
codec_.mode == VideoCodecMode::kScreensharing &&
codec_.VP8()->numberOfTemporalLayers <= 1) {
const uint32_t forceKeyFrameIntraTh = 100;
libvpx_->codec_control(&(encoders_[0]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
forceKeyFrameIntraTh);
}
// Key frame request from caller.
// Will update both golden and alt-ref.
for (size_t i = 0; i < encoders_.size(); ++i) {
flags[i] = VPX_EFLAG_FORCE_KF;
}
std::fill(key_frame_request_.begin(), key_frame_request_.end(), false);
}
// Set the encoder frame flags and temporal layer_id for each spatial stream.
// Note that |temporal_layers_| are defined starting from lowest resolution at
// position 0 to highest resolution at position |encoders_.size() - 1|,
// whereas |encoder_| is from highest to lowest resolution.
size_t stream_idx = encoders_.size() - 1;
for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) {
// Allow the layers adapter to temporarily modify the configuration. This
// change isn't stored in configurations_ so change will be discarded at
// the next update.
vpx_codec_enc_cfg_t temp_config;
memcpy(&temp_config, &configurations_[i], sizeof(vpx_codec_enc_cfg_t));
if (UpdateVpxConfiguration(temporal_layers_[stream_idx].get(),
&temp_config)) {
if (libvpx_->codec_enc_config_set(&encoders_[i], &temp_config))
return WEBRTC_VIDEO_CODEC_ERROR;
}
libvpx_->codec_control(&encoders_[i], VP8E_SET_FRAME_FLAGS,
static_cast<int>(flags[stream_idx]));
libvpx_->codec_control(&encoders_[i], VP8E_SET_TEMPORAL_LAYER_ID,
tl_configs[i].encoder_layer_id);
}
// TODO(holmer): Ideally the duration should be the timestamp diff of this
// frame and the next frame to be encoded, which we don't have. Instead we
// would like to use the duration of the previous frame. Unfortunately the
// rate control seems to be off with that setup. Using the average input
// frame rate to calculate an average duration for now.
assert(codec_.maxFramerate > 0);
uint32_t duration = 90000 / codec_.maxFramerate;
int error = WEBRTC_VIDEO_CODEC_OK;
int num_tries = 0;
// If the first try returns WEBRTC_VIDEO_CODEC_TARGET_BITRATE_OVERSHOOT
// the frame must be reencoded with the same parameters again because
// target bitrate is exceeded and encoder state has been reset.
while (num_tries == 0 ||
(num_tries == 1 &&
error == WEBRTC_VIDEO_CODEC_TARGET_BITRATE_OVERSHOOT)) {
++num_tries;
// Note we must pass 0 for |flags| field in encode call below since they are
// set above in |libvpx_interface_->vpx_codec_control_| function for each
// encoder/spatial layer.
error = libvpx_->codec_encode(&encoders_[0], &raw_images_[0], timestamp_,
duration, 0, VPX_DL_REALTIME);
// Reset specific intra frame thresholds, following the key frame.
if (send_key_frame) {
libvpx_->codec_control(&(encoders_[0]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
}
if (error)
return WEBRTC_VIDEO_CODEC_ERROR;
// Examines frame timestamps only.
error = GetEncodedPartitions(frame);
}
// TODO(sprang): Shouldn't we use the frame timestamp instead?
timestamp_ += duration;
return error;
}
void LibvpxVp8Encoder::PopulateCodecSpecific(CodecSpecificInfo* codec_specific,
const vpx_codec_cx_pkt_t& pkt,
int stream_idx,
int encoder_idx,
uint32_t timestamp) {
assert(codec_specific != NULL);
codec_specific->codecType = kVideoCodecVP8;
CodecSpecificInfoVP8* vp8Info = &(codec_specific->codecSpecific.VP8);
vp8Info->keyIdx = kNoKeyIdx; // TODO(hlundin) populate this
vp8Info->nonReference = (pkt.data.frame.flags & VPX_FRAME_IS_DROPPABLE) != 0;
int qp = 0;
vpx_codec_control(&encoders_[encoder_idx], VP8E_GET_LAST_QUANTIZER_64, &qp);
temporal_layers_[stream_idx]->OnEncodeDone(
timestamp, encoded_images_[encoder_idx].size(),
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) != 0, qp, vp8Info);
}
int LibvpxVp8Encoder::GetEncodedPartitions(const VideoFrame& input_image) {
int stream_idx = static_cast<int>(encoders_.size()) - 1;
int result = WEBRTC_VIDEO_CODEC_OK;
for (size_t encoder_idx = 0; encoder_idx < encoders_.size();
++encoder_idx, --stream_idx) {
vpx_codec_iter_t iter = NULL;
encoded_images_[encoder_idx].set_size(0);
encoded_images_[encoder_idx]._frameType = kVideoFrameDelta;
CodecSpecificInfo codec_specific;
const vpx_codec_cx_pkt_t* pkt = NULL;
while ((pkt = libvpx_->codec_get_cx_data(&encoders_[encoder_idx], &iter)) !=
NULL) {
switch (pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
size_t length = encoded_images_[encoder_idx].size();
if (pkt->data.frame.sz + length >
encoded_images_[encoder_idx].capacity()) {
uint8_t* buffer = new uint8_t[pkt->data.frame.sz + length];
memcpy(buffer, encoded_images_[encoder_idx].data(), length);
delete[] encoded_images_[encoder_idx].data();
encoded_images_[encoder_idx].set_buffer(
buffer, pkt->data.frame.sz + length);
}
memcpy(&encoded_images_[encoder_idx].data()[length],
pkt->data.frame.buf, pkt->data.frame.sz);
encoded_images_[encoder_idx].set_size(
encoded_images_[encoder_idx].size() + pkt->data.frame.sz);
break;
}
default:
break;
}
// End of frame
if ((pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT) == 0) {
// check if encoded frame is a key frame
if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) {
encoded_images_[encoder_idx]._frameType = kVideoFrameKey;
}
encoded_images_[encoder_idx].SetSpatialIndex(stream_idx);
PopulateCodecSpecific(&codec_specific, *pkt, stream_idx, encoder_idx,
input_image.timestamp());
break;
}
}
encoded_images_[encoder_idx].SetTimestamp(input_image.timestamp());
encoded_images_[encoder_idx].capture_time_ms_ =
input_image.render_time_ms();
encoded_images_[encoder_idx].rotation_ = input_image.rotation();
encoded_images_[encoder_idx].content_type_ =
(codec_.mode == VideoCodecMode::kScreensharing)
? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
encoded_images_[encoder_idx].timing_.flags = VideoSendTiming::kInvalid;
encoded_images_[encoder_idx].SetColorSpace(input_image.color_space());
if (send_stream_[stream_idx]) {
if (encoded_images_[encoder_idx].size() > 0) {
TRACE_COUNTER_ID1("webrtc", "EncodedFrameSize", encoder_idx,
encoded_images_[encoder_idx].size());
encoded_images_[encoder_idx]._encodedHeight =
codec_.simulcastStream[stream_idx].height;
encoded_images_[encoder_idx]._encodedWidth =
codec_.simulcastStream[stream_idx].width;
int qp_128 = -1;
libvpx_->codec_control(&encoders_[encoder_idx], VP8E_GET_LAST_QUANTIZER,
&qp_128);
encoded_images_[encoder_idx].qp_ = qp_128;
encoded_complete_callback_->OnEncodedImage(encoded_images_[encoder_idx],
&codec_specific, nullptr);
} else if (!temporal_layers_[stream_idx]
->SupportsEncoderFrameDropping()) {
result = WEBRTC_VIDEO_CODEC_TARGET_BITRATE_OVERSHOOT;
if (encoded_images_[encoder_idx].size() == 0) {
// Dropped frame that will be re-encoded.
temporal_layers_[stream_idx]->OnEncodeDone(input_image.timestamp(), 0,
false, 0, nullptr);
}
}
}
}
return result;
}
VideoEncoder::EncoderInfo LibvpxVp8Encoder::GetEncoderInfo() const {
EncoderInfo info;
info.supports_native_handle = false;
info.implementation_name = "libvpx";
info.has_trusted_rate_controller = trusted_rate_controller_;
info.is_hardware_accelerated = false;
info.has_internal_source = false;
const bool enable_scaling = encoders_.size() == 1 &&
configurations_[0].rc_dropframe_thresh > 0 &&
codec_.VP8().automaticResizeOn;
info.scaling_settings = enable_scaling
? VideoEncoder::ScalingSettings(
kLowVp8QpThreshold, kHighVp8QpThreshold)
: VideoEncoder::ScalingSettings::kOff;
// |encoder_idx| is libvpx index where 0 is highest resolution.
// |si| is simulcast index, where 0 is lowest resolution.
for (size_t si = 0, encoder_idx = encoders_.size() - 1; si < encoders_.size();
++si, --encoder_idx) {
info.fps_allocation[si].clear();
if ((codec_.numberOfSimulcastStreams > si &&
!codec_.simulcastStream[si].active) ||
(si == 0 && SimulcastUtility::IsConferenceModeScreenshare(codec_))) {
// No defined frame rate fractions if not active or if using
// ScreenshareLayers, leave vector empty and continue;
continue;
}
if (configurations_[encoder_idx].ts_number_layers <= 1) {
info.fps_allocation[si].push_back(EncoderInfo::kMaxFramerateFraction);
} else {
for (size_t ti = 0; ti < configurations_[encoder_idx].ts_number_layers;
++ti) {
RTC_DCHECK_GT(configurations_[encoder_idx].ts_rate_decimator[ti], 0);
info.fps_allocation[si].push_back(rtc::saturated_cast<uint8_t>(
EncoderInfo::kMaxFramerateFraction /
configurations_[encoder_idx].ts_rate_decimator[ti] +
0.5));
}
}
}
return info;
}
int LibvpxVp8Encoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
} // namespace webrtc