| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ |
| #define RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| |
| #include "absl/types/optional.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/math_utils.h" |
| |
| namespace webrtc { |
| |
| // tl;dr: Robust and efficient online computation of statistics, |
| // using Welford's method for variance. [1] |
| // |
| // This should be your go-to class if you ever need to compute |
| // min, max, mean, variance and standard deviation. |
| // If you need to get percentiles, please use webrtc::SamplesStatsCounter. |
| // |
| // Please note RemoveSample() won't affect min and max. |
| // If you want a full-fledged moving window over N last samples, |
| // please use webrtc::RollingAccumulator. |
| // |
| // The measures return absl::nullopt if no samples were fed (Size() == 0), |
| // otherwise the returned optional is guaranteed to contain a value. |
| // |
| // [1] |
| // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm |
| |
| // The type T is a scalar which must be convertible to double. |
| // Rationale: we often need greater precision for measures |
| // than for the samples themselves. |
| template <typename T> |
| class RunningStatistics { |
| public: |
| // Update stats //////////////////////////////////////////// |
| |
| // Add a value participating in the statistics in O(1) time. |
| void AddSample(T sample) { |
| max_ = std::max(max_, sample); |
| min_ = std::min(min_, sample); |
| ++size_; |
| // Welford's incremental update. |
| const double delta = sample - mean_; |
| mean_ += delta / size_; |
| const double delta2 = sample - mean_; |
| cumul_ += delta * delta2; |
| } |
| |
| // Remove a previously added value in O(1) time. |
| // Nb: This doesn't affect min or max. |
| // Calling RemoveSample when Size()==0 is incorrect. |
| void RemoveSample(T sample) { |
| RTC_DCHECK_GT(Size(), 0); |
| // In production, just saturate at 0. |
| if (Size() == 0) { |
| return; |
| } |
| // Since samples order doesn't matter, this is the |
| // exact reciprocal of Welford's incremental update. |
| --size_; |
| const double delta = sample - mean_; |
| mean_ -= delta / size_; |
| const double delta2 = sample - mean_; |
| cumul_ -= delta * delta2; |
| } |
| |
| // Merge other stats, as if samples were added one by one, but in O(1). |
| void MergeStatistics(const RunningStatistics<T>& other) { |
| if (other.size_ == 0) { |
| return; |
| } |
| max_ = std::max(max_, other.max_); |
| min_ = std::min(min_, other.min_); |
| const int64_t new_size = size_ + other.size_; |
| const double new_mean = |
| (mean_ * size_ + other.mean_ * other.size_) / new_size; |
| // Each cumulant must be corrected. |
| // * from: sum((x_i - mean_)²) |
| // * to: sum((x_i - new_mean)²) |
| auto delta = [new_mean](const RunningStatistics<T>& stats) { |
| return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) + |
| stats.mean_ * stats.mean_); |
| }; |
| cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other); |
| mean_ = new_mean; |
| size_ = new_size; |
| } |
| |
| // Get Measures //////////////////////////////////////////// |
| |
| // Returns number of samples involved via AddSample() or MergeStatistics(), |
| // minus number of times RemoveSample() was called. |
| int64_t Size() const { return size_; } |
| |
| // Returns minimum among all seen samples, in O(1) time. |
| // This isn't affected by RemoveSample(). |
| absl::optional<T> GetMin() const { |
| if (size_ == 0) { |
| return absl::nullopt; |
| } |
| return min_; |
| } |
| |
| // Returns maximum among all seen samples, in O(1) time. |
| // This isn't affected by RemoveSample(). |
| absl::optional<T> GetMax() const { |
| if (size_ == 0) { |
| return absl::nullopt; |
| } |
| return max_; |
| } |
| |
| // Returns mean in O(1) time. |
| absl::optional<double> GetMean() const { |
| if (size_ == 0) { |
| return absl::nullopt; |
| } |
| return mean_; |
| } |
| |
| // Returns unbiased sample variance in O(1) time. |
| absl::optional<double> GetVariance() const { |
| if (size_ == 0) { |
| return absl::nullopt; |
| } |
| return cumul_ / size_; |
| } |
| |
| // Returns unbiased standard deviation in O(1) time. |
| absl::optional<double> GetStandardDeviation() const { |
| if (size_ == 0) { |
| return absl::nullopt; |
| } |
| return std::sqrt(*GetVariance()); |
| } |
| |
| private: |
| int64_t size_ = 0; // Samples seen. |
| T min_ = infinity_or_max<T>(); |
| T max_ = minus_infinity_or_min<T>(); |
| double mean_ = 0; |
| double cumul_ = 0; // Variance * size_, sometimes noted m2. |
| }; |
| |
| } // namespace webrtc |
| |
| #endif // RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ |