blob: bbc1e4ffc61024d1de65323fd90f6bf4c7088a4c [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include <string>
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "modules/audio_processing/utility/cascaded_biquad_filter.h"
#include "rtc_base/random.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
std::vector<float> RunSubtractorTest(
size_t num_render_channels,
size_t num_capture_channels,
int num_blocks_to_process,
int delay_samples,
int refined_filter_length_blocks,
int coarse_filter_length_blocks,
bool uncorrelated_inputs,
const std::vector<int>& blocks_with_echo_path_changes) {
ApmDataDumper data_dumper(42);
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
EchoCanceller3Config config;
config.filter.refined.length_blocks = refined_filter_length_blocks;
config.filter.coarse.length_blocks = coarse_filter_length_blocks;
Subtractor subtractor(config, num_render_channels, num_capture_channels,
&data_dumper, DetectOptimization());
absl::optional<DelayEstimate> delay_estimate;
std::vector<std::vector<std::vector<float>>> x(
kNumBands, std::vector<std::vector<float>>(
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
std::vector<std::vector<float>> y(num_capture_channels,
std::vector<float>(kBlockSize, 0.f));
std::array<float, kBlockSize> x_old;
std::vector<SubtractorOutput> output(num_capture_channels);
config.delay.default_delay = 1;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
RenderSignalAnalyzer render_signal_analyzer(config);
Random random_generator(42U);
Aec3Fft fft;
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined(
num_capture_channels);
std::array<float, kFftLengthBy2Plus1> E2_coarse;
AecState aec_state(config, num_capture_channels);
x_old.fill(0.f);
for (auto& Y2_ch : Y2) {
Y2_ch.fill(0.f);
}
for (auto& E2_refined_ch : E2_refined) {
E2_refined_ch.fill(0.f);
}
E2_coarse.fill(0.f);
std::vector<std::vector<std::unique_ptr<DelayBuffer<float>>>> delay_buffer(
num_capture_channels);
for (size_t capture_ch = 0; capture_ch < num_capture_channels; ++capture_ch) {
delay_buffer[capture_ch].resize(num_render_channels);
for (size_t render_ch = 0; render_ch < num_render_channels; ++render_ch) {
delay_buffer[capture_ch][render_ch] =
std::make_unique<DelayBuffer<float>>(delay_samples);
}
}
// [B,A] = butter(2,100/8000,'high')
constexpr CascadedBiQuadFilter::BiQuadCoefficients
kHighPassFilterCoefficients = {{0.97261f, -1.94523f, 0.97261f},
{-1.94448f, 0.94598f}};
std::vector<std::unique_ptr<CascadedBiQuadFilter>> x_hp_filter(
num_render_channels);
for (size_t ch = 0; ch < num_render_channels; ++ch) {
x_hp_filter[ch] =
std::make_unique<CascadedBiQuadFilter>(kHighPassFilterCoefficients, 1);
}
std::vector<std::unique_ptr<CascadedBiQuadFilter>> y_hp_filter(
num_capture_channels);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
y_hp_filter[ch] =
std::make_unique<CascadedBiQuadFilter>(kHighPassFilterCoefficients, 1);
}
for (int k = 0; k < num_blocks_to_process; ++k) {
for (size_t render_ch = 0; render_ch < num_render_channels; ++render_ch) {
RandomizeSampleVector(&random_generator, x[0][render_ch]);
}
if (uncorrelated_inputs) {
for (size_t capture_ch = 0; capture_ch < num_capture_channels;
++capture_ch) {
RandomizeSampleVector(&random_generator, y[capture_ch]);
}
} else {
for (size_t capture_ch = 0; capture_ch < num_capture_channels;
++capture_ch) {
for (size_t render_ch = 0; render_ch < num_render_channels;
++render_ch) {
std::array<float, kBlockSize> y_channel;
delay_buffer[capture_ch][render_ch]->Delay(x[0][render_ch],
y_channel);
for (size_t k = 0; k < y.size(); ++k) {
y[capture_ch][k] += y_channel[k] / num_render_channels;
}
}
}
}
for (size_t ch = 0; ch < num_render_channels; ++ch) {
x_hp_filter[ch]->Process(x[0][ch]);
}
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
y_hp_filter[ch]->Process(y[ch]);
}
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
render_signal_analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
aec_state.MinDirectPathFilterDelay());
// Handle echo path changes.
if (std::find(blocks_with_echo_path_changes.begin(),
blocks_with_echo_path_changes.end(),
k) != blocks_with_echo_path_changes.end()) {
subtractor.HandleEchoPathChange(EchoPathVariability(
true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay,
false));
}
subtractor.Process(*render_delay_buffer->GetRenderBuffer(), y,
render_signal_analyzer, aec_state, output);
aec_state.HandleEchoPathChange(EchoPathVariability(
false, EchoPathVariability::DelayAdjustment::kNone, false));
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2_refined, Y2,
output);
}
std::vector<float> results(num_capture_channels);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
const float output_power = std::inner_product(
output[ch].e_refined.begin(), output[ch].e_refined.end(),
output[ch].e_refined.begin(), 0.f);
const float y_power =
std::inner_product(y[ch].begin(), y[ch].end(), y[ch].begin(), 0.f);
if (y_power == 0.f) {
ADD_FAILURE();
results[ch] = -1.f;
}
results[ch] = output_power / y_power;
}
return results;
}
std::string ProduceDebugText(size_t num_render_channels,
size_t num_capture_channels,
size_t delay,
int filter_length_blocks) {
rtc::StringBuilder ss;
ss << "delay: " << delay << ", ";
ss << "filter_length_blocks:" << filter_length_blocks << ", ";
ss << "num_render_channels:" << num_render_channels << ", ";
ss << "num_capture_channels:" << num_capture_channels;
return ss.Release();
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non data dumper works.
TEST(SubtractorDeathTest, NullDataDumper) {
EXPECT_DEATH(
Subtractor(EchoCanceller3Config(), 1, 1, nullptr, DetectOptimization()),
"");
}
// Verifies the check for the capture signal size.
TEST(Subtractor, WrongCaptureSize) {
ApmDataDumper data_dumper(42);
EchoCanceller3Config config;
Subtractor subtractor(config, 1, 1, &data_dumper, DetectOptimization());
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 48000, 1));
RenderSignalAnalyzer render_signal_analyzer(config);
std::vector<std::vector<float>> y(1, std::vector<float>(kBlockSize - 1, 0.f));
std::array<SubtractorOutput, 1> output;
EXPECT_DEATH(
subtractor.Process(*render_delay_buffer->GetRenderBuffer(), y,
render_signal_analyzer, AecState(config, 1), output),
"");
}
#endif
// Verifies that the subtractor is able to converge on correlated data.
TEST(Subtractor, Convergence) {
std::vector<int> blocks_with_echo_path_changes;
for (size_t filter_length_blocks : {12, 20, 30}) {
for (size_t delay_samples : {0, 64, 150, 200, 301}) {
SCOPED_TRACE(ProduceDebugText(1, 1, delay_samples, filter_length_blocks));
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
1, 1, 2500, delay_samples, filter_length_blocks, filter_length_blocks,
false, blocks_with_echo_path_changes);
for (float echo_to_nearend_power : echo_to_nearend_powers) {
EXPECT_GT(0.1f, echo_to_nearend_power);
}
}
}
}
// Verifies that the subtractor is able to handle the case when the refined
// filter is longer than the coarse filter.
TEST(Subtractor, RefinedFilterLongerThanCoarseFilter) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
1, 1, 400, 64, 20, 15, false, blocks_with_echo_path_changes);
for (float echo_to_nearend_power : echo_to_nearend_powers) {
EXPECT_GT(0.5f, echo_to_nearend_power);
}
}
// Verifies that the subtractor is able to handle the case when the coarse
// filter is longer than the refined filter.
TEST(Subtractor, CoarseFilterLongerThanRefinedFilter) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
1, 1, 400, 64, 15, 20, false, blocks_with_echo_path_changes);
for (float echo_to_nearend_power : echo_to_nearend_powers) {
EXPECT_GT(0.5f, echo_to_nearend_power);
}
}
// Verifies that the subtractor does not converge on uncorrelated signals.
TEST(Subtractor, NonConvergenceOnUncorrelatedSignals) {
std::vector<int> blocks_with_echo_path_changes;
for (size_t filter_length_blocks : {12, 20, 30}) {
for (size_t delay_samples : {0, 64, 150, 200, 301}) {
SCOPED_TRACE(ProduceDebugText(1, 1, delay_samples, filter_length_blocks));
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
1, 1, 3000, delay_samples, filter_length_blocks, filter_length_blocks,
true, blocks_with_echo_path_changes);
for (float echo_to_nearend_power : echo_to_nearend_powers) {
EXPECT_NEAR(1.f, echo_to_nearend_power, 0.1);
}
}
}
}
class SubtractorMultiChannelUpToEightRender
: public ::testing::Test,
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
#if defined(NDEBUG)
INSTANTIATE_TEST_SUITE_P(NonDebugMultiChannel,
SubtractorMultiChannelUpToEightRender,
::testing::Combine(::testing::Values(1, 2, 8),
::testing::Values(1, 2, 4)));
#else
INSTANTIATE_TEST_SUITE_P(DebugMultiChannel,
SubtractorMultiChannelUpToEightRender,
::testing::Combine(::testing::Values(1, 2),
::testing::Values(1, 2)));
#endif
// Verifies that the subtractor is able to converge on correlated data.
TEST_P(SubtractorMultiChannelUpToEightRender, Convergence) {
const size_t num_render_channels = std::get<0>(GetParam());
const size_t num_capture_channels = std::get<1>(GetParam());
std::vector<int> blocks_with_echo_path_changes;
size_t num_blocks_to_process = 2500 * num_render_channels;
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
num_render_channels, num_capture_channels, num_blocks_to_process, 64, 20,
20, false, blocks_with_echo_path_changes);
for (float echo_to_nearend_power : echo_to_nearend_powers) {
EXPECT_GT(0.1f, echo_to_nearend_power);
}
}
class SubtractorMultiChannelUpToFourRender
: public ::testing::Test,
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
#if defined(NDEBUG)
INSTANTIATE_TEST_SUITE_P(NonDebugMultiChannel,
SubtractorMultiChannelUpToFourRender,
::testing::Combine(::testing::Values(1, 2, 4),
::testing::Values(1, 2, 4)));
#else
INSTANTIATE_TEST_SUITE_P(DebugMultiChannel,
SubtractorMultiChannelUpToFourRender,
::testing::Combine(::testing::Values(1, 2),
::testing::Values(1, 2)));
#endif
// Verifies that the subtractor does not converge on uncorrelated signals.
TEST_P(SubtractorMultiChannelUpToFourRender,
NonConvergenceOnUncorrelatedSignals) {
const size_t num_render_channels = std::get<0>(GetParam());
const size_t num_capture_channels = std::get<1>(GetParam());
std::vector<int> blocks_with_echo_path_changes;
size_t num_blocks_to_process = 5000 * num_render_channels;
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
num_render_channels, num_capture_channels, num_blocks_to_process, 64, 20,
20, true, blocks_with_echo_path_changes);
for (float echo_to_nearend_power : echo_to_nearend_powers) {
EXPECT_LT(.8f, echo_to_nearend_power);
EXPECT_NEAR(1.f, echo_to_nearend_power, 0.25f);
}
}
} // namespace webrtc