blob: 5fe445cadc0d5caf6087efa9449d1b2e76c0285c [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// A Transport manages a set of named channels of the same type.
//
// Subclasses choose the appropriate class to instantiate for each channel;
// however, this base class keeps track of the channels by name, watches their
// state changes (in order to update the manager's state), and forwards
// requests to begin connecting or to reset to each of the channels.
//
// On Threading: Transport performs work on both the signaling and worker
// threads. For subclasses, the rule is that all signaling related calls will
// be made on the signaling thread and all channel related calls (including
// signaling for a channel) will be made on the worker thread. When
// information needs to be sent between the two threads, this class should do
// the work (e.g., OnRemoteCandidate).
//
// Note: Subclasses must call DestroyChannels() in their own constructors.
// It is not possible to do so here because the subclass constructor will
// already have run.
#ifndef WEBRTC_P2P_BASE_TRANSPORT_H_
#define WEBRTC_P2P_BASE_TRANSPORT_H_
#include <map>
#include <string>
#include <vector>
#include "webrtc/p2p/base/candidate.h"
#include "webrtc/p2p/base/constants.h"
#include "webrtc/p2p/base/sessiondescription.h"
#include "webrtc/p2p/base/transportinfo.h"
#include "webrtc/base/criticalsection.h"
#include "webrtc/base/messagequeue.h"
#include "webrtc/base/sigslot.h"
#include "webrtc/base/sslstreamadapter.h"
namespace rtc {
class Thread;
}
namespace buzz {
class QName;
class XmlElement;
}
namespace cricket {
struct ParseError;
struct WriteError;
class CandidateTranslator;
class PortAllocator;
class TransportChannel;
class TransportChannelImpl;
typedef std::vector<buzz::XmlElement*> XmlElements;
typedef std::vector<Candidate> Candidates;
// Used to parse and serialize (write) transport candidates. For
// convenience of old code, Transports will implement TransportParser.
// Parse/Write seems better than Serialize/Deserialize or
// Create/Translate.
class TransportParser {
public:
// The incoming Translator value may be null, in which case
// ParseCandidates should return false if there are candidates to
// parse (indicating a failure to parse). If the Translator is null
// and there are no candidates to parse, then return true,
// indicating a successful parse of 0 candidates.
// Parse or write a transport description, including ICE credentials and
// any DTLS fingerprint. Since only Jingle has transport descriptions, these
// functions are only used when serializing to Jingle.
virtual bool ParseTransportDescription(const buzz::XmlElement* elem,
const CandidateTranslator* translator,
TransportDescription* tdesc,
ParseError* error) = 0;
virtual bool WriteTransportDescription(const TransportDescription& tdesc,
const CandidateTranslator* translator,
buzz::XmlElement** tdesc_elem,
WriteError* error) = 0;
// Parse a single candidate. This must be used when parsing Gingle
// candidates, since there is no enclosing transport description.
virtual bool ParseGingleCandidate(const buzz::XmlElement* elem,
const CandidateTranslator* translator,
Candidate* candidates,
ParseError* error) = 0;
virtual bool WriteGingleCandidate(const Candidate& candidate,
const CandidateTranslator* translator,
buzz::XmlElement** candidate_elem,
WriteError* error) = 0;
// Helper function to parse an element describing an address. This
// retrieves the IP and port from the given element and verifies
// that they look like plausible values.
bool ParseAddress(const buzz::XmlElement* elem,
const buzz::QName& address_name,
const buzz::QName& port_name,
rtc::SocketAddress* address,
ParseError* error);
virtual ~TransportParser() {}
};
// For "writable" and "readable", we need to differentiate between
// none, all, and some.
enum TransportState {
TRANSPORT_STATE_NONE = 0,
TRANSPORT_STATE_SOME,
TRANSPORT_STATE_ALL
};
// Stats that we can return about the connections for a transport channel.
// TODO(hta): Rename to ConnectionStats
struct ConnectionInfo {
ConnectionInfo()
: best_connection(false),
writable(false),
readable(false),
timeout(false),
new_connection(false),
rtt(0),
sent_total_bytes(0),
sent_bytes_second(0),
sent_discarded_packets(0),
sent_total_packets(0),
recv_total_bytes(0),
recv_bytes_second(0),
key(NULL) {}
bool best_connection; // Is this the best connection we have?
bool writable; // Has this connection received a STUN response?
bool readable; // Has this connection received a STUN request?
bool timeout; // Has this connection timed out?
bool new_connection; // Is this a newly created connection?
size_t rtt; // The STUN RTT for this connection.
size_t sent_total_bytes; // Total bytes sent on this connection.
size_t sent_bytes_second; // Bps over the last measurement interval.
size_t sent_discarded_packets; // Number of outgoing packets discarded due to
// socket errors.
size_t sent_total_packets; // Number of total outgoing packets attempted for
// sending.
size_t recv_total_bytes; // Total bytes received on this connection.
size_t recv_bytes_second; // Bps over the last measurement interval.
Candidate local_candidate; // The local candidate for this connection.
Candidate remote_candidate; // The remote candidate for this connection.
void* key; // A static value that identifies this conn.
};
// Information about all the connections of a channel.
typedef std::vector<ConnectionInfo> ConnectionInfos;
// Information about a specific channel
struct TransportChannelStats {
int component;
ConnectionInfos connection_infos;
};
// Information about all the channels of a transport.
// TODO(hta): Consider if a simple vector is as good as a map.
typedef std::vector<TransportChannelStats> TransportChannelStatsList;
// Information about the stats of a transport.
struct TransportStats {
std::string content_name;
TransportChannelStatsList channel_stats;
};
bool BadTransportDescription(const std::string& desc, std::string* err_desc);
bool IceCredentialsChanged(const std::string& old_ufrag,
const std::string& old_pwd,
const std::string& new_ufrag,
const std::string& new_pwd);
class Transport : public rtc::MessageHandler,
public sigslot::has_slots<> {
public:
Transport(rtc::Thread* signaling_thread,
rtc::Thread* worker_thread,
const std::string& content_name,
const std::string& type,
PortAllocator* allocator);
virtual ~Transport();
// Returns the signaling thread. The app talks to Transport on this thread.
rtc::Thread* signaling_thread() { return signaling_thread_; }
// Returns the worker thread. The actual networking is done on this thread.
rtc::Thread* worker_thread() { return worker_thread_; }
// Returns the content_name of this transport.
const std::string& content_name() const { return content_name_; }
// Returns the type of this transport.
const std::string& type() const { return type_; }
// Returns the port allocator object for this transport.
PortAllocator* port_allocator() { return allocator_; }
// Returns the readable and states of this manager. These bits are the ORs
// of the corresponding bits on the managed channels. Each time one of these
// states changes, a signal is raised.
// TODO: Replace uses of readable() and writable() with
// any_channels_readable() and any_channels_writable().
bool readable() const { return any_channels_readable(); }
bool writable() const { return any_channels_writable(); }
bool was_writable() const { return was_writable_; }
bool any_channels_readable() const {
return (readable_ == TRANSPORT_STATE_SOME ||
readable_ == TRANSPORT_STATE_ALL);
}
bool any_channels_writable() const {
return (writable_ == TRANSPORT_STATE_SOME ||
writable_ == TRANSPORT_STATE_ALL);
}
bool all_channels_readable() const {
return (readable_ == TRANSPORT_STATE_ALL);
}
bool all_channels_writable() const {
return (writable_ == TRANSPORT_STATE_ALL);
}
sigslot::signal1<Transport*> SignalReadableState;
sigslot::signal1<Transport*> SignalWritableState;
sigslot::signal1<Transport*> SignalCompleted;
sigslot::signal1<Transport*> SignalFailed;
// Returns whether the client has requested the channels to connect.
bool connect_requested() const { return connect_requested_; }
void SetIceRole(IceRole role);
IceRole ice_role() const { return ice_role_; }
void SetIceTiebreaker(uint64 IceTiebreaker) { tiebreaker_ = IceTiebreaker; }
uint64 IceTiebreaker() { return tiebreaker_; }
// Must be called before applying local session description.
void SetIdentity(rtc::SSLIdentity* identity);
// Get a copy of the local identity provided by SetIdentity.
bool GetIdentity(rtc::SSLIdentity** identity);
// Get a copy of the remote certificate in use by the specified channel.
bool GetRemoteCertificate(rtc::SSLCertificate** cert);
TransportProtocol protocol() const { return protocol_; }
// Create, destroy, and lookup the channels of this type by their components.
TransportChannelImpl* CreateChannel(int component);
// Note: GetChannel may lead to race conditions, since the mutex is not held
// after the pointer is returned.
TransportChannelImpl* GetChannel(int component);
// Note: HasChannel does not lead to race conditions, unlike GetChannel.
bool HasChannel(int component) {
return (NULL != GetChannel(component));
}
bool HasChannels();
void DestroyChannel(int component);
// Set the local TransportDescription to be used by TransportChannels.
// This should be called before ConnectChannels().
bool SetLocalTransportDescription(const TransportDescription& description,
ContentAction action,
std::string* error_desc);
// Set the remote TransportDescription to be used by TransportChannels.
bool SetRemoteTransportDescription(const TransportDescription& description,
ContentAction action,
std::string* error_desc);
// Tells all current and future channels to start connecting. When the first
// channel begins connecting, the following signal is raised.
void ConnectChannels();
sigslot::signal1<Transport*> SignalConnecting;
// Resets all of the channels back to their initial state. They are no
// longer connecting.
void ResetChannels();
// Destroys every channel created so far.
void DestroyAllChannels();
bool GetStats(TransportStats* stats);
// Before any stanza is sent, the manager will request signaling. Once
// signaling is available, the client should call OnSignalingReady. Once
// this occurs, the transport (or its channels) can send any waiting stanzas.
// OnSignalingReady invokes OnTransportSignalingReady and then forwards this
// signal to each channel.
sigslot::signal1<Transport*> SignalRequestSignaling;
void OnSignalingReady();
// Handles sending of ready candidates and receiving of remote candidates.
sigslot::signal2<Transport*,
const std::vector<Candidate>&> SignalCandidatesReady;
sigslot::signal1<Transport*> SignalCandidatesAllocationDone;
void OnRemoteCandidates(const std::vector<Candidate>& candidates);
// If candidate is not acceptable, returns false and sets error.
// Call this before calling OnRemoteCandidates.
virtual bool VerifyCandidate(const Candidate& candidate,
std::string* error);
// Signals when the best connection for a channel changes.
sigslot::signal3<Transport*,
int, // component
const Candidate&> SignalRouteChange;
// A transport message has generated an transport-specific error. The
// stanza that caused the error is available in session_msg. If false is
// returned, the error is considered unrecoverable, and the session is
// terminated.
// TODO(juberti): Remove these obsolete functions once Session no longer
// references them.
virtual void OnTransportError(const buzz::XmlElement* error) {}
sigslot::signal6<Transport*, const buzz::XmlElement*, const buzz::QName&,
const std::string&, const std::string&,
const buzz::XmlElement*>
SignalTransportError;
// Forwards the signal from TransportChannel to BaseSession.
sigslot::signal0<> SignalRoleConflict;
virtual bool GetSslRole(rtc::SSLRole* ssl_role) const;
protected:
// These are called by Create/DestroyChannel above in order to create or
// destroy the appropriate type of channel.
virtual TransportChannelImpl* CreateTransportChannel(int component) = 0;
virtual void DestroyTransportChannel(TransportChannelImpl* channel) = 0;
// Informs the subclass that we received the signaling ready message.
virtual void OnTransportSignalingReady() {}
// The current local transport description, for use by derived classes
// when performing transport description negotiation.
const TransportDescription* local_description() const {
return local_description_.get();
}
// The current remote transport description, for use by derived classes
// when performing transport description negotiation.
const TransportDescription* remote_description() const {
return remote_description_.get();
}
virtual void SetIdentity_w(rtc::SSLIdentity* identity) {}
virtual bool GetIdentity_w(rtc::SSLIdentity** identity) {
return false;
}
// Pushes down the transport parameters from the local description, such
// as the ICE ufrag and pwd.
// Derived classes can override, but must call the base as well.
virtual bool ApplyLocalTransportDescription_w(TransportChannelImpl* channel,
std::string* error_desc);
// Pushes down remote ice credentials from the remote description to the
// transport channel.
virtual bool ApplyRemoteTransportDescription_w(TransportChannelImpl* ch,
std::string* error_desc);
// Negotiates the transport parameters based on the current local and remote
// transport description, such at the version of ICE to use, and whether DTLS
// should be activated.
// Derived classes can negotiate their specific parameters here, but must call
// the base as well.
virtual bool NegotiateTransportDescription_w(ContentAction local_role,
std::string* error_desc);
// Pushes down the transport parameters obtained via negotiation.
// Derived classes can set their specific parameters here, but must call the
// base as well.
virtual bool ApplyNegotiatedTransportDescription_w(
TransportChannelImpl* channel, std::string* error_desc);
virtual bool GetSslRole_w(rtc::SSLRole* ssl_role) const {
return false;
}
private:
struct ChannelMapEntry {
ChannelMapEntry() : impl_(NULL), candidates_allocated_(false), ref_(0) {}
explicit ChannelMapEntry(TransportChannelImpl *impl)
: impl_(impl),
candidates_allocated_(false),
ref_(0) {
}
void AddRef() { ++ref_; }
void DecRef() {
ASSERT(ref_ > 0);
--ref_;
}
int ref() const { return ref_; }
TransportChannelImpl* get() const { return impl_; }
TransportChannelImpl* operator->() const { return impl_; }
void set_candidates_allocated(bool status) {
candidates_allocated_ = status;
}
bool candidates_allocated() const { return candidates_allocated_; }
private:
TransportChannelImpl *impl_;
bool candidates_allocated_;
int ref_;
};
// Candidate component => ChannelMapEntry
typedef std::map<int, ChannelMapEntry> ChannelMap;
// Called when the state of a channel changes.
void OnChannelReadableState(TransportChannel* channel);
void OnChannelWritableState(TransportChannel* channel);
// Called when a channel requests signaling.
void OnChannelRequestSignaling(TransportChannelImpl* channel);
// Called when a candidate is ready from remote peer.
void OnRemoteCandidate(const Candidate& candidate);
// Called when a candidate is ready from channel.
void OnChannelCandidateReady(TransportChannelImpl* channel,
const Candidate& candidate);
void OnChannelRouteChange(TransportChannel* channel,
const Candidate& remote_candidate);
void OnChannelCandidatesAllocationDone(TransportChannelImpl* channel);
// Called when there is ICE role change.
void OnRoleConflict(TransportChannelImpl* channel);
// Called when the channel removes a connection.
void OnChannelConnectionRemoved(TransportChannelImpl* channel);
// Dispatches messages to the appropriate handler (below).
void OnMessage(rtc::Message* msg);
// These are versions of the above methods that are called only on a
// particular thread (s = signaling, w = worker). The above methods post or
// send a message to invoke this version.
TransportChannelImpl* CreateChannel_w(int component);
void DestroyChannel_w(int component);
void ConnectChannels_w();
void ResetChannels_w();
void DestroyAllChannels_w();
void OnRemoteCandidate_w(const Candidate& candidate);
void OnChannelReadableState_s();
void OnChannelWritableState_s();
void OnChannelRequestSignaling_s(int component);
void OnConnecting_s();
void OnChannelRouteChange_s(const TransportChannel* channel,
const Candidate& remote_candidate);
void OnChannelCandidatesAllocationDone_s();
// Helper function that invokes the given function on every channel.
typedef void (TransportChannelImpl::* TransportChannelFunc)();
void CallChannels_w(TransportChannelFunc func);
// Computes the OR of the channel's read or write state (argument picks).
TransportState GetTransportState_s(bool read);
void OnChannelCandidateReady_s();
void SetIceRole_w(IceRole role);
void SetRemoteIceMode_w(IceMode mode);
bool SetLocalTransportDescription_w(const TransportDescription& desc,
ContentAction action,
std::string* error_desc);
bool SetRemoteTransportDescription_w(const TransportDescription& desc,
ContentAction action,
std::string* error_desc);
bool GetStats_w(TransportStats* infos);
bool GetRemoteCertificate_w(rtc::SSLCertificate** cert);
// Sends SignalCompleted if we are now in that state.
void MaybeCompleted_w();
rtc::Thread* signaling_thread_;
rtc::Thread* worker_thread_;
std::string content_name_;
std::string type_;
PortAllocator* allocator_;
bool destroyed_;
TransportState readable_;
TransportState writable_;
bool was_writable_;
bool connect_requested_;
IceRole ice_role_;
uint64 tiebreaker_;
TransportProtocol protocol_;
IceMode remote_ice_mode_;
rtc::scoped_ptr<TransportDescription> local_description_;
rtc::scoped_ptr<TransportDescription> remote_description_;
ChannelMap channels_;
// Buffers the ready_candidates so that SignalCanidatesReady can
// provide them in multiples.
std::vector<Candidate> ready_candidates_;
// Protects changes to channels and messages
rtc::CriticalSection crit_;
DISALLOW_EVIL_CONSTRUCTORS(Transport);
};
// Extract a TransportProtocol from a TransportDescription.
TransportProtocol TransportProtocolFromDescription(
const TransportDescription* desc);
} // namespace cricket
#endif // WEBRTC_P2P_BASE_TRANSPORT_H_