| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/subtractor.h" |
| |
| #include <algorithm> |
| #include <memory> |
| #include <numeric> |
| #include <string> |
| |
| #include "modules/audio_processing/aec3/aec_state.h" |
| #include "modules/audio_processing/aec3/render_delay_buffer.h" |
| #include "modules/audio_processing/test/echo_canceller_test_tools.h" |
| #include "modules/audio_processing/utility/cascaded_biquad_filter.h" |
| #include "rtc_base/random.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| std::vector<float> RunSubtractorTest( |
| size_t num_render_channels, |
| size_t num_capture_channels, |
| int num_blocks_to_process, |
| int delay_samples, |
| int refined_filter_length_blocks, |
| int coarse_filter_length_blocks, |
| bool uncorrelated_inputs, |
| const std::vector<int>& blocks_with_echo_path_changes) { |
| ApmDataDumper data_dumper(42); |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| EchoCanceller3Config config; |
| config.filter.refined.length_blocks = refined_filter_length_blocks; |
| config.filter.coarse.length_blocks = coarse_filter_length_blocks; |
| |
| Subtractor subtractor(config, num_render_channels, num_capture_channels, |
| &data_dumper, DetectOptimization()); |
| absl::optional<DelayEstimate> delay_estimate; |
| std::vector<std::vector<std::vector<float>>> x( |
| kNumBands, std::vector<std::vector<float>>( |
| num_render_channels, std::vector<float>(kBlockSize, 0.f))); |
| std::vector<std::vector<float>> y(num_capture_channels, |
| std::vector<float>(kBlockSize, 0.f)); |
| std::array<float, kBlockSize> x_old; |
| std::vector<SubtractorOutput> output(num_capture_channels); |
| config.delay.default_delay = 1; |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels)); |
| RenderSignalAnalyzer render_signal_analyzer(config); |
| Random random_generator(42U); |
| Aec3Fft fft; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined( |
| num_capture_channels); |
| std::array<float, kFftLengthBy2Plus1> E2_coarse; |
| AecState aec_state(config, num_capture_channels); |
| x_old.fill(0.f); |
| for (auto& Y2_ch : Y2) { |
| Y2_ch.fill(0.f); |
| } |
| for (auto& E2_refined_ch : E2_refined) { |
| E2_refined_ch.fill(0.f); |
| } |
| E2_coarse.fill(0.f); |
| |
| std::vector<std::vector<std::unique_ptr<DelayBuffer<float>>>> delay_buffer( |
| num_capture_channels); |
| for (size_t capture_ch = 0; capture_ch < num_capture_channels; ++capture_ch) { |
| delay_buffer[capture_ch].resize(num_render_channels); |
| for (size_t render_ch = 0; render_ch < num_render_channels; ++render_ch) { |
| delay_buffer[capture_ch][render_ch] = |
| std::make_unique<DelayBuffer<float>>(delay_samples); |
| } |
| } |
| |
| // [B,A] = butter(2,100/8000,'high') |
| constexpr CascadedBiQuadFilter::BiQuadCoefficients |
| kHighPassFilterCoefficients = {{0.97261f, -1.94523f, 0.97261f}, |
| {-1.94448f, 0.94598f}}; |
| std::vector<std::unique_ptr<CascadedBiQuadFilter>> x_hp_filter( |
| num_render_channels); |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| x_hp_filter[ch] = |
| std::make_unique<CascadedBiQuadFilter>(kHighPassFilterCoefficients, 1); |
| } |
| std::vector<std::unique_ptr<CascadedBiQuadFilter>> y_hp_filter( |
| num_capture_channels); |
| for (size_t ch = 0; ch < num_capture_channels; ++ch) { |
| y_hp_filter[ch] = |
| std::make_unique<CascadedBiQuadFilter>(kHighPassFilterCoefficients, 1); |
| } |
| |
| for (int k = 0; k < num_blocks_to_process; ++k) { |
| for (size_t render_ch = 0; render_ch < num_render_channels; ++render_ch) { |
| RandomizeSampleVector(&random_generator, x[0][render_ch]); |
| } |
| if (uncorrelated_inputs) { |
| for (size_t capture_ch = 0; capture_ch < num_capture_channels; |
| ++capture_ch) { |
| RandomizeSampleVector(&random_generator, y[capture_ch]); |
| } |
| } else { |
| for (size_t capture_ch = 0; capture_ch < num_capture_channels; |
| ++capture_ch) { |
| for (size_t render_ch = 0; render_ch < num_render_channels; |
| ++render_ch) { |
| std::array<float, kBlockSize> y_channel; |
| delay_buffer[capture_ch][render_ch]->Delay(x[0][render_ch], |
| y_channel); |
| for (size_t k = 0; k < y.size(); ++k) { |
| y[capture_ch][k] += y_channel[k] / num_render_channels; |
| } |
| } |
| } |
| } |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| x_hp_filter[ch]->Process(x[0][ch]); |
| } |
| for (size_t ch = 0; ch < num_capture_channels; ++ch) { |
| y_hp_filter[ch]->Process(y[ch]); |
| } |
| |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| render_signal_analyzer.Update(*render_delay_buffer->GetRenderBuffer(), |
| aec_state.MinDirectPathFilterDelay()); |
| |
| // Handle echo path changes. |
| if (std::find(blocks_with_echo_path_changes.begin(), |
| blocks_with_echo_path_changes.end(), |
| k) != blocks_with_echo_path_changes.end()) { |
| subtractor.HandleEchoPathChange(EchoPathVariability( |
| true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, |
| false)); |
| } |
| subtractor.Process(*render_delay_buffer->GetRenderBuffer(), y, |
| render_signal_analyzer, aec_state, output); |
| |
| aec_state.HandleEchoPathChange(EchoPathVariability( |
| false, EchoPathVariability::DelayAdjustment::kNone, false)); |
| aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(), |
| subtractor.FilterImpulseResponses(), |
| *render_delay_buffer->GetRenderBuffer(), E2_refined, Y2, |
| output); |
| } |
| |
| std::vector<float> results(num_capture_channels); |
| for (size_t ch = 0; ch < num_capture_channels; ++ch) { |
| const float output_power = std::inner_product( |
| output[ch].e_refined.begin(), output[ch].e_refined.end(), |
| output[ch].e_refined.begin(), 0.f); |
| const float y_power = |
| std::inner_product(y[ch].begin(), y[ch].end(), y[ch].begin(), 0.f); |
| if (y_power == 0.f) { |
| ADD_FAILURE(); |
| results[ch] = -1.f; |
| } |
| results[ch] = output_power / y_power; |
| } |
| return results; |
| } |
| |
| std::string ProduceDebugText(size_t num_render_channels, |
| size_t num_capture_channels, |
| size_t delay, |
| int filter_length_blocks) { |
| rtc::StringBuilder ss; |
| ss << "delay: " << delay << ", "; |
| ss << "filter_length_blocks:" << filter_length_blocks << ", "; |
| ss << "num_render_channels:" << num_render_channels << ", "; |
| ss << "num_capture_channels:" << num_capture_channels; |
| return ss.Release(); |
| } |
| |
| } // namespace |
| |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| |
| // Verifies that the check for non data dumper works. |
| TEST(SubtractorDeathTest, NullDataDumper) { |
| EXPECT_DEATH( |
| Subtractor(EchoCanceller3Config(), 1, 1, nullptr, DetectOptimization()), |
| ""); |
| } |
| |
| // Verifies the check for the capture signal size. |
| TEST(Subtractor, WrongCaptureSize) { |
| ApmDataDumper data_dumper(42); |
| EchoCanceller3Config config; |
| Subtractor subtractor(config, 1, 1, &data_dumper, DetectOptimization()); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, 48000, 1)); |
| RenderSignalAnalyzer render_signal_analyzer(config); |
| std::vector<std::vector<float>> y(1, std::vector<float>(kBlockSize - 1, 0.f)); |
| std::array<SubtractorOutput, 1> output; |
| |
| EXPECT_DEATH( |
| subtractor.Process(*render_delay_buffer->GetRenderBuffer(), y, |
| render_signal_analyzer, AecState(config, 1), output), |
| ""); |
| } |
| |
| #endif |
| |
| // Verifies that the subtractor is able to converge on correlated data. |
| TEST(Subtractor, Convergence) { |
| std::vector<int> blocks_with_echo_path_changes; |
| for (size_t filter_length_blocks : {12, 20, 30}) { |
| for (size_t delay_samples : {0, 64, 150, 200, 301}) { |
| SCOPED_TRACE(ProduceDebugText(1, 1, delay_samples, filter_length_blocks)); |
| std::vector<float> echo_to_nearend_powers = RunSubtractorTest( |
| 1, 1, 2500, delay_samples, filter_length_blocks, filter_length_blocks, |
| false, blocks_with_echo_path_changes); |
| |
| for (float echo_to_nearend_power : echo_to_nearend_powers) { |
| EXPECT_GT(0.1f, echo_to_nearend_power); |
| } |
| } |
| } |
| } |
| |
| // Verifies that the subtractor is able to handle the case when the refined |
| // filter is longer than the coarse filter. |
| TEST(Subtractor, RefinedFilterLongerThanCoarseFilter) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<float> echo_to_nearend_powers = RunSubtractorTest( |
| 1, 1, 400, 64, 20, 15, false, blocks_with_echo_path_changes); |
| for (float echo_to_nearend_power : echo_to_nearend_powers) { |
| EXPECT_GT(0.5f, echo_to_nearend_power); |
| } |
| } |
| |
| // Verifies that the subtractor is able to handle the case when the coarse |
| // filter is longer than the refined filter. |
| TEST(Subtractor, CoarseFilterLongerThanRefinedFilter) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<float> echo_to_nearend_powers = RunSubtractorTest( |
| 1, 1, 400, 64, 15, 20, false, blocks_with_echo_path_changes); |
| for (float echo_to_nearend_power : echo_to_nearend_powers) { |
| EXPECT_GT(0.5f, echo_to_nearend_power); |
| } |
| } |
| |
| // Verifies that the subtractor does not converge on uncorrelated signals. |
| TEST(Subtractor, NonConvergenceOnUncorrelatedSignals) { |
| std::vector<int> blocks_with_echo_path_changes; |
| for (size_t filter_length_blocks : {12, 20, 30}) { |
| for (size_t delay_samples : {0, 64, 150, 200, 301}) { |
| SCOPED_TRACE(ProduceDebugText(1, 1, delay_samples, filter_length_blocks)); |
| |
| std::vector<float> echo_to_nearend_powers = RunSubtractorTest( |
| 1, 1, 3000, delay_samples, filter_length_blocks, filter_length_blocks, |
| true, blocks_with_echo_path_changes); |
| for (float echo_to_nearend_power : echo_to_nearend_powers) { |
| EXPECT_NEAR(1.f, echo_to_nearend_power, 0.1); |
| } |
| } |
| } |
| } |
| |
| class SubtractorMultiChannelUpToEightRender |
| : public ::testing::Test, |
| public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {}; |
| |
| #if defined(NDEBUG) |
| INSTANTIATE_TEST_SUITE_P(NonDebugMultiChannel, |
| SubtractorMultiChannelUpToEightRender, |
| ::testing::Combine(::testing::Values(1, 2, 8), |
| ::testing::Values(1, 2, 4))); |
| #else |
| INSTANTIATE_TEST_SUITE_P(DebugMultiChannel, |
| SubtractorMultiChannelUpToEightRender, |
| ::testing::Combine(::testing::Values(1, 2), |
| ::testing::Values(1, 2))); |
| #endif |
| |
| // Verifies that the subtractor is able to converge on correlated data. |
| TEST_P(SubtractorMultiChannelUpToEightRender, Convergence) { |
| const size_t num_render_channels = std::get<0>(GetParam()); |
| const size_t num_capture_channels = std::get<1>(GetParam()); |
| |
| std::vector<int> blocks_with_echo_path_changes; |
| size_t num_blocks_to_process = 2500 * num_render_channels; |
| std::vector<float> echo_to_nearend_powers = RunSubtractorTest( |
| num_render_channels, num_capture_channels, num_blocks_to_process, 64, 20, |
| 20, false, blocks_with_echo_path_changes); |
| |
| for (float echo_to_nearend_power : echo_to_nearend_powers) { |
| EXPECT_GT(0.1f, echo_to_nearend_power); |
| } |
| } |
| |
| class SubtractorMultiChannelUpToFourRender |
| : public ::testing::Test, |
| public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {}; |
| |
| #if defined(NDEBUG) |
| INSTANTIATE_TEST_SUITE_P(NonDebugMultiChannel, |
| SubtractorMultiChannelUpToFourRender, |
| ::testing::Combine(::testing::Values(1, 2, 4), |
| ::testing::Values(1, 2, 4))); |
| #else |
| INSTANTIATE_TEST_SUITE_P(DebugMultiChannel, |
| SubtractorMultiChannelUpToFourRender, |
| ::testing::Combine(::testing::Values(1, 2), |
| ::testing::Values(1, 2))); |
| #endif |
| |
| // Verifies that the subtractor does not converge on uncorrelated signals. |
| TEST_P(SubtractorMultiChannelUpToFourRender, |
| NonConvergenceOnUncorrelatedSignals) { |
| const size_t num_render_channels = std::get<0>(GetParam()); |
| const size_t num_capture_channels = std::get<1>(GetParam()); |
| |
| std::vector<int> blocks_with_echo_path_changes; |
| size_t num_blocks_to_process = 5000 * num_render_channels; |
| std::vector<float> echo_to_nearend_powers = RunSubtractorTest( |
| num_render_channels, num_capture_channels, num_blocks_to_process, 64, 20, |
| 20, true, blocks_with_echo_path_changes); |
| for (float echo_to_nearend_power : echo_to_nearend_powers) { |
| EXPECT_LT(.8f, echo_to_nearend_power); |
| EXPECT_NEAR(1.f, echo_to_nearend_power, 0.25f); |
| } |
| } |
| } // namespace webrtc |