blob: eab009444f6b08a56498bbbdaa5c393042102164 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <algorithm>
#include <numeric>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
} // namespace
int AecState::instance_count_ = 0;
void AecState::GetResidualEchoScaling(
rtc::ArrayView<float> residual_scaling) const {
bool filter_has_had_time_to_converge;
if (config_.filter.conservative_initial_phase) {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 1.5f * kNumBlocksPerSecond;
} else {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 0.8f * kNumBlocksPerSecond;
}
echo_audibility_.GetResidualEchoScaling(filter_has_had_time_to_converge,
residual_scaling);
}
absl::optional<float> AecState::ErleUncertainty() const {
if (SaturatedEcho()) {
return 1.f;
}
return absl::nullopt;
}
AecState::AecState(const EchoCanceller3Config& config)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
initial_state_(config_),
delay_state_(config_),
transparent_state_(config_),
filter_quality_state_(config_),
erl_estimator_(2 * kNumBlocksPerSecond),
erle_estimator_(2 * kNumBlocksPerSecond, config_),
filter_analyzer_(config_),
echo_audibility_(
config_.echo_audibility.use_stationarity_properties_at_init),
reverb_model_estimator_(config_) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
filter_analyzer_.Reset();
capture_signal_saturation_ = false;
strong_not_saturated_render_blocks_ = 0;
blocks_with_active_render_ = 0;
initial_state_.Reset();
transparent_state_.Reset();
erle_estimator_.Reset(true);
erl_estimator_.Reset();
filter_quality_state_.Reset();
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
} else if (echo_path_variability.gain_change) {
erle_estimator_.Reset(false);
}
subtractor_output_analyzer_.HandleEchoPathChange();
}
void AecState::Update(
const absl::optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<const float> y) {
// Analyze the filter output.
subtractor_output_analyzer_.Update(subtractor_output);
// Analyze the properties of the filter.
filter_analyzer_.Update(adaptive_filter_impulse_response, render_buffer);
// Estimate the direct path delay of the filter.
if (config_.filter.use_linear_filter) {
delay_state_.Update(filter_analyzer_, external_delay,
strong_not_saturated_render_blocks_);
}
const std::vector<float>& aligned_render_block =
render_buffer.Block(-delay_state_.DirectPathFilterDelay())[0];
// Update render counters.
const float render_energy = std::inner_product(
aligned_render_block.begin(), aligned_render_block.end(),
aligned_render_block.begin(), 0.f);
const bool active_render =
render_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2;
blocks_with_active_render_ += active_render ? 1 : 0;
strong_not_saturated_render_blocks_ +=
active_render && !SaturatedCapture() ? 1 : 0;
std::array<float, kFftLengthBy2Plus1> X2_reverb;
render_reverb_.Apply(render_buffer.GetSpectrumBuffer(),
delay_state_.DirectPathFilterDelay(), ReverbDecay(),
X2_reverb);
if (config_.echo_audibility.use_stationarity_properties) {
// Update the echo audibility evaluator.
echo_audibility_.Update(render_buffer,
render_reverb_.GetReverbContributionPowerSpectrum(),
delay_state_.DirectPathFilterDelay(),
delay_state_.ExternalDelayReported());
}
// Update the ERL and ERLE measures.
if (initial_state_.TransitionTriggered()) {
erle_estimator_.Reset(false);
}
const auto& X2 = render_buffer.Spectrum(delay_state_.DirectPathFilterDelay());
const auto& X2_input_erle = X2_reverb;
erle_estimator_.Update(render_buffer, adaptive_filter_frequency_response,
X2_input_erle, Y2, E2_main,
subtractor_output_analyzer_.ConvergedFilter(),
config_.erle.onset_detection);
erl_estimator_.Update(subtractor_output_analyzer_.ConvergedFilter(), X2, Y2);
// Detect and flag echo saturation.
saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
UsableLinearEstimate(), subtractor_output,
EchoPathGain());
// Update the decision on whether to use the initial state parameter set.
initial_state_.Update(active_render, SaturatedCapture());
// Detect whether the transparent mode should be activated.
transparent_state_.Update(delay_state_.DirectPathFilterDelay(),
filter_analyzer_.Consistent(),
subtractor_output_analyzer_.ConvergedFilter(),
subtractor_output_analyzer_.DivergedFilter(),
active_render, SaturatedCapture());
// Analyze the quality of the filter.
filter_quality_state_.Update(active_render, TransparentMode(),
SaturatedCapture(),
filter_analyzer_.Consistent(), external_delay,
subtractor_output_analyzer_.ConvergedFilter());
// Update the reverb estimate.
const bool stationary_block =
config_.echo_audibility.use_stationarity_properties &&
echo_audibility_.IsBlockStationary();
reverb_model_estimator_.Update(filter_analyzer_.GetAdjustedFilter(),
adaptive_filter_frequency_response,
erle_estimator_.GetInstLinearQualityEstimate(),
delay_state_.DirectPathFilterDelay(),
UsableLinearEstimate(), stationary_block);
erle_estimator_.Dump(data_dumper_);
reverb_model_estimator_.Dump(data_dumper_.get());
data_dumper_->DumpRaw("aec3_erl", Erl());
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
data_dumper_->DumpRaw("aec3_erle", Erle());
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
data_dumper_->DumpRaw("aec3_transparent_mode", TransparentMode());
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
data_dumper_->DumpRaw("aec3_consistent_filter",
filter_analyzer_.Consistent());
data_dumper_->DumpRaw("aec3_initial_state",
initial_state_.InitialStateActive());
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
data_dumper_->DumpRaw("aec3_echo_saturation", SaturatedEcho());
data_dumper_->DumpRaw("aec3_converged_filter",
subtractor_output_analyzer_.ConvergedFilter());
data_dumper_->DumpRaw("aec3_diverged_filter",
subtractor_output_analyzer_.DivergedFilter());
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
external_delay ? 1 : 0);
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
GetReverbFrequencyResponse());
}
AecState::InitialState::InitialState(const EchoCanceller3Config& config)
: conservative_initial_phase_(config.filter.conservative_initial_phase),
initial_state_seconds_(config.filter.initial_state_seconds) {
Reset();
}
void AecState::InitialState::InitialState::Reset() {
initial_state_ = true;
strong_not_saturated_render_blocks_ = 0;
}
void AecState::InitialState::InitialState::Update(bool active_render,
bool saturated_capture) {
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
// Flag whether the initial state is still active.
bool prev_initial_state = initial_state_;
if (conservative_initial_phase_) {
initial_state_ =
strong_not_saturated_render_blocks_ < 5 * kNumBlocksPerSecond;
} else {
initial_state_ = strong_not_saturated_render_blocks_ <
initial_state_seconds_ * kNumBlocksPerSecond;
}
// Flag whether the transition from the initial state has started.
transition_triggered_ = !initial_state_ && prev_initial_state;
}
AecState::FilterDelay::FilterDelay(const EchoCanceller3Config& config)
: delay_headroom_samples_(config.delay.delay_headroom_samples) {}
void AecState::FilterDelay::Update(
const FilterAnalyzer& filter_analyzer,
const absl::optional<DelayEstimate>& external_delay,
size_t blocks_with_proper_filter_adaptation) {
// Update the delay based on the external delay.
if (external_delay &&
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
external_delay_ = external_delay;
external_delay_reported_ = true;
}
// Override the estimated delay if it is not certain that the filter has had
// time to converge.
const bool delay_estimator_may_not_have_converged =
blocks_with_proper_filter_adaptation < 2 * kNumBlocksPerSecond;
if (delay_estimator_may_not_have_converged && external_delay_) {
filter_delay_blocks_ = delay_headroom_samples_ / kBlockSize;
} else {
filter_delay_blocks_ = filter_analyzer.DelayBlocks();
}
}
AecState::TransparentMode::TransparentMode(const EchoCanceller3Config& config)
: bounded_erl_(config.ep_strength.bounded_erl),
linear_and_stable_echo_path_(
config.echo_removal_control.linear_and_stable_echo_path),
active_blocks_since_sane_filter_(kBlocksSinceConsistentEstimateInit),
non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
void AecState::TransparentMode::Reset() {
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
diverged_sequence_size_ = 0;
strong_not_saturated_render_blocks_ = 0;
if (linear_and_stable_echo_path_) {
recent_convergence_during_activity_ = false;
}
}
void AecState::TransparentMode::Update(int filter_delay_blocks,
bool consistent_filter,
bool converged_filter,
bool diverged_filter,
bool active_render,
bool saturated_capture) {
++capture_block_counter_;
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
if (consistent_filter && filter_delay_blocks < 5) {
sane_filter_observed_ = true;
active_blocks_since_sane_filter_ = 0;
} else if (active_render) {
++active_blocks_since_sane_filter_;
}
bool sane_filter_recently_seen;
if (!sane_filter_observed_) {
sane_filter_recently_seen =
capture_block_counter_ <= 5 * kNumBlocksPerSecond;
} else {
sane_filter_recently_seen =
active_blocks_since_sane_filter_ <= 30 * kNumBlocksPerSecond;
}
if (converged_filter) {
recent_convergence_during_activity_ = true;
active_non_converged_sequence_size_ = 0;
non_converged_sequence_size_ = 0;
++num_converged_blocks_;
} else {
if (++non_converged_sequence_size_ > 20 * kNumBlocksPerSecond) {
num_converged_blocks_ = 0;
}
if (active_render &&
++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
recent_convergence_during_activity_ = false;
}
}
if (!diverged_filter) {
diverged_sequence_size_ = 0;
} else if (++diverged_sequence_size_ >= 60) {
// TODO(peah): Change these lines to ensure proper triggering of usable
// filter.
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
}
if (active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
finite_erl_recently_detected_ = false;
}
if (num_converged_blocks_ > 50) {
finite_erl_recently_detected_ = true;
}
if (bounded_erl_) {
transparency_activated_ = false;
} else if (finite_erl_recently_detected_) {
transparency_activated_ = false;
} else if (sane_filter_recently_seen && recent_convergence_during_activity_) {
transparency_activated_ = false;
} else {
const bool filter_should_have_converged =
strong_not_saturated_render_blocks_ > 6 * kNumBlocksPerSecond;
transparency_activated_ = filter_should_have_converged;
}
}
AecState::FilteringQualityAnalyzer::FilteringQualityAnalyzer(
const EchoCanceller3Config& config) {}
void AecState::FilteringQualityAnalyzer::Reset() {
usable_linear_estimate_ = false;
filter_update_blocks_since_reset_ = 0;
}
void AecState::FilteringQualityAnalyzer::Update(
bool active_render,
bool transparent_mode,
bool saturated_capture,
bool consistent_estimate_,
const absl::optional<DelayEstimate>& external_delay,
bool converged_filter) {
// Update blocks counter.
const bool filter_update = active_render && !saturated_capture;
filter_update_blocks_since_reset_ += filter_update ? 1 : 0;
filter_update_blocks_since_start_ += filter_update ? 1 : 0;
// Store convergence flag when observed.
convergence_seen_ = convergence_seen_ || converged_filter;
// Verify requirements for achieving a decent filter. The requirements for
// filter adaptation at call startup are more restrictive than after an
// in-call reset.
const bool sufficient_data_to_converge_at_startup =
filter_update_blocks_since_start_ > kNumBlocksPerSecond * 0.4f;
const bool sufficient_data_to_converge_at_reset =
sufficient_data_to_converge_at_startup &&
filter_update_blocks_since_reset_ > kNumBlocksPerSecond * 0.2f;
// The linear filter can only be used it has had time to converge.
usable_linear_estimate_ = sufficient_data_to_converge_at_startup &&
sufficient_data_to_converge_at_reset;
// The linear filter can only be used if an external delay or convergence have
// been identified
usable_linear_estimate_ =
usable_linear_estimate_ && (external_delay || convergence_seen_);
// If transparent mode is on, deactivate usign the linear filter.
usable_linear_estimate_ = usable_linear_estimate_ && !transparent_mode;
}
void AecState::SaturationDetector::Update(
rtc::ArrayView<const float> x,
bool saturated_capture,
bool usable_linear_estimate,
const SubtractorOutput& subtractor_output,
float echo_path_gain) {
saturated_echo_ = saturated_capture;
if (usable_linear_estimate) {
constexpr float kSaturationThreshold = 20000.f;
saturated_echo_ =
saturated_echo_ &&
(subtractor_output.s_main_max_abs > kSaturationThreshold ||
subtractor_output.s_shadow_max_abs > kSaturationThreshold);
} else {
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
saturated_echo_ = saturated_echo_ && peak_echo_amplitude > 32000;
}
}
} // namespace webrtc