| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/gain_control_impl.h" |
| |
| #include <cstdint> |
| #include <optional> |
| |
| #include "api/audio/audio_processing.h" |
| #include "modules/audio_processing/agc/legacy/gain_control.h" |
| #include "modules/audio_processing/audio_buffer.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace webrtc { |
| |
| typedef void Handle; |
| |
| namespace { |
| int16_t MapSetting(GainControl::Mode mode) { |
| switch (mode) { |
| case GainControl::kAdaptiveAnalog: |
| return kAgcModeAdaptiveAnalog; |
| case GainControl::kAdaptiveDigital: |
| return kAgcModeAdaptiveDigital; |
| case GainControl::kFixedDigital: |
| return kAgcModeFixedDigital; |
| } |
| RTC_DCHECK_NOTREACHED(); |
| return -1; |
| } |
| |
| // Applies the sub-frame `gains` to all the bands in `out` and clamps the output |
| // in the signed 16 bit range. |
| void ApplyDigitalGain(const int32_t gains[11], |
| size_t num_bands, |
| float* const* out) { |
| constexpr float kScaling = 1.f / 65536.f; |
| constexpr int kNumSubSections = 16; |
| constexpr float kOneByNumSubSections = 1.f / kNumSubSections; |
| |
| float gains_scaled[11]; |
| for (int k = 0; k < 11; ++k) { |
| gains_scaled[k] = gains[k] * kScaling; |
| } |
| |
| for (size_t b = 0; b < num_bands; ++b) { |
| float* out_band = out[b]; |
| for (int k = 0, sample = 0; k < 10; ++k) { |
| const float delta = |
| (gains_scaled[k + 1] - gains_scaled[k]) * kOneByNumSubSections; |
| float gain = gains_scaled[k]; |
| for (int n = 0; n < kNumSubSections; ++n, ++sample) { |
| RTC_DCHECK_EQ(k * kNumSubSections + n, sample); |
| out_band[sample] *= gain; |
| out_band[sample] = |
| std::min(32767.f, std::max(-32768.f, out_band[sample])); |
| gain += delta; |
| } |
| } |
| } |
| } |
| |
| } // namespace |
| |
| struct GainControlImpl::MonoAgcState { |
| MonoAgcState() { |
| state = WebRtcAgc_Create(); |
| RTC_CHECK(state); |
| } |
| |
| ~MonoAgcState() { |
| RTC_DCHECK(state); |
| WebRtcAgc_Free(state); |
| } |
| |
| MonoAgcState(const MonoAgcState&) = delete; |
| MonoAgcState& operator=(const MonoAgcState&) = delete; |
| int32_t gains[11]; |
| Handle* state; |
| }; |
| |
| int GainControlImpl::instance_counter_ = 0; |
| |
| GainControlImpl::GainControlImpl() |
| : data_dumper_(new ApmDataDumper(instance_counter_)), |
| mode_(kAdaptiveAnalog), |
| minimum_capture_level_(0), |
| maximum_capture_level_(255), |
| limiter_enabled_(true), |
| target_level_dbfs_(3), |
| compression_gain_db_(9), |
| analog_capture_level_(0), |
| was_analog_level_set_(false), |
| stream_is_saturated_(false) {} |
| |
| GainControlImpl::~GainControlImpl() = default; |
| |
| void GainControlImpl::ProcessRenderAudio( |
| rtc::ArrayView<const int16_t> packed_render_audio) { |
| for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) { |
| WebRtcAgc_AddFarend(mono_agcs_[ch]->state, packed_render_audio.data(), |
| packed_render_audio.size()); |
| } |
| } |
| |
| void GainControlImpl::PackRenderAudioBuffer( |
| const AudioBuffer& audio, |
| std::vector<int16_t>* packed_buffer) { |
| RTC_DCHECK_GE(AudioBuffer::kMaxSplitFrameLength, audio.num_frames_per_band()); |
| std::array<int16_t, AudioBuffer::kMaxSplitFrameLength> |
| mixed_16_kHz_render_data; |
| rtc::ArrayView<const int16_t> mixed_16_kHz_render( |
| mixed_16_kHz_render_data.data(), audio.num_frames_per_band()); |
| if (audio.num_channels() == 1) { |
| FloatS16ToS16(audio.split_bands_const(0)[kBand0To8kHz], |
| audio.num_frames_per_band(), mixed_16_kHz_render_data.data()); |
| } else { |
| const int num_channels = static_cast<int>(audio.num_channels()); |
| for (size_t i = 0; i < audio.num_frames_per_band(); ++i) { |
| int32_t sum = 0; |
| for (int ch = 0; ch < num_channels; ++ch) { |
| sum += FloatS16ToS16(audio.split_channels_const(kBand0To8kHz)[ch][i]); |
| } |
| mixed_16_kHz_render_data[i] = sum / num_channels; |
| } |
| } |
| |
| packed_buffer->clear(); |
| packed_buffer->insert( |
| packed_buffer->end(), mixed_16_kHz_render.data(), |
| (mixed_16_kHz_render.data() + audio.num_frames_per_band())); |
| } |
| |
| int GainControlImpl::AnalyzeCaptureAudio(const AudioBuffer& audio) { |
| RTC_DCHECK(num_proc_channels_); |
| RTC_DCHECK_GE(AudioBuffer::kMaxSplitFrameLength, audio.num_frames_per_band()); |
| RTC_DCHECK_EQ(audio.num_channels(), *num_proc_channels_); |
| RTC_DCHECK_LE(*num_proc_channels_, mono_agcs_.size()); |
| |
| int16_t split_band_data[AudioBuffer::kMaxNumBands] |
| [AudioBuffer::kMaxSplitFrameLength]; |
| int16_t* split_bands[AudioBuffer::kMaxNumBands] = { |
| split_band_data[0], split_band_data[1], split_band_data[2]}; |
| |
| if (mode_ == kAdaptiveAnalog) { |
| for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) { |
| capture_levels_[ch] = analog_capture_level_; |
| |
| audio.ExportSplitChannelData(ch, split_bands); |
| |
| int err = |
| WebRtcAgc_AddMic(mono_agcs_[ch]->state, split_bands, |
| audio.num_bands(), audio.num_frames_per_band()); |
| |
| if (err != AudioProcessing::kNoError) { |
| return AudioProcessing::kUnspecifiedError; |
| } |
| } |
| } else if (mode_ == kAdaptiveDigital) { |
| for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) { |
| int32_t capture_level_out = 0; |
| |
| audio.ExportSplitChannelData(ch, split_bands); |
| |
| int err = |
| WebRtcAgc_VirtualMic(mono_agcs_[ch]->state, split_bands, |
| audio.num_bands(), audio.num_frames_per_band(), |
| analog_capture_level_, &capture_level_out); |
| |
| capture_levels_[ch] = capture_level_out; |
| |
| if (err != AudioProcessing::kNoError) { |
| return AudioProcessing::kUnspecifiedError; |
| } |
| } |
| } |
| |
| return AudioProcessing::kNoError; |
| } |
| |
| int GainControlImpl::ProcessCaptureAudio(AudioBuffer* audio, |
| bool stream_has_echo) { |
| if (mode_ == kAdaptiveAnalog && !was_analog_level_set_) { |
| return AudioProcessing::kStreamParameterNotSetError; |
| } |
| |
| RTC_DCHECK(num_proc_channels_); |
| RTC_DCHECK_GE(AudioBuffer::kMaxSplitFrameLength, |
| audio->num_frames_per_band()); |
| RTC_DCHECK_EQ(audio->num_channels(), *num_proc_channels_); |
| |
| stream_is_saturated_ = false; |
| bool error_reported = false; |
| for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) { |
| int16_t split_band_data[AudioBuffer::kMaxNumBands] |
| [AudioBuffer::kMaxSplitFrameLength]; |
| int16_t* split_bands[AudioBuffer::kMaxNumBands] = { |
| split_band_data[0], split_band_data[1], split_band_data[2]}; |
| audio->ExportSplitChannelData(ch, split_bands); |
| |
| // The call to stream_has_echo() is ok from a deadlock perspective |
| // as the capture lock is allready held. |
| int32_t new_capture_level = 0; |
| uint8_t saturation_warning = 0; |
| int err_analyze = WebRtcAgc_Analyze( |
| mono_agcs_[ch]->state, split_bands, audio->num_bands(), |
| audio->num_frames_per_band(), capture_levels_[ch], &new_capture_level, |
| stream_has_echo, &saturation_warning, mono_agcs_[ch]->gains); |
| capture_levels_[ch] = new_capture_level; |
| |
| error_reported = error_reported || err_analyze != AudioProcessing::kNoError; |
| |
| stream_is_saturated_ = stream_is_saturated_ || saturation_warning == 1; |
| } |
| |
| // Choose the minimun gain for application |
| size_t index_to_apply = 0; |
| for (size_t ch = 1; ch < mono_agcs_.size(); ++ch) { |
| if (mono_agcs_[index_to_apply]->gains[10] < mono_agcs_[ch]->gains[10]) { |
| index_to_apply = ch; |
| } |
| } |
| |
| for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) { |
| ApplyDigitalGain(mono_agcs_[index_to_apply]->gains, audio->num_bands(), |
| audio->split_bands(ch)); |
| } |
| |
| RTC_DCHECK_LT(0ul, *num_proc_channels_); |
| if (mode_ == kAdaptiveAnalog) { |
| // Take the analog level to be the minimum accross all channels. |
| analog_capture_level_ = capture_levels_[0]; |
| for (size_t ch = 1; ch < mono_agcs_.size(); ++ch) { |
| analog_capture_level_ = |
| std::min(analog_capture_level_, capture_levels_[ch]); |
| } |
| } |
| |
| if (error_reported) { |
| return AudioProcessing::kUnspecifiedError; |
| } |
| |
| was_analog_level_set_ = false; |
| |
| return AudioProcessing::kNoError; |
| } |
| |
| // TODO(ajm): ensure this is called under kAdaptiveAnalog. |
| int GainControlImpl::set_stream_analog_level(int level) { |
| data_dumper_->DumpRaw("gain_control_set_stream_analog_level", 1, &level); |
| |
| was_analog_level_set_ = true; |
| if (level < minimum_capture_level_ || level > maximum_capture_level_) { |
| return AudioProcessing::kBadParameterError; |
| } |
| analog_capture_level_ = level; |
| |
| return AudioProcessing::kNoError; |
| } |
| |
| int GainControlImpl::stream_analog_level() const { |
| data_dumper_->DumpRaw("gain_control_stream_analog_level", 1, |
| &analog_capture_level_); |
| return analog_capture_level_; |
| } |
| |
| int GainControlImpl::set_mode(Mode mode) { |
| if (MapSetting(mode) == -1) { |
| return AudioProcessing::kBadParameterError; |
| } |
| |
| mode_ = mode; |
| RTC_DCHECK(num_proc_channels_); |
| RTC_DCHECK(sample_rate_hz_); |
| Initialize(*num_proc_channels_, *sample_rate_hz_); |
| return AudioProcessing::kNoError; |
| } |
| |
| int GainControlImpl::set_analog_level_limits(int minimum, int maximum) { |
| if (minimum < 0 || maximum > 65535 || maximum < minimum) { |
| return AudioProcessing::kBadParameterError; |
| } |
| |
| minimum_capture_level_ = minimum; |
| maximum_capture_level_ = maximum; |
| |
| RTC_DCHECK(num_proc_channels_); |
| RTC_DCHECK(sample_rate_hz_); |
| Initialize(*num_proc_channels_, *sample_rate_hz_); |
| return AudioProcessing::kNoError; |
| } |
| |
| int GainControlImpl::set_target_level_dbfs(int level) { |
| if (level > 31 || level < 0) { |
| return AudioProcessing::kBadParameterError; |
| } |
| target_level_dbfs_ = level; |
| return Configure(); |
| } |
| |
| int GainControlImpl::set_compression_gain_db(int gain) { |
| if (gain < 0 || gain > 90) { |
| RTC_LOG(LS_ERROR) << "set_compression_gain_db(" << gain << ") failed."; |
| return AudioProcessing::kBadParameterError; |
| } |
| compression_gain_db_ = gain; |
| return Configure(); |
| } |
| |
| int GainControlImpl::enable_limiter(bool enable) { |
| limiter_enabled_ = enable; |
| return Configure(); |
| } |
| |
| void GainControlImpl::Initialize(size_t num_proc_channels, int sample_rate_hz) { |
| data_dumper_->InitiateNewSetOfRecordings(); |
| |
| RTC_DCHECK(sample_rate_hz == 16000 || sample_rate_hz == 32000 || |
| sample_rate_hz == 48000); |
| |
| num_proc_channels_ = num_proc_channels; |
| sample_rate_hz_ = sample_rate_hz; |
| |
| mono_agcs_.resize(*num_proc_channels_); |
| capture_levels_.resize(*num_proc_channels_); |
| for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) { |
| if (!mono_agcs_[ch]) { |
| mono_agcs_[ch].reset(new MonoAgcState()); |
| } |
| |
| int error = WebRtcAgc_Init(mono_agcs_[ch]->state, minimum_capture_level_, |
| maximum_capture_level_, MapSetting(mode_), |
| *sample_rate_hz_); |
| RTC_DCHECK_EQ(error, 0); |
| capture_levels_[ch] = analog_capture_level_; |
| } |
| |
| Configure(); |
| } |
| |
| int GainControlImpl::Configure() { |
| WebRtcAgcConfig config; |
| // TODO(ajm): Flip the sign here (since AGC expects a positive value) if we |
| // change the interface. |
| // RTC_DCHECK_LE(target_level_dbfs_, 0); |
| // config.targetLevelDbfs = static_cast<int16_t>(-target_level_dbfs_); |
| config.targetLevelDbfs = static_cast<int16_t>(target_level_dbfs_); |
| config.compressionGaindB = static_cast<int16_t>(compression_gain_db_); |
| config.limiterEnable = limiter_enabled_; |
| |
| int error = AudioProcessing::kNoError; |
| for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) { |
| int error_ch = WebRtcAgc_set_config(mono_agcs_[ch]->state, config); |
| if (error_ch != AudioProcessing::kNoError) { |
| error = error_ch; |
| } |
| } |
| return error; |
| } |
| } // namespace webrtc |