| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/aec_state.h" |
| |
| #include "modules/audio_processing/aec3/aec3_fft.h" |
| #include "modules/audio_processing/aec3/render_delay_buffer.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| // Verify the general functionality of AecState |
| TEST(AecState, NormalUsage) { |
| ApmDataDumper data_dumper(42); |
| EchoCanceller3Config config; |
| AecState state(config); |
| rtc::Optional<DelayEstimate> delay_estimate = |
| DelayEstimate(DelayEstimate::Quality::kRefined, 10); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, 3)); |
| std::array<float, kFftLengthBy2Plus1> E2_main = {}; |
| std::array<float, kFftLengthBy2Plus1> Y2 = {}; |
| std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
| EchoPathVariability echo_path_variability( |
| false, EchoPathVariability::DelayAdjustment::kNone, false); |
| std::array<float, kBlockSize> s; |
| Aec3Fft fft; |
| s.fill(100.f); |
| |
| std::vector<std::array<float, kFftLengthBy2Plus1>> |
| converged_filter_frequency_response(10); |
| for (auto& v : converged_filter_frequency_response) { |
| v.fill(0.01f); |
| } |
| std::vector<std::array<float, kFftLengthBy2Plus1>> |
| diverged_filter_frequency_response = converged_filter_frequency_response; |
| converged_filter_frequency_response[2].fill(100.f); |
| converged_filter_frequency_response[2][0] = 1.f; |
| |
| std::vector<float> impulse_response( |
| GetTimeDomainLength(config.filter.main.length_blocks), 0.f); |
| |
| // Verify that linear AEC usability is false when the filter is diverged. |
| state.Update(delay_estimate, diverged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| EXPECT_FALSE(state.UsableLinearEstimate()); |
| |
| // Verify that linear AEC usability is true when the filter is converged |
| std::fill(x[0].begin(), x[0].end(), 101.f); |
| for (int k = 0; k < 3000; ++k) { |
| render_delay_buffer->Insert(x); |
| state.Update(delay_estimate, converged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| } |
| EXPECT_TRUE(state.UsableLinearEstimate()); |
| |
| // Verify that linear AEC usability becomes false after an echo path change is |
| // reported |
| state.HandleEchoPathChange(EchoPathVariability( |
| true, EchoPathVariability::DelayAdjustment::kNone, false)); |
| state.Update(delay_estimate, converged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| EXPECT_FALSE(state.UsableLinearEstimate()); |
| |
| // Verify that the active render detection works as intended. |
| std::fill(x[0].begin(), x[0].end(), 101.f); |
| render_delay_buffer->Insert(x); |
| state.HandleEchoPathChange(EchoPathVariability( |
| true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false)); |
| state.Update(delay_estimate, converged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| EXPECT_FALSE(state.ActiveRender()); |
| |
| for (int k = 0; k < 1000; ++k) { |
| render_delay_buffer->Insert(x); |
| state.Update(delay_estimate, converged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| } |
| EXPECT_TRUE(state.ActiveRender()); |
| |
| // Verify that the ERL is properly estimated |
| for (auto& x_k : x) { |
| x_k = std::vector<float>(kBlockSize, 0.f); |
| } |
| |
| x[0][0] = 5000.f; |
| for (size_t k = 0; |
| k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) { |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| } |
| |
| Y2.fill(10.f * 10000.f * 10000.f); |
| for (size_t k = 0; k < 1000; ++k) { |
| state.Update(delay_estimate, converged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| } |
| |
| ASSERT_TRUE(state.UsableLinearEstimate()); |
| const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); |
| EXPECT_EQ(erl[0], erl[1]); |
| for (size_t k = 1; k < erl.size() - 1; ++k) { |
| EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1); |
| } |
| EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]); |
| |
| // Verify that the ERLE is properly estimated |
| E2_main.fill(1.f * 10000.f * 10000.f); |
| Y2.fill(10.f * E2_main[0]); |
| for (size_t k = 0; k < 1000; ++k) { |
| state.Update(delay_estimate, converged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| } |
| ASSERT_TRUE(state.UsableLinearEstimate()); |
| { |
| const auto& erle = state.Erle(); |
| EXPECT_EQ(erle[0], erle[1]); |
| constexpr size_t kLowFrequencyLimit = 32; |
| for (size_t k = 1; k < kLowFrequencyLimit; ++k) { |
| EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1); |
| } |
| for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) { |
| EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1); |
| } |
| EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
| } |
| |
| E2_main.fill(1.f * 10000.f * 10000.f); |
| Y2.fill(5.f * E2_main[0]); |
| for (size_t k = 0; k < 1000; ++k) { |
| state.Update(delay_estimate, converged_filter_frequency_response, |
| impulse_response, true, false, |
| *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s); |
| } |
| |
| ASSERT_TRUE(state.UsableLinearEstimate()); |
| { |
| const auto& erle = state.Erle(); |
| EXPECT_EQ(erle[0], erle[1]); |
| constexpr size_t kLowFrequencyLimit = 32; |
| for (size_t k = 1; k < kLowFrequencyLimit; ++k) { |
| EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1); |
| } |
| for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) { |
| EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1); |
| } |
| EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
| } |
| } |
| |
| // Verifies the delay for a converged filter is correctly identified. |
| TEST(AecState, ConvergedFilterDelay) { |
| constexpr int kFilterLengthBlocks = 10; |
| EchoCanceller3Config config; |
| AecState state(config); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, 3)); |
| rtc::Optional<DelayEstimate> delay_estimate; |
| std::array<float, kFftLengthBy2Plus1> E2_main; |
| std::array<float, kFftLengthBy2Plus1> Y2; |
| std::array<float, kBlockSize> x; |
| EchoPathVariability echo_path_variability( |
| false, EchoPathVariability::DelayAdjustment::kNone, false); |
| std::array<float, kBlockSize> s; |
| s.fill(100.f); |
| x.fill(0.f); |
| |
| std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response( |
| kFilterLengthBlocks); |
| for (auto& v : frequency_response) { |
| v.fill(0.01f); |
| } |
| |
| std::vector<float> impulse_response( |
| GetTimeDomainLength(config.filter.main.length_blocks), 0.f); |
| |
| // Verify that the filter delay for a converged filter is properly identified. |
| for (int k = 0; k < kFilterLengthBlocks; ++k) { |
| std::fill(impulse_response.begin(), impulse_response.end(), 0.f); |
| impulse_response[k * kBlockSize + 1] = 1.f; |
| |
| state.HandleEchoPathChange(echo_path_variability); |
| state.Update(delay_estimate, frequency_response, impulse_response, true, |
| false, *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, |
| s); |
| } |
| } |
| |
| } // namespace webrtc |