| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| #include "modules/audio_processing/aec3/echo_remover.h" |
| |
| #include <math.h> |
| #include <stddef.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <atomic> |
| #include <cmath> |
| #include <memory> |
| |
| #include "api/array_view.h" |
| #include "modules/audio_processing/aec3/aec3_common.h" |
| #include "modules/audio_processing/aec3/aec3_fft.h" |
| #include "modules/audio_processing/aec3/aec_state.h" |
| #include "modules/audio_processing/aec3/comfort_noise_generator.h" |
| #include "modules/audio_processing/aec3/echo_path_variability.h" |
| #include "modules/audio_processing/aec3/echo_remover_metrics.h" |
| #include "modules/audio_processing/aec3/fft_data.h" |
| #include "modules/audio_processing/aec3/render_buffer.h" |
| #include "modules/audio_processing/aec3/render_signal_analyzer.h" |
| #include "modules/audio_processing/aec3/residual_echo_estimator.h" |
| #include "modules/audio_processing/aec3/subtractor.h" |
| #include "modules/audio_processing/aec3/subtractor_output.h" |
| #include "modules/audio_processing/aec3/suppression_filter.h" |
| #include "modules/audio_processing/aec3/suppression_gain.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| // Maximum number of channels for which the capture channel data is stored on |
| // the stack. If the number of channels are larger than this, they are stored |
| // using scratch memory that is pre-allocated on the heap. The reason for this |
| // partitioning is not to waste heap space for handling the more common numbers |
| // of channels, while at the same time not limiting the support for higher |
| // numbers of channels by enforcing the capture channel data to be stored on the |
| // stack using a fixed maximum value. |
| constexpr size_t kMaxNumChannelsOnStack = 2; |
| |
| // Chooses the number of channels to store on the heap when that is required due |
| // to the number of capture channels being larger than the pre-defined number |
| // of channels to store on the stack. |
| size_t NumChannelsOnHeap(size_t num_capture_channels) { |
| return num_capture_channels > kMaxNumChannelsOnStack ? num_capture_channels |
| : 0; |
| } |
| |
| void LinearEchoPower(const FftData& E, |
| const FftData& Y, |
| std::array<float, kFftLengthBy2Plus1>* S2) { |
| for (size_t k = 0; k < E.re.size(); ++k) { |
| (*S2)[k] = (Y.re[k] - E.re[k]) * (Y.re[k] - E.re[k]) + |
| (Y.im[k] - E.im[k]) * (Y.im[k] - E.im[k]); |
| } |
| } |
| |
| // Fades between two input signals using a fix-sized transition. |
| void SignalTransition(rtc::ArrayView<const float> from, |
| rtc::ArrayView<const float> to, |
| rtc::ArrayView<float> out) { |
| if (from == to) { |
| RTC_DCHECK_EQ(to.size(), out.size()); |
| std::copy(to.begin(), to.end(), out.begin()); |
| } else { |
| constexpr size_t kTransitionSize = 30; |
| constexpr float kOneByTransitionSizePlusOne = 1.f / (kTransitionSize + 1); |
| |
| RTC_DCHECK_EQ(from.size(), to.size()); |
| RTC_DCHECK_EQ(from.size(), out.size()); |
| RTC_DCHECK_LE(kTransitionSize, out.size()); |
| |
| for (size_t k = 0; k < kTransitionSize; ++k) { |
| float a = (k + 1) * kOneByTransitionSizePlusOne; |
| out[k] = a * to[k] + (1.f - a) * from[k]; |
| } |
| |
| std::copy(to.begin() + kTransitionSize, to.end(), |
| out.begin() + kTransitionSize); |
| } |
| } |
| |
| // Computes a windowed (square root Hanning) padded FFT and updates the related |
| // memory. |
| void WindowedPaddedFft(const Aec3Fft& fft, |
| rtc::ArrayView<const float> v, |
| rtc::ArrayView<float> v_old, |
| FftData* V) { |
| fft.PaddedFft(v, v_old, Aec3Fft::Window::kSqrtHanning, V); |
| std::copy(v.begin(), v.end(), v_old.begin()); |
| } |
| |
| // Class for removing the echo from the capture signal. |
| class EchoRemoverImpl final : public EchoRemover { |
| public: |
| EchoRemoverImpl(const EchoCanceller3Config& config, |
| int sample_rate_hz, |
| size_t num_render_channels, |
| size_t num_capture_channels); |
| ~EchoRemoverImpl() override; |
| EchoRemoverImpl(const EchoRemoverImpl&) = delete; |
| EchoRemoverImpl& operator=(const EchoRemoverImpl&) = delete; |
| |
| void GetMetrics(EchoControl::Metrics* metrics) const override; |
| |
| // Removes the echo from a block of samples from the capture signal. The |
| // supplied render signal is assumed to be pre-aligned with the capture |
| // signal. |
| void ProcessCapture(EchoPathVariability echo_path_variability, |
| bool capture_signal_saturation, |
| const std::optional<DelayEstimate>& external_delay, |
| RenderBuffer* render_buffer, |
| Block* linear_output, |
| Block* capture) override; |
| |
| // Updates the status on whether echo leakage is detected in the output of the |
| // echo remover. |
| void UpdateEchoLeakageStatus(bool leakage_detected) override { |
| echo_leakage_detected_ = leakage_detected; |
| } |
| |
| void SetCaptureOutputUsage(bool capture_output_used) override { |
| capture_output_used_ = capture_output_used; |
| } |
| |
| private: |
| // Selects which of the coarse and refined linear filter outputs that is most |
| // appropriate to pass to the suppressor and forms the linear filter output by |
| // smoothly transition between those. |
| void FormLinearFilterOutput(const SubtractorOutput& subtractor_output, |
| rtc::ArrayView<float> output); |
| |
| static std::atomic<int> instance_count_; |
| const EchoCanceller3Config config_; |
| const Aec3Fft fft_; |
| std::unique_ptr<ApmDataDumper> data_dumper_; |
| const Aec3Optimization optimization_; |
| const int sample_rate_hz_; |
| const size_t num_render_channels_; |
| const size_t num_capture_channels_; |
| const bool use_coarse_filter_output_; |
| Subtractor subtractor_; |
| SuppressionGain suppression_gain_; |
| ComfortNoiseGenerator cng_; |
| SuppressionFilter suppression_filter_; |
| RenderSignalAnalyzer render_signal_analyzer_; |
| ResidualEchoEstimator residual_echo_estimator_; |
| bool echo_leakage_detected_ = false; |
| bool capture_output_used_ = true; |
| AecState aec_state_; |
| EchoRemoverMetrics metrics_; |
| std::vector<std::array<float, kFftLengthBy2>> e_old_; |
| std::vector<std::array<float, kFftLengthBy2>> y_old_; |
| size_t block_counter_ = 0; |
| int gain_change_hangover_ = 0; |
| bool refined_filter_output_last_selected_ = true; |
| |
| std::vector<std::array<float, kFftLengthBy2>> e_heap_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> Y2_heap_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> E2_heap_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> R2_heap_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded_heap_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> S2_linear_heap_; |
| std::vector<FftData> Y_heap_; |
| std::vector<FftData> E_heap_; |
| std::vector<FftData> comfort_noise_heap_; |
| std::vector<FftData> high_band_comfort_noise_heap_; |
| std::vector<SubtractorOutput> subtractor_output_heap_; |
| }; |
| |
| std::atomic<int> EchoRemoverImpl::instance_count_(0); |
| |
| EchoRemoverImpl::EchoRemoverImpl(const EchoCanceller3Config& config, |
| int sample_rate_hz, |
| size_t num_render_channels, |
| size_t num_capture_channels) |
| : config_(config), |
| fft_(), |
| data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)), |
| optimization_(DetectOptimization()), |
| sample_rate_hz_(sample_rate_hz), |
| num_render_channels_(num_render_channels), |
| num_capture_channels_(num_capture_channels), |
| use_coarse_filter_output_( |
| config_.filter.enable_coarse_filter_output_usage), |
| subtractor_(config, |
| num_render_channels_, |
| num_capture_channels_, |
| data_dumper_.get(), |
| optimization_), |
| suppression_gain_(config_, |
| optimization_, |
| sample_rate_hz, |
| num_capture_channels), |
| cng_(config_, optimization_, num_capture_channels_), |
| suppression_filter_(optimization_, |
| sample_rate_hz_, |
| num_capture_channels_), |
| render_signal_analyzer_(config_), |
| residual_echo_estimator_(config_, num_render_channels), |
| aec_state_(config_, num_capture_channels_), |
| e_old_(num_capture_channels_, {0.f}), |
| y_old_(num_capture_channels_, {0.f}), |
| e_heap_(NumChannelsOnHeap(num_capture_channels_), {0.f}), |
| Y2_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| E2_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| R2_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| R2_unbounded_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| S2_linear_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| Y_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| E_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| high_band_comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)), |
| subtractor_output_heap_(NumChannelsOnHeap(num_capture_channels_)) { |
| RTC_DCHECK(ValidFullBandRate(sample_rate_hz)); |
| } |
| |
| EchoRemoverImpl::~EchoRemoverImpl() = default; |
| |
| void EchoRemoverImpl::GetMetrics(EchoControl::Metrics* metrics) const { |
| // Echo return loss (ERL) is inverted to go from gain to attenuation. |
| metrics->echo_return_loss = -10.0 * std::log10(aec_state_.ErlTimeDomain()); |
| metrics->echo_return_loss_enhancement = |
| Log2TodB(aec_state_.FullBandErleLog2()); |
| } |
| |
| void EchoRemoverImpl::ProcessCapture( |
| EchoPathVariability echo_path_variability, |
| bool capture_signal_saturation, |
| const std::optional<DelayEstimate>& external_delay, |
| RenderBuffer* render_buffer, |
| Block* linear_output, |
| Block* capture) { |
| ++block_counter_; |
| const Block& x = render_buffer->GetBlock(0); |
| Block* y = capture; |
| RTC_DCHECK(render_buffer); |
| RTC_DCHECK(y); |
| RTC_DCHECK_EQ(x.NumBands(), NumBandsForRate(sample_rate_hz_)); |
| RTC_DCHECK_EQ(y->NumBands(), NumBandsForRate(sample_rate_hz_)); |
| RTC_DCHECK_EQ(x.NumChannels(), num_render_channels_); |
| RTC_DCHECK_EQ(y->NumChannels(), num_capture_channels_); |
| |
| // Stack allocated data to use when the number of channels is low. |
| std::array<std::array<float, kFftLengthBy2>, kMaxNumChannelsOnStack> e_stack; |
| std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack> |
| Y2_stack; |
| std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack> |
| E2_stack; |
| std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack> |
| R2_stack; |
| std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack> |
| R2_unbounded_stack; |
| std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack> |
| S2_linear_stack; |
| std::array<FftData, kMaxNumChannelsOnStack> Y_stack; |
| std::array<FftData, kMaxNumChannelsOnStack> E_stack; |
| std::array<FftData, kMaxNumChannelsOnStack> comfort_noise_stack; |
| std::array<FftData, kMaxNumChannelsOnStack> high_band_comfort_noise_stack; |
| std::array<SubtractorOutput, kMaxNumChannelsOnStack> subtractor_output_stack; |
| |
| rtc::ArrayView<std::array<float, kFftLengthBy2>> e(e_stack.data(), |
| num_capture_channels_); |
| rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2( |
| Y2_stack.data(), num_capture_channels_); |
| rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2( |
| E2_stack.data(), num_capture_channels_); |
| rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2( |
| R2_stack.data(), num_capture_channels_); |
| rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2_unbounded( |
| R2_unbounded_stack.data(), num_capture_channels_); |
| rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> S2_linear( |
| S2_linear_stack.data(), num_capture_channels_); |
| rtc::ArrayView<FftData> Y(Y_stack.data(), num_capture_channels_); |
| rtc::ArrayView<FftData> E(E_stack.data(), num_capture_channels_); |
| rtc::ArrayView<FftData> comfort_noise(comfort_noise_stack.data(), |
| num_capture_channels_); |
| rtc::ArrayView<FftData> high_band_comfort_noise( |
| high_band_comfort_noise_stack.data(), num_capture_channels_); |
| rtc::ArrayView<SubtractorOutput> subtractor_output( |
| subtractor_output_stack.data(), num_capture_channels_); |
| if (NumChannelsOnHeap(num_capture_channels_) > 0) { |
| // If the stack-allocated space is too small, use the heap for storing the |
| // microphone data. |
| e = rtc::ArrayView<std::array<float, kFftLengthBy2>>(e_heap_.data(), |
| num_capture_channels_); |
| Y2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>( |
| Y2_heap_.data(), num_capture_channels_); |
| E2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>( |
| E2_heap_.data(), num_capture_channels_); |
| R2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>( |
| R2_heap_.data(), num_capture_channels_); |
| R2_unbounded = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>( |
| R2_unbounded_heap_.data(), num_capture_channels_); |
| S2_linear = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>( |
| S2_linear_heap_.data(), num_capture_channels_); |
| Y = rtc::ArrayView<FftData>(Y_heap_.data(), num_capture_channels_); |
| E = rtc::ArrayView<FftData>(E_heap_.data(), num_capture_channels_); |
| comfort_noise = rtc::ArrayView<FftData>(comfort_noise_heap_.data(), |
| num_capture_channels_); |
| high_band_comfort_noise = rtc::ArrayView<FftData>( |
| high_band_comfort_noise_heap_.data(), num_capture_channels_); |
| subtractor_output = rtc::ArrayView<SubtractorOutput>( |
| subtractor_output_heap_.data(), num_capture_channels_); |
| } |
| |
| data_dumper_->DumpWav("aec3_echo_remover_capture_input", |
| y->View(/*band=*/0, /*channel=*/0), 16000, 1); |
| data_dumper_->DumpWav("aec3_echo_remover_render_input", |
| x.View(/*band=*/0, /*channel=*/0), 16000, 1); |
| data_dumper_->DumpRaw("aec3_echo_remover_capture_input", |
| y->View(/*band=*/0, /*channel=*/0)); |
| data_dumper_->DumpRaw("aec3_echo_remover_render_input", |
| x.View(/*band=*/0, /*channel=*/0)); |
| |
| aec_state_.UpdateCaptureSaturation(capture_signal_saturation); |
| |
| if (echo_path_variability.AudioPathChanged()) { |
| // Ensure that the gain change is only acted on once per frame. |
| if (echo_path_variability.gain_change) { |
| if (gain_change_hangover_ == 0) { |
| constexpr int kMaxBlocksPerFrame = 3; |
| gain_change_hangover_ = kMaxBlocksPerFrame; |
| rtc::LoggingSeverity log_level = |
| config_.delay.log_warning_on_delay_changes ? rtc::LS_WARNING |
| : rtc::LS_VERBOSE; |
| RTC_LOG_V(log_level) |
| << "Gain change detected at block " << block_counter_; |
| } else { |
| echo_path_variability.gain_change = false; |
| } |
| } |
| |
| subtractor_.HandleEchoPathChange(echo_path_variability); |
| aec_state_.HandleEchoPathChange(echo_path_variability); |
| |
| if (echo_path_variability.delay_change != |
| EchoPathVariability::DelayAdjustment::kNone) { |
| suppression_gain_.SetInitialState(true); |
| } |
| } |
| if (gain_change_hangover_ > 0) { |
| --gain_change_hangover_; |
| } |
| |
| // Analyze the render signal. |
| render_signal_analyzer_.Update(*render_buffer, |
| aec_state_.MinDirectPathFilterDelay()); |
| |
| // State transition. |
| if (aec_state_.TransitionTriggered()) { |
| subtractor_.ExitInitialState(); |
| suppression_gain_.SetInitialState(false); |
| } |
| |
| // Perform linear echo cancellation. |
| subtractor_.Process(*render_buffer, *y, render_signal_analyzer_, aec_state_, |
| subtractor_output); |
| |
| // Compute spectra. |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| FormLinearFilterOutput(subtractor_output[ch], e[ch]); |
| WindowedPaddedFft(fft_, y->View(/*band=*/0, ch), y_old_[ch], &Y[ch]); |
| WindowedPaddedFft(fft_, e[ch], e_old_[ch], &E[ch]); |
| LinearEchoPower(E[ch], Y[ch], &S2_linear[ch]); |
| Y[ch].Spectrum(optimization_, Y2[ch]); |
| E[ch].Spectrum(optimization_, E2[ch]); |
| } |
| |
| // Optionally return the linear filter output. |
| if (linear_output) { |
| RTC_DCHECK_GE(1, linear_output->NumBands()); |
| RTC_DCHECK_EQ(num_capture_channels_, linear_output->NumChannels()); |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| std::copy(e[ch].begin(), e[ch].end(), |
| linear_output->begin(/*band=*/0, ch)); |
| } |
| } |
| |
| // Update the AEC state information. |
| aec_state_.Update(external_delay, subtractor_.FilterFrequencyResponses(), |
| subtractor_.FilterImpulseResponses(), *render_buffer, E2, |
| Y2, subtractor_output); |
| |
| // Choose the linear output. |
| const auto& Y_fft = aec_state_.UseLinearFilterOutput() ? E : Y; |
| |
| data_dumper_->DumpWav("aec3_output_linear", |
| y->View(/*band=*/0, /*channel=*/0), 16000, 1); |
| data_dumper_->DumpWav("aec3_output_linear2", kBlockSize, &e[0][0], 16000, 1); |
| |
| // Estimate the comfort noise. |
| cng_.Compute(aec_state_.SaturatedCapture(), Y2, comfort_noise, |
| high_band_comfort_noise); |
| |
| // Only do the below processing if the output of the audio processing module |
| // is used. |
| std::array<float, kFftLengthBy2Plus1> G; |
| if (capture_output_used_) { |
| // Estimate the residual echo power. |
| residual_echo_estimator_.Estimate(aec_state_, *render_buffer, S2_linear, Y2, |
| suppression_gain_.IsDominantNearend(), R2, |
| R2_unbounded); |
| |
| // Suppressor nearend estimate. |
| if (aec_state_.UsableLinearEstimate()) { |
| // E2 is bound by Y2. |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| std::transform(E2[ch].begin(), E2[ch].end(), Y2[ch].begin(), |
| E2[ch].begin(), |
| [](float a, float b) { return std::min(a, b); }); |
| } |
| } |
| const auto& nearend_spectrum = aec_state_.UsableLinearEstimate() ? E2 : Y2; |
| |
| // Suppressor echo estimate. |
| const auto& echo_spectrum = |
| aec_state_.UsableLinearEstimate() ? S2_linear : R2; |
| |
| // Determine if the suppressor should assume clock drift. |
| const bool clock_drift = config_.echo_removal_control.has_clock_drift || |
| echo_path_variability.clock_drift; |
| |
| // Compute preferred gains. |
| float high_bands_gain; |
| suppression_gain_.GetGain(nearend_spectrum, echo_spectrum, R2, R2_unbounded, |
| cng_.NoiseSpectrum(), render_signal_analyzer_, |
| aec_state_, x, clock_drift, &high_bands_gain, &G); |
| |
| suppression_filter_.ApplyGain(comfort_noise, high_band_comfort_noise, G, |
| high_bands_gain, Y_fft, y); |
| |
| } else { |
| G.fill(0.f); |
| } |
| |
| // Update the metrics. |
| metrics_.Update(aec_state_, cng_.NoiseSpectrum()[0], G); |
| |
| // Debug outputs for the purpose of development and analysis. |
| data_dumper_->DumpWav("aec3_echo_estimate", kBlockSize, |
| &subtractor_output[0].s_refined[0], 16000, 1); |
| data_dumper_->DumpRaw("aec3_output", y->View(/*band=*/0, /*channel=*/0)); |
| data_dumper_->DumpRaw("aec3_narrow_render", |
| render_signal_analyzer_.NarrowPeakBand() ? 1 : 0); |
| data_dumper_->DumpRaw("aec3_N2", cng_.NoiseSpectrum()[0]); |
| data_dumper_->DumpRaw("aec3_suppressor_gain", G); |
| data_dumper_->DumpWav("aec3_output", y->View(/*band=*/0, /*channel=*/0), |
| 16000, 1); |
| data_dumper_->DumpRaw("aec3_using_subtractor_output[0]", |
| aec_state_.UseLinearFilterOutput() ? 1 : 0); |
| data_dumper_->DumpRaw("aec3_E2", E2[0]); |
| data_dumper_->DumpRaw("aec3_S2_linear", S2_linear[0]); |
| data_dumper_->DumpRaw("aec3_Y2", Y2[0]); |
| data_dumper_->DumpRaw( |
| "aec3_X2", render_buffer->Spectrum( |
| aec_state_.MinDirectPathFilterDelay())[/*channel=*/0]); |
| data_dumper_->DumpRaw("aec3_R2", R2[0]); |
| data_dumper_->DumpRaw("aec3_filter_delay", |
| aec_state_.MinDirectPathFilterDelay()); |
| data_dumper_->DumpRaw("aec3_capture_saturation", |
| aec_state_.SaturatedCapture() ? 1 : 0); |
| } |
| |
| void EchoRemoverImpl::FormLinearFilterOutput( |
| const SubtractorOutput& subtractor_output, |
| rtc::ArrayView<float> output) { |
| RTC_DCHECK_EQ(subtractor_output.e_refined.size(), output.size()); |
| RTC_DCHECK_EQ(subtractor_output.e_coarse.size(), output.size()); |
| bool use_refined_output = true; |
| if (use_coarse_filter_output_) { |
| // As the output of the refined adaptive filter generally should be better |
| // than the coarse filter output, add a margin and threshold for when |
| // choosing the coarse filter output. |
| if (subtractor_output.e2_coarse < 0.9f * subtractor_output.e2_refined && |
| subtractor_output.y2 > 30.f * 30.f * kBlockSize && |
| (subtractor_output.s2_refined > 60.f * 60.f * kBlockSize || |
| subtractor_output.s2_coarse > 60.f * 60.f * kBlockSize)) { |
| use_refined_output = false; |
| } else { |
| // If the refined filter is diverged, choose the filter output that has |
| // the lowest power. |
| if (subtractor_output.e2_coarse < subtractor_output.e2_refined && |
| subtractor_output.y2 < subtractor_output.e2_refined) { |
| use_refined_output = false; |
| } |
| } |
| } |
| |
| SignalTransition(refined_filter_output_last_selected_ |
| ? subtractor_output.e_refined |
| : subtractor_output.e_coarse, |
| use_refined_output ? subtractor_output.e_refined |
| : subtractor_output.e_coarse, |
| output); |
| refined_filter_output_last_selected_ = use_refined_output; |
| } |
| |
| } // namespace |
| |
| EchoRemover* EchoRemover::Create(const EchoCanceller3Config& config, |
| int sample_rate_hz, |
| size_t num_render_channels, |
| size_t num_capture_channels) { |
| return new EchoRemoverImpl(config, sample_rate_hz, num_render_channels, |
| num_capture_channels); |
| } |
| |
| } // namespace webrtc |