| /* crc32_simd.c |
| * |
| * Copyright 2017 The Chromium Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the Chromium source repository LICENSE file. |
| */ |
| |
| #include "crc32_simd.h" |
| |
| #if defined(CRC32_SIMD_SSE42_PCLMUL) |
| |
| /* |
| * crc32_sse42_simd_(): compute the crc32 of the buffer, where the buffer |
| * length must be at least 64, and a multiple of 16. Based on: |
| * |
| * "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" |
| * V. Gopal, E. Ozturk, et al., 2009, http://intel.ly/2ySEwL0 |
| */ |
| |
| #include <emmintrin.h> |
| #include <smmintrin.h> |
| #include <wmmintrin.h> |
| |
| uint32_t ZLIB_INTERNAL crc32_sse42_simd_( /* SSE4.2+PCLMUL */ |
| const unsigned char *buf, |
| z_size_t len, |
| uint32_t crc) |
| { |
| /* |
| * Definitions of the bit-reflected domain constants k1,k2,k3, etc and |
| * the CRC32+Barrett polynomials given at the end of the paper. |
| */ |
| static const uint64_t zalign(16) k1k2[] = { 0x0154442bd4, 0x01c6e41596 }; |
| static const uint64_t zalign(16) k3k4[] = { 0x01751997d0, 0x00ccaa009e }; |
| static const uint64_t zalign(16) k5k0[] = { 0x0163cd6124, 0x0000000000 }; |
| static const uint64_t zalign(16) poly[] = { 0x01db710641, 0x01f7011641 }; |
| |
| __m128i x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8; |
| |
| /* |
| * There's at least one block of 64. |
| */ |
| x1 = _mm_loadu_si128((__m128i *)(buf + 0x00)); |
| x2 = _mm_loadu_si128((__m128i *)(buf + 0x10)); |
| x3 = _mm_loadu_si128((__m128i *)(buf + 0x20)); |
| x4 = _mm_loadu_si128((__m128i *)(buf + 0x30)); |
| |
| x1 = _mm_xor_si128(x1, _mm_cvtsi32_si128(crc)); |
| |
| x0 = _mm_load_si128((__m128i *)k1k2); |
| |
| buf += 64; |
| len -= 64; |
| |
| /* |
| * Parallel fold blocks of 64, if any. |
| */ |
| while (len >= 64) |
| { |
| x5 = _mm_clmulepi64_si128(x1, x0, 0x00); |
| x6 = _mm_clmulepi64_si128(x2, x0, 0x00); |
| x7 = _mm_clmulepi64_si128(x3, x0, 0x00); |
| x8 = _mm_clmulepi64_si128(x4, x0, 0x00); |
| |
| x1 = _mm_clmulepi64_si128(x1, x0, 0x11); |
| x2 = _mm_clmulepi64_si128(x2, x0, 0x11); |
| x3 = _mm_clmulepi64_si128(x3, x0, 0x11); |
| x4 = _mm_clmulepi64_si128(x4, x0, 0x11); |
| |
| y5 = _mm_loadu_si128((__m128i *)(buf + 0x00)); |
| y6 = _mm_loadu_si128((__m128i *)(buf + 0x10)); |
| y7 = _mm_loadu_si128((__m128i *)(buf + 0x20)); |
| y8 = _mm_loadu_si128((__m128i *)(buf + 0x30)); |
| |
| x1 = _mm_xor_si128(x1, x5); |
| x2 = _mm_xor_si128(x2, x6); |
| x3 = _mm_xor_si128(x3, x7); |
| x4 = _mm_xor_si128(x4, x8); |
| |
| x1 = _mm_xor_si128(x1, y5); |
| x2 = _mm_xor_si128(x2, y6); |
| x3 = _mm_xor_si128(x3, y7); |
| x4 = _mm_xor_si128(x4, y8); |
| |
| buf += 64; |
| len -= 64; |
| } |
| |
| /* |
| * Fold into 128-bits. |
| */ |
| x0 = _mm_load_si128((__m128i *)k3k4); |
| |
| x5 = _mm_clmulepi64_si128(x1, x0, 0x00); |
| x1 = _mm_clmulepi64_si128(x1, x0, 0x11); |
| x1 = _mm_xor_si128(x1, x2); |
| x1 = _mm_xor_si128(x1, x5); |
| |
| x5 = _mm_clmulepi64_si128(x1, x0, 0x00); |
| x1 = _mm_clmulepi64_si128(x1, x0, 0x11); |
| x1 = _mm_xor_si128(x1, x3); |
| x1 = _mm_xor_si128(x1, x5); |
| |
| x5 = _mm_clmulepi64_si128(x1, x0, 0x00); |
| x1 = _mm_clmulepi64_si128(x1, x0, 0x11); |
| x1 = _mm_xor_si128(x1, x4); |
| x1 = _mm_xor_si128(x1, x5); |
| |
| /* |
| * Single fold blocks of 16, if any. |
| */ |
| while (len >= 16) |
| { |
| x2 = _mm_loadu_si128((__m128i *)buf); |
| |
| x5 = _mm_clmulepi64_si128(x1, x0, 0x00); |
| x1 = _mm_clmulepi64_si128(x1, x0, 0x11); |
| x1 = _mm_xor_si128(x1, x2); |
| x1 = _mm_xor_si128(x1, x5); |
| |
| buf += 16; |
| len -= 16; |
| } |
| |
| /* |
| * Fold 128-bits to 64-bits. |
| */ |
| x2 = _mm_clmulepi64_si128(x1, x0, 0x10); |
| x3 = _mm_setr_epi32(~0, 0, ~0, 0); |
| x1 = _mm_srli_si128(x1, 8); |
| x1 = _mm_xor_si128(x1, x2); |
| |
| x0 = _mm_loadl_epi64((__m128i*)k5k0); |
| |
| x2 = _mm_srli_si128(x1, 4); |
| x1 = _mm_and_si128(x1, x3); |
| x1 = _mm_clmulepi64_si128(x1, x0, 0x00); |
| x1 = _mm_xor_si128(x1, x2); |
| |
| /* |
| * Barret reduce to 32-bits. |
| */ |
| x0 = _mm_load_si128((__m128i*)poly); |
| |
| x2 = _mm_and_si128(x1, x3); |
| x2 = _mm_clmulepi64_si128(x2, x0, 0x10); |
| x2 = _mm_and_si128(x2, x3); |
| x2 = _mm_clmulepi64_si128(x2, x0, 0x00); |
| x1 = _mm_xor_si128(x1, x2); |
| |
| /* |
| * Return the crc32. |
| */ |
| return _mm_extract_epi32(x1, 1); |
| } |
| |
| #elif defined(CRC32_ARMV8_CRC32) |
| |
| /* CRC32 checksums using ARMv8-a crypto instructions. |
| * |
| * TODO: implement a version using the PMULL instruction. |
| */ |
| #include <arm_acle.h> |
| |
| uint32_t ZLIB_INTERNAL armv8_crc32_little(unsigned long crc, |
| const unsigned char *buf, |
| z_size_t len) |
| { |
| uint32_t c = (uint32_t) ~crc; |
| |
| while (len && ((uintptr_t)buf & 7)) { |
| c = __crc32b(c, *buf++); |
| --len; |
| } |
| |
| const uint64_t *buf8 = (const uint64_t *)buf; |
| |
| while (len >= 64) { |
| c = __crc32d(c, *buf8++); |
| c = __crc32d(c, *buf8++); |
| c = __crc32d(c, *buf8++); |
| c = __crc32d(c, *buf8++); |
| |
| c = __crc32d(c, *buf8++); |
| c = __crc32d(c, *buf8++); |
| c = __crc32d(c, *buf8++); |
| c = __crc32d(c, *buf8++); |
| len -= 64; |
| } |
| |
| while (len >= 8) { |
| c = __crc32d(c, *buf8++); |
| len -= 8; |
| } |
| |
| buf = (const unsigned char *)buf8; |
| |
| while (len--) { |
| c = __crc32b(c, *buf++); |
| } |
| |
| return ~c; |
| } |
| |
| #endif |