| /* |
| * Copyright 2011 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <random> |
| |
| #include "rtc_base/rolling_accumulator.h" |
| |
| #include "test/gtest.h" |
| |
| namespace rtc { |
| |
| namespace { |
| |
| const double kLearningRate = 0.5; |
| |
| // Add |n| samples drawn from uniform distribution in [a;b]. |
| void FillStatsFromUniformDistribution(RollingAccumulator<double>& stats, |
| int n, |
| double a, |
| double b) { |
| std::mt19937 gen{std::random_device()()}; |
| std::uniform_real_distribution<> dis(a, b); |
| |
| for (int i = 1; i <= n; i++) { |
| stats.AddSample(dis(gen)); |
| } |
| } |
| } // namespace |
| |
| TEST(RollingAccumulatorTest, ZeroSamples) { |
| RollingAccumulator<int> accum(10); |
| |
| EXPECT_EQ(0U, accum.count()); |
| EXPECT_DOUBLE_EQ(0.0, accum.ComputeMean()); |
| EXPECT_DOUBLE_EQ(0.0, accum.ComputeVariance()); |
| EXPECT_EQ(0, accum.ComputeMin()); |
| EXPECT_EQ(0, accum.ComputeMax()); |
| } |
| |
| TEST(RollingAccumulatorTest, SomeSamples) { |
| RollingAccumulator<int> accum(10); |
| for (int i = 0; i < 4; ++i) { |
| accum.AddSample(i); |
| } |
| |
| EXPECT_EQ(4U, accum.count()); |
| EXPECT_DOUBLE_EQ(1.5, accum.ComputeMean()); |
| EXPECT_NEAR(2.26666, accum.ComputeWeightedMean(kLearningRate), 0.01); |
| EXPECT_DOUBLE_EQ(1.25, accum.ComputeVariance()); |
| EXPECT_EQ(0, accum.ComputeMin()); |
| EXPECT_EQ(3, accum.ComputeMax()); |
| } |
| |
| TEST(RollingAccumulatorTest, RollingSamples) { |
| RollingAccumulator<int> accum(10); |
| for (int i = 0; i < 12; ++i) { |
| accum.AddSample(i); |
| } |
| |
| EXPECT_EQ(10U, accum.count()); |
| EXPECT_DOUBLE_EQ(6.5, accum.ComputeMean()); |
| EXPECT_NEAR(10.0, accum.ComputeWeightedMean(kLearningRate), 0.01); |
| EXPECT_NEAR(9.0, accum.ComputeVariance(), 1.0); |
| EXPECT_EQ(2, accum.ComputeMin()); |
| EXPECT_EQ(11, accum.ComputeMax()); |
| } |
| |
| TEST(RollingAccumulatorTest, ResetSamples) { |
| RollingAccumulator<int> accum(10); |
| |
| for (int i = 0; i < 10; ++i) { |
| accum.AddSample(100); |
| } |
| EXPECT_EQ(10U, accum.count()); |
| EXPECT_DOUBLE_EQ(100.0, accum.ComputeMean()); |
| EXPECT_EQ(100, accum.ComputeMin()); |
| EXPECT_EQ(100, accum.ComputeMax()); |
| |
| accum.Reset(); |
| EXPECT_EQ(0U, accum.count()); |
| |
| for (int i = 0; i < 5; ++i) { |
| accum.AddSample(i); |
| } |
| |
| EXPECT_EQ(5U, accum.count()); |
| EXPECT_DOUBLE_EQ(2.0, accum.ComputeMean()); |
| EXPECT_EQ(0, accum.ComputeMin()); |
| EXPECT_EQ(4, accum.ComputeMax()); |
| } |
| |
| TEST(RollingAccumulatorTest, RollingSamplesDouble) { |
| RollingAccumulator<double> accum(10); |
| for (int i = 0; i < 23; ++i) { |
| accum.AddSample(5 * i); |
| } |
| |
| EXPECT_EQ(10u, accum.count()); |
| EXPECT_DOUBLE_EQ(87.5, accum.ComputeMean()); |
| EXPECT_NEAR(105.049, accum.ComputeWeightedMean(kLearningRate), 0.1); |
| EXPECT_NEAR(229.166667, accum.ComputeVariance(), 25); |
| EXPECT_DOUBLE_EQ(65.0, accum.ComputeMin()); |
| EXPECT_DOUBLE_EQ(110.0, accum.ComputeMax()); |
| } |
| |
| TEST(RollingAccumulatorTest, ComputeWeightedMeanCornerCases) { |
| RollingAccumulator<int> accum(10); |
| EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(kLearningRate)); |
| EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(0.0)); |
| EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(1.1)); |
| |
| for (int i = 0; i < 8; ++i) { |
| accum.AddSample(i); |
| } |
| |
| EXPECT_DOUBLE_EQ(3.5, accum.ComputeMean()); |
| EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(0)); |
| EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(1.1)); |
| EXPECT_NEAR(6.0, accum.ComputeWeightedMean(kLearningRate), 0.1); |
| } |
| |
| TEST(RollingAccumulatorTest, VarianceFromUniformDistribution) { |
| // Check variance converge to 1/12 for [0;1) uniform distribution. |
| // Acts as a sanity check for NumericStabilityForVariance test. |
| RollingAccumulator<double> stats(/*max_count=*/0.5e6); |
| FillStatsFromUniformDistribution(stats, 1e6, 0, 1); |
| |
| EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); |
| } |
| |
| TEST(RollingAccumulatorTest, NumericStabilityForVariance) { |
| // Same test as VarianceFromUniformDistribution, |
| // except the range is shifted to [1e9;1e9+1). |
| // Variance should also converge to 1/12. |
| // NB: Although we lose precision for the samples themselves, the fractional |
| // part still enjoys 22 bits of mantissa and errors should even out, |
| // so that couldn't explain a mismatch. |
| RollingAccumulator<double> stats(/*max_count=*/0.5e6); |
| FillStatsFromUniformDistribution(stats, 1e6, 1e9, 1e9 + 1); |
| |
| EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); |
| } |
| } // namespace rtc |