| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Unit tests for DelayManager class. |
| |
| #include "modules/audio_coding/neteq/delay_manager.h" |
| |
| #include <math.h> |
| |
| #include <memory> |
| |
| #include "absl/types/optional.h" |
| #include "modules/audio_coding/neteq/histogram.h" |
| #include "modules/audio_coding/neteq/mock/mock_histogram.h" |
| #include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h" |
| #include "rtc_base/checks.h" |
| #include "test/field_trial.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| constexpr int kMaxNumberOfPackets = 200; |
| constexpr int kTimeStepMs = 10; |
| constexpr int kFs = 8000; |
| constexpr int kFrameSizeMs = 20; |
| constexpr int kTsIncrement = kFrameSizeMs * kFs / 1000; |
| constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs; |
| |
| } // namespace |
| |
| class DelayManagerTest : public ::testing::Test { |
| protected: |
| DelayManagerTest(); |
| virtual void SetUp(); |
| absl::optional<int> InsertNextPacket(); |
| void IncreaseTime(int inc_ms); |
| |
| DelayManager dm_; |
| TickTimer tick_timer_; |
| uint32_t ts_; |
| }; |
| |
| DelayManagerTest::DelayManagerTest() |
| : dm_(DelayManager::Config(), &tick_timer_), ts_(0x12345678) {} |
| |
| void DelayManagerTest::SetUp() { |
| dm_.SetPacketAudioLength(kFrameSizeMs); |
| } |
| |
| absl::optional<int> DelayManagerTest::InsertNextPacket() { |
| auto relative_delay = dm_.Update(ts_, kFs); |
| ts_ += kTsIncrement; |
| return relative_delay; |
| } |
| |
| void DelayManagerTest::IncreaseTime(int inc_ms) { |
| for (int t = 0; t < inc_ms; t += kTimeStepMs) { |
| tick_timer_.Increment(); |
| } |
| } |
| |
| TEST_F(DelayManagerTest, CreateAndDestroy) { |
| // Nothing to do here. The test fixture creates and destroys the DelayManager |
| // object. |
| } |
| |
| TEST_F(DelayManagerTest, UpdateNormal) { |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| // Second packet arrival. |
| InsertNextPacket(); |
| EXPECT_EQ(20, dm_.TargetDelayMs()); |
| } |
| |
| TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) { |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by two frame size. |
| IncreaseTime(2 * kFrameSizeMs); |
| // Second packet arrival. |
| InsertNextPacket(); |
| EXPECT_EQ(40, dm_.TargetDelayMs()); |
| } |
| |
| TEST_F(DelayManagerTest, MaxDelay) { |
| const int kExpectedTarget = 5 * kFrameSizeMs; |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kExpectedTarget); |
| InsertNextPacket(); |
| |
| // No limit is set. |
| EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs()); |
| |
| const int kMaxDelayMs = 3 * kFrameSizeMs; |
| EXPECT_TRUE(dm_.SetMaximumDelay(kMaxDelayMs)); |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(kMaxDelayMs, dm_.TargetDelayMs()); |
| |
| // Target level at least should be one packet. |
| EXPECT_FALSE(dm_.SetMaximumDelay(kFrameSizeMs - 1)); |
| } |
| |
| TEST_F(DelayManagerTest, MinDelay) { |
| const int kExpectedTarget = 5 * kFrameSizeMs; |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kExpectedTarget); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs()); |
| |
| int kMinDelayMs = 7 * kFrameSizeMs; |
| dm_.SetMinimumDelay(kMinDelayMs); |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(kMinDelayMs, dm_.TargetDelayMs()); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) { |
| // Base minimum delay should be between [0, 10000] milliseconds. |
| EXPECT_FALSE(dm_.SetBaseMinimumDelay(-1)); |
| EXPECT_FALSE(dm_.SetBaseMinimumDelay(10001)); |
| EXPECT_EQ(dm_.GetBaseMinimumDelay(), 0); |
| |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(7999)); |
| EXPECT_EQ(dm_.GetBaseMinimumDelay(), 7999); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) { |
| constexpr int kBaseMinimumDelayMs = 100; |
| constexpr int kMinimumDelayMs = 200; |
| |
| // Base minimum delay sets lower bound on minimum. That is why when base |
| // minimum delay is lower than minimum delay we use minimum delay. |
| RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) { |
| constexpr int kBaseMinimumDelayMs = 70; |
| constexpr int kMinimumDelayMs = 30; |
| |
| // Base minimum delay sets lower bound on minimum. That is why when base |
| // minimum delay is greater than minimum delay we use base minimum delay. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) { |
| constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1; |
| constexpr int kMinimumDelayMs = 12; |
| constexpr int kMaximumDelayMs = 20; |
| constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4; |
| |
| EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs)); |
| |
| // Base minimum delay is greater than minimum delay, that is why we clamp |
| // it to current the highest possible value which is maximum delay. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75); |
| |
| EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| |
| // Unset maximum value. |
| EXPECT_TRUE(dm_.SetMaximumDelay(0)); |
| |
| // With maximum value unset, the highest possible value now is 75% of |
| // currently possible maximum buffer size. |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) { |
| constexpr int kMaximumDelayMs = 400; |
| constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1; |
| constexpr int kMinimumDelayMs = 20; |
| |
| // Base minimum delay is greater than minimum delay, that is why we clamp |
| // it to current the highest possible value which is kMaximumDelayMs. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs); |
| |
| EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs)); |
| EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaximumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) { |
| constexpr int kMaximumDelayMs = 400; |
| constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1; |
| constexpr int kMinimumDelayMs = 20; |
| |
| // Base minimum delay is greater than minimum delay, and lower than maximum |
| // delays that is why it is used. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| |
| EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs)); |
| EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, MinimumDelayMemorization) { |
| // Check that when we increase base minimum delay to value higher than |
| // minimum delay then minimum delay is still memorized. This allows to |
| // restore effective minimum delay to memorized minimum delay value when we |
| // decrease base minimum delay. |
| constexpr int kBaseMinimumDelayMsLow = 10; |
| constexpr int kMinimumDelayMs = 20; |
| constexpr int kBaseMinimumDelayMsHigh = 30; |
| |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); |
| EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); |
| // Minimum delay is used as it is higher than base minimum delay. |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsHigh)); |
| // Base minimum delay is used as it is now higher than minimum delay. |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMsHigh); |
| |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); |
| // Check that minimum delay is memorized and is used again. |
| EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelay) { |
| const int kExpectedTarget = 5 * kFrameSizeMs; |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kExpectedTarget); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs()); |
| |
| constexpr int kBaseMinimumDelayMs = 7 * kFrameSizeMs; |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs()); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayAffectsTargetDelay) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kTimeIncrement, dm_.TargetDelayMs()); |
| |
| // Minimum delay is lower than base minimum delay, that is why base minimum |
| // delay is used to calculate target level. |
| constexpr int kMinimumDelayPackets = kExpectedTarget + 1; |
| constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2; |
| |
| constexpr int kMinimumDelayMs = kMinimumDelayPackets * kFrameSizeMs; |
| constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs; |
| |
| EXPECT_TRUE(kMinimumDelayMs < kBaseMinimumDelayMs); |
| EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs()); |
| } |
| |
| TEST_F(DelayManagerTest, Failures) { |
| // Wrong sample rate. |
| EXPECT_EQ(absl::nullopt, dm_.Update(0, -1)); |
| // Wrong packet size. |
| EXPECT_EQ(-1, dm_.SetPacketAudioLength(0)); |
| EXPECT_EQ(-1, dm_.SetPacketAudioLength(-1)); |
| |
| // Minimum delay higher than a maximum delay is not accepted. |
| EXPECT_TRUE(dm_.SetMaximumDelay(20)); |
| EXPECT_FALSE(dm_.SetMinimumDelay(40)); |
| |
| // Maximum delay less than minimum delay is not accepted. |
| EXPECT_TRUE(dm_.SetMaximumDelay(100)); |
| EXPECT_TRUE(dm_.SetMinimumDelay(80)); |
| EXPECT_FALSE(dm_.SetMaximumDelay(60)); |
| } |
| |
| TEST_F(DelayManagerTest, RelativeArrivalDelayStatistic) { |
| EXPECT_EQ(absl::nullopt, InsertNextPacket()); |
| IncreaseTime(kFrameSizeMs); |
| EXPECT_EQ(0, InsertNextPacket()); |
| IncreaseTime(2 * kFrameSizeMs); |
| |
| EXPECT_EQ(20, InsertNextPacket()); |
| } |
| |
| } // namespace webrtc |