blob: eaeaf49e5706abe2d7f38c9b9544223e44403e27 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
#include <stddef.h>
#include <algorithm>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/reverb_model.h"
#include "modules/audio_processing/aec3/reverb_model_fallback.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Computes the indexes that will be used for computing spectral power over
// the blocks surrounding the delay.
void GetRenderIndexesToAnalyze(
const VectorBuffer& spectrum_buffer,
const EchoCanceller3Config::EchoModel& echo_model,
int filter_delay_blocks,
int* idx_start,
int* idx_stop) {
RTC_DCHECK(idx_start);
RTC_DCHECK(idx_stop);
size_t window_start;
size_t window_end;
window_start =
std::max(0, filter_delay_blocks -
static_cast<int>(echo_model.render_pre_window_size));
window_end = filter_delay_blocks +
static_cast<int>(echo_model.render_post_window_size);
*idx_start = spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_start);
*idx_stop = spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_end + 1);
}
} // namespace
ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config)
: config_(config) {
if (config_.ep_strength.reverb_based_on_render) {
echo_reverb_.reset(new ReverbModel());
} else {
echo_reverb_fallback.reset(
new ReverbModelFallback(config_.filter.main.length_blocks));
}
Reset();
}
ResidualEchoEstimator::~ResidualEchoEstimator() = default;
void ResidualEchoEstimator::Estimate(
const AecState& aec_state,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
const std::array<float, kFftLengthBy2Plus1>& Y2,
std::array<float, kFftLengthBy2Plus1>* R2) {
RTC_DCHECK(R2);
// Estimate the power of the stationary noise in the render signal.
RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_);
// Estimate the residual echo power.
if (aec_state.UsableLinearEstimate()) {
LinearEstimate(S2_linear, aec_state.Erle(), aec_state.ErleUncertainty(),
R2);
// When there is saturated echo, assume the same spectral content as is
// present in the microphone signal.
if (aec_state.SaturatedEcho()) {
std::copy(Y2.begin(), Y2.end(), R2->begin());
}
// Adds the estimated unmodelled echo power to the residual echo power
// estimate.
if (echo_reverb_) {
echo_reverb_->AddReverb(
render_buffer.Spectrum(aec_state.FilterLengthBlocks() + 1),
aec_state.GetReverbFrequencyResponse(), aec_state.ReverbDecay(), *R2);
} else {
RTC_DCHECK(echo_reverb_fallback);
echo_reverb_fallback->AddEchoReverb(S2_linear,
aec_state.FilterDelayBlocks(),
aec_state.ReverbDecay(), R2);
}
} else {
// Estimate the echo generating signal power.
std::array<float, kFftLengthBy2Plus1> X2;
EchoGeneratingPower(render_buffer.GetSpectrumBuffer(), config_.echo_model,
aec_state.FilterDelayBlocks(),
!aec_state.UseStationaryProperties(), &X2);
// Subtract the stationary noise power to avoid stationary noise causing
// excessive echo suppression.
std::transform(X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(),
[&](float a, float b) {
return std::max(
0.f, a - config_.echo_model.stationary_gate_slope * b);
});
float echo_path_gain;
echo_path_gain =
aec_state.TransparentMode() ? 0.01f : config_.ep_strength.default_gain;
NonLinearEstimate(echo_path_gain, X2, R2);
// When there is saturated echo, assume the same spectral content as is
// present in the microphone signal.
if (aec_state.SaturatedEcho()) {
std::copy(Y2.begin(), Y2.end(), R2->begin());
}
if (!(aec_state.TransparentMode())) {
if (echo_reverb_) {
echo_reverb_->AddReverbNoFreqShaping(
render_buffer.Spectrum(aec_state.FilterDelayBlocks() + 1),
echo_path_gain * echo_path_gain, aec_state.ReverbDecay(), *R2);
} else {
RTC_DCHECK(echo_reverb_fallback);
echo_reverb_fallback->AddEchoReverb(*R2,
config_.filter.main.length_blocks,
aec_state.ReverbDecay(), R2);
}
}
}
if (aec_state.UseStationaryProperties()) {
// Scale the echo according to echo audibility.
std::array<float, kFftLengthBy2Plus1> residual_scaling;
aec_state.GetResidualEchoScaling(residual_scaling);
for (size_t k = 0; k < R2->size(); ++k) {
(*R2)[k] *= residual_scaling[k];
}
}
}
void ResidualEchoEstimator::Reset() {
if (echo_reverb_) {
echo_reverb_->Reset();
} else {
RTC_DCHECK(echo_reverb_fallback);
echo_reverb_fallback->Reset();
}
X2_noise_floor_counter_.fill(config_.echo_model.noise_floor_hold);
X2_noise_floor_.fill(config_.echo_model.min_noise_floor_power);
}
void ResidualEchoEstimator::LinearEstimate(
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
const std::array<float, kFftLengthBy2Plus1>& erle,
absl::optional<float> erle_uncertainty,
std::array<float, kFftLengthBy2Plus1>* R2) {
if (erle_uncertainty) {
for (size_t k = 0; k < R2->size(); ++k) {
(*R2)[k] = S2_linear[k] * *erle_uncertainty;
}
} else {
std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
[](float a, float b) {
RTC_DCHECK_LT(0.f, a);
return b / a;
});
}
}
void ResidualEchoEstimator::NonLinearEstimate(
float echo_path_gain,
const std::array<float, kFftLengthBy2Plus1>& X2,
std::array<float, kFftLengthBy2Plus1>* R2) {
// Compute preliminary residual echo.
std::transform(X2.begin(), X2.end(), R2->begin(), [echo_path_gain](float a) {
return a * echo_path_gain * echo_path_gain;
});
}
void ResidualEchoEstimator::EchoGeneratingPower(
const VectorBuffer& spectrum_buffer,
const EchoCanceller3Config::EchoModel& echo_model,
int filter_delay_blocks,
bool apply_noise_gating,
std::array<float, kFftLengthBy2Plus1>* X2) const {
int idx_stop, idx_start;
RTC_DCHECK(X2);
GetRenderIndexesToAnalyze(spectrum_buffer, config_.echo_model,
filter_delay_blocks, &idx_start, &idx_stop);
X2->fill(0.f);
for (int k = idx_start; k != idx_stop; k = spectrum_buffer.IncIndex(k)) {
std::transform(X2->begin(), X2->end(), spectrum_buffer.buffer[k].begin(),
X2->begin(),
[](float a, float b) { return std::max(a, b); });
}
if (apply_noise_gating) {
// Apply soft noise gate.
std::for_each(X2->begin(), X2->end(), [&](float& a) {
if (config_.echo_model.noise_gate_power > a) {
a = std::max(0.f, a - config_.echo_model.noise_gate_slope *
(config_.echo_model.noise_gate_power - a));
}
});
}
}
void ResidualEchoEstimator::RenderNoisePower(
const RenderBuffer& render_buffer,
std::array<float, kFftLengthBy2Plus1>* X2_noise_floor,
std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) const {
RTC_DCHECK(X2_noise_floor);
RTC_DCHECK(X2_noise_floor_counter);
const auto render_power = render_buffer.Spectrum(0);
RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size());
RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size());
// Estimate the stationary noise power in a minimum statistics manner.
for (size_t k = 0; k < render_power.size(); ++k) {
// Decrease rapidly.
if (render_power[k] < (*X2_noise_floor)[k]) {
(*X2_noise_floor)[k] = render_power[k];
(*X2_noise_floor_counter)[k] = 0;
} else {
// Increase in a delayed, leaky manner.
if ((*X2_noise_floor_counter)[k] >=
static_cast<int>(config_.echo_model.noise_floor_hold)) {
(*X2_noise_floor)[k] =
std::max((*X2_noise_floor)[k] * 1.1f,
config_.echo_model.min_noise_floor_power);
} else {
++(*X2_noise_floor_counter)[k];
}
}
}
}
} // namespace webrtc