blob: e4a32fb9b063a310510184bf09f29789721a51be [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/decision_logic.h"
#include <assert.h>
#include <stdio.h>
#include <string>
#include "absl/types/optional.h"
#include "modules/audio_coding/neteq/buffer_level_filter.h"
#include "modules/audio_coding/neteq/decoder_database.h"
#include "modules/audio_coding/neteq/delay_manager.h"
#include "modules/audio_coding/neteq/expand.h"
#include "modules/audio_coding/neteq/packet_buffer.h"
#include "modules/audio_coding/neteq/sync_buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/field_trial.h"
namespace {
constexpr int kPostponeDecodingLevel = 50;
constexpr int kDefaultTargetLevelWindowMs = 100;
} // namespace
namespace webrtc {
DecisionLogic* DecisionLogic::Create(int fs_hz,
size_t output_size_samples,
bool disallow_time_stretching,
DecoderDatabase* decoder_database,
const PacketBuffer& packet_buffer,
DelayManager* delay_manager,
BufferLevelFilter* buffer_level_filter,
const TickTimer* tick_timer) {
return new DecisionLogic(fs_hz, output_size_samples, disallow_time_stretching,
decoder_database, packet_buffer, delay_manager,
buffer_level_filter, tick_timer);
}
DecisionLogic::DecisionLogic(int fs_hz,
size_t output_size_samples,
bool disallow_time_stretching,
DecoderDatabase* decoder_database,
const PacketBuffer& packet_buffer,
DelayManager* delay_manager,
BufferLevelFilter* buffer_level_filter,
const TickTimer* tick_timer)
: decoder_database_(decoder_database),
packet_buffer_(packet_buffer),
delay_manager_(delay_manager),
buffer_level_filter_(buffer_level_filter),
tick_timer_(tick_timer),
cng_state_(kCngOff),
packet_length_samples_(0),
sample_memory_(0),
prev_time_scale_(false),
disallow_time_stretching_(disallow_time_stretching),
timescale_countdown_(
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1)),
num_consecutive_expands_(0),
time_stretched_cn_samples_(0),
estimate_dtx_delay_("estimate_dtx_delay", false),
time_stretch_cn_("time_stretch_cn", false),
target_level_window_ms_("target_level_window",
kDefaultTargetLevelWindowMs,
0,
absl::nullopt) {
SetSampleRate(fs_hz, output_size_samples);
const std::string field_trial_name =
field_trial::FindFullName("WebRTC-Audio-NetEqDecisionLogicSettings");
ParseFieldTrial(
{&estimate_dtx_delay_, &time_stretch_cn_, &target_level_window_ms_},
field_trial_name);
RTC_LOG(LS_INFO) << "NetEq decision logic settings:"
<< " estimate_dtx_delay=" << estimate_dtx_delay_
<< " time_stretch_cn=" << time_stretch_cn_
<< " target_level_window_ms=" << target_level_window_ms_;
}
DecisionLogic::~DecisionLogic() = default;
void DecisionLogic::Reset() {
cng_state_ = kCngOff;
noise_fast_forward_ = 0;
packet_length_samples_ = 0;
sample_memory_ = 0;
prev_time_scale_ = false;
timescale_countdown_.reset();
num_consecutive_expands_ = 0;
time_stretched_cn_samples_ = 0;
}
void DecisionLogic::SoftReset() {
packet_length_samples_ = 0;
sample_memory_ = 0;
prev_time_scale_ = false;
timescale_countdown_ =
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1);
time_stretched_cn_samples_ = 0;
}
void DecisionLogic::SetSampleRate(int fs_hz, size_t output_size_samples) {
// TODO(hlundin): Change to an enumerator and skip assert.
assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000);
sample_rate_ = fs_hz;
output_size_samples_ = output_size_samples;
}
Operations DecisionLogic::GetDecision(const SyncBuffer& sync_buffer,
const Expand& expand,
size_t decoder_frame_length,
const Packet* next_packet,
Modes prev_mode,
bool play_dtmf,
size_t generated_noise_samples,
bool* reset_decoder) {
// If last mode was CNG (or Expand, since this could be covering up for
// a lost CNG packet), remember that CNG is on. This is needed if comfort
// noise is interrupted by DTMF.
if (prev_mode == kModeRfc3389Cng) {
cng_state_ = kCngRfc3389On;
} else if (prev_mode == kModeCodecInternalCng) {
cng_state_ = kCngInternalOn;
}
size_t cur_size_samples =
estimate_dtx_delay_
? packet_buffer_.GetSpanSamples(decoder_frame_length, sample_rate_,
true)
: packet_buffer_.NumSamplesInBuffer(decoder_frame_length);
prev_time_scale_ =
prev_time_scale_ && (prev_mode == kModeAccelerateSuccess ||
prev_mode == kModeAccelerateLowEnergy ||
prev_mode == kModePreemptiveExpandSuccess ||
prev_mode == kModePreemptiveExpandLowEnergy);
// Do not update buffer history if currently playing CNG since it will bias
// the filtered buffer level.
if (prev_mode != kModeRfc3389Cng && prev_mode != kModeCodecInternalCng &&
!(next_packet && next_packet->frame &&
next_packet->frame->IsDtxPacket() && !estimate_dtx_delay_)) {
FilterBufferLevel(cur_size_samples);
}
// Guard for errors, to avoid getting stuck in error mode.
if (prev_mode == kModeError) {
if (!next_packet) {
return kExpand;
} else {
return kUndefined; // Use kUndefined to flag for a reset.
}
}
uint32_t target_timestamp = sync_buffer.end_timestamp();
uint32_t available_timestamp = 0;
bool is_cng_packet = false;
if (next_packet) {
available_timestamp = next_packet->timestamp;
is_cng_packet =
decoder_database_->IsComfortNoise(next_packet->payload_type);
}
if (is_cng_packet) {
return CngOperation(prev_mode, target_timestamp, available_timestamp,
generated_noise_samples);
}
// Handle the case with no packet at all available (except maybe DTMF).
if (!next_packet) {
return NoPacket(play_dtmf);
}
// If the expand period was very long, reset NetEQ since it is likely that the
// sender was restarted.
if (num_consecutive_expands_ > kReinitAfterExpands) {
*reset_decoder = true;
return kNormal;
}
// Make sure we don't restart audio too soon after an expansion to avoid
// running out of data right away again. We should only wait if there are no
// DTX or CNG packets in the buffer (otherwise we should just play out what we
// have, since we cannot know the exact duration of DTX or CNG packets), and
// if the mute factor is low enough (otherwise the expansion was short enough
// to not be noticable).
// Note that the MuteFactor is in Q14, so a value of 16384 corresponds to 1.
size_t current_span = packet_buffer_.GetSpanSamples(
decoder_frame_length, sample_rate_, estimate_dtx_delay_);
if ((prev_mode == kModeExpand || prev_mode == kModeCodecPlc) &&
expand.MuteFactor(0) < 16384 / 2 &&
current_span<static_cast<size_t>(delay_manager_->TargetLevel() *
packet_length_samples_ *
kPostponeDecodingLevel / 100)>> 8 &&
!packet_buffer_.ContainsDtxOrCngPacket(decoder_database_)) {
return kExpand;
}
const uint32_t five_seconds_samples = static_cast<uint32_t>(5 * sample_rate_);
// Check if the required packet is available.
if (target_timestamp == available_timestamp) {
return ExpectedPacketAvailable(prev_mode, play_dtmf);
} else if (!PacketBuffer::IsObsoleteTimestamp(
available_timestamp, target_timestamp, five_seconds_samples)) {
return FuturePacketAvailable(decoder_frame_length, prev_mode,
target_timestamp, available_timestamp,
play_dtmf, generated_noise_samples);
} else {
// This implies that available_timestamp < target_timestamp, which can
// happen when a new stream or codec is received. Signal for a reset.
return kUndefined;
}
}
void DecisionLogic::ExpandDecision(Operations operation) {
if (operation == kExpand) {
num_consecutive_expands_++;
} else {
num_consecutive_expands_ = 0;
}
}
void DecisionLogic::FilterBufferLevel(size_t buffer_size_samples) {
buffer_level_filter_->SetTargetBufferLevel(
delay_manager_->base_target_level());
int time_stretched_samples = time_stretched_cn_samples_;
if (prev_time_scale_) {
time_stretched_samples += sample_memory_;
timescale_countdown_ = tick_timer_->GetNewCountdown(kMinTimescaleInterval);
}
buffer_level_filter_->Update(buffer_size_samples, time_stretched_samples);
prev_time_scale_ = false;
time_stretched_cn_samples_ = 0;
}
Operations DecisionLogic::CngOperation(Modes prev_mode,
uint32_t target_timestamp,
uint32_t available_timestamp,
size_t generated_noise_samples) {
// Signed difference between target and available timestamp.
int32_t timestamp_diff = static_cast<int32_t>(
static_cast<uint32_t>(generated_noise_samples + target_timestamp) -
available_timestamp);
int32_t optimal_level_samp = static_cast<int32_t>(
(delay_manager_->TargetLevel() * packet_length_samples_) >> 8);
const int64_t excess_waiting_time_samp =
-static_cast<int64_t>(timestamp_diff) - optimal_level_samp;
if (excess_waiting_time_samp > optimal_level_samp / 2) {
// The waiting time for this packet will be longer than 1.5
// times the wanted buffer delay. Apply fast-forward to cut the
// waiting time down to the optimal.
noise_fast_forward_ = rtc::dchecked_cast<size_t>(noise_fast_forward_ +
excess_waiting_time_samp);
timestamp_diff =
rtc::saturated_cast<int32_t>(timestamp_diff + excess_waiting_time_samp);
}
if (timestamp_diff < 0 && prev_mode == kModeRfc3389Cng) {
// Not time to play this packet yet. Wait another round before using this
// packet. Keep on playing CNG from previous CNG parameters.
return kRfc3389CngNoPacket;
} else {
// Otherwise, go for the CNG packet now.
noise_fast_forward_ = 0;
return kRfc3389Cng;
}
}
Operations DecisionLogic::NoPacket(bool play_dtmf) {
if (cng_state_ == kCngRfc3389On) {
// Keep on playing comfort noise.
return kRfc3389CngNoPacket;
} else if (cng_state_ == kCngInternalOn) {
// Keep on playing codec internal comfort noise.
return kCodecInternalCng;
} else if (play_dtmf) {
return kDtmf;
} else {
// Nothing to play, do expand.
return kExpand;
}
}
Operations DecisionLogic::ExpectedPacketAvailable(Modes prev_mode,
bool play_dtmf) {
if (!disallow_time_stretching_ && prev_mode != kModeExpand && !play_dtmf) {
// Check criterion for time-stretching. The values are in number of packets
// in Q8.
int low_limit, high_limit;
delay_manager_->BufferLimits(&low_limit, &high_limit);
int buffer_level_packets = 0;
if (packet_length_samples_ > 0) {
buffer_level_packets =
((1 << 8) * buffer_level_filter_->filtered_current_level()) /
packet_length_samples_;
}
if (buffer_level_packets >= high_limit << 2)
return kFastAccelerate;
if (TimescaleAllowed()) {
if (buffer_level_packets >= high_limit)
return kAccelerate;
if (buffer_level_packets < low_limit)
return kPreemptiveExpand;
}
}
return kNormal;
}
Operations DecisionLogic::FuturePacketAvailable(
size_t decoder_frame_length,
Modes prev_mode,
uint32_t target_timestamp,
uint32_t available_timestamp,
bool play_dtmf,
size_t generated_noise_samples) {
// Required packet is not available, but a future packet is.
// Check if we should continue with an ongoing expand because the new packet
// is too far into the future.
uint32_t timestamp_leap = available_timestamp - target_timestamp;
if ((prev_mode == kModeExpand || prev_mode == kModeCodecPlc) &&
!ReinitAfterExpands(timestamp_leap) && !MaxWaitForPacket() &&
PacketTooEarly(timestamp_leap) && UnderTargetLevel()) {
if (play_dtmf) {
// Still have DTMF to play, so do not do expand.
return kDtmf;
} else {
// Nothing to play.
return kExpand;
}
}
if (prev_mode == kModeCodecPlc) {
return kNormal;
}
// If previous was comfort noise, then no merge is needed.
if (prev_mode == kModeRfc3389Cng || prev_mode == kModeCodecInternalCng) {
size_t cur_size_samples =
estimate_dtx_delay_
? cur_size_samples = packet_buffer_.GetSpanSamples(
decoder_frame_length, sample_rate_, true)
: packet_buffer_.NumPacketsInBuffer() * decoder_frame_length;
// Target level is in number of packets in Q8.
const size_t target_level_samples =
(delay_manager_->TargetLevel() * packet_length_samples_) >> 8;
const bool generated_enough_noise =
static_cast<uint32_t>(generated_noise_samples + target_timestamp) >=
available_timestamp;
if (time_stretch_cn_) {
const size_t target_threshold_samples =
target_level_window_ms_ / 2 * (sample_rate_ / 1000);
const bool above_target_window =
cur_size_samples > target_level_samples + target_threshold_samples;
const bool below_target_window =
target_level_samples > target_threshold_samples &&
cur_size_samples < target_level_samples - target_threshold_samples;
// Keep the delay same as before CNG, but make sure that it is within the
// target window.
if ((generated_enough_noise && !below_target_window) ||
above_target_window) {
time_stretched_cn_samples_ = timestamp_leap - generated_noise_samples;
return kNormal;
}
} else {
// Keep the same delay as before the CNG, but make sure that the number of
// samples in buffer is no higher than 4 times the optimal level.
if (generated_enough_noise ||
cur_size_samples > target_level_samples * 4) {
// Time to play this new packet.
return kNormal;
}
}
// Too early to play this new packet; keep on playing comfort noise.
if (prev_mode == kModeRfc3389Cng) {
return kRfc3389CngNoPacket;
}
// prevPlayMode == kModeCodecInternalCng.
return kCodecInternalCng;
}
// Do not merge unless we have done an expand before.
if (prev_mode == kModeExpand) {
return kMerge;
} else if (play_dtmf) {
// Play DTMF instead of expand.
return kDtmf;
} else {
return kExpand;
}
}
bool DecisionLogic::UnderTargetLevel() const {
int buffer_level_packets = 0;
if (packet_length_samples_ > 0) {
buffer_level_packets =
((1 << 8) * buffer_level_filter_->filtered_current_level()) /
packet_length_samples_;
}
return buffer_level_packets <= delay_manager_->TargetLevel();
}
bool DecisionLogic::ReinitAfterExpands(uint32_t timestamp_leap) const {
return timestamp_leap >=
static_cast<uint32_t>(output_size_samples_ * kReinitAfterExpands);
}
bool DecisionLogic::PacketTooEarly(uint32_t timestamp_leap) const {
return timestamp_leap >
static_cast<uint32_t>(output_size_samples_ * num_consecutive_expands_);
}
bool DecisionLogic::MaxWaitForPacket() const {
return num_consecutive_expands_ >= kMaxWaitForPacket;
}
} // namespace webrtc