blob: 6562f549e1b32a4a561d89548e6f61354730ee2d [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <math.h>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <utility>
#include "call/call.h"
#include "call/fake_network_pipe.h"
#include "modules/rtp_rtcp/include/rtp_header_parser.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
constexpr int64_t kDefaultProcessIntervalMs = 5;
struct PacketArrivalTimeComparator {
bool operator()(const NetworkPacket& p1, const NetworkPacket& p2) {
return p1.arrival_time() < p2.arrival_time();
}
};
} // namespace
NetworkPacket::NetworkPacket(rtc::CopyOnWriteBuffer packet,
int64_t send_time,
int64_t arrival_time,
rtc::Optional<PacketOptions> packet_options,
bool is_rtcp,
MediaType media_type,
rtc::Optional<PacketTime> packet_time)
: packet_(std::move(packet)),
send_time_(send_time),
arrival_time_(arrival_time),
packet_options_(packet_options),
is_rtcp_(is_rtcp),
media_type_(media_type),
packet_time_(packet_time) {}
NetworkPacket::NetworkPacket(NetworkPacket&& o)
: packet_(std::move(o.packet_)),
send_time_(o.send_time_),
arrival_time_(o.arrival_time_),
packet_options_(o.packet_options_),
is_rtcp_(o.is_rtcp_),
media_type_(o.media_type_),
packet_time_(o.packet_time_) {}
NetworkPacket& NetworkPacket::operator=(NetworkPacket&& o) {
packet_ = std::move(o.packet_);
send_time_ = o.send_time_;
arrival_time_ = o.arrival_time_;
packet_options_ = o.packet_options_;
is_rtcp_ = o.is_rtcp_;
media_type_ = o.media_type_;
packet_time_ = o.packet_time_;
return *this;
}
DemuxerImpl::DemuxerImpl(const std::map<uint8_t, MediaType>& payload_type_map)
: packet_receiver_(nullptr), payload_type_map_(payload_type_map) {}
void DemuxerImpl::SetReceiver(PacketReceiver* receiver) {
packet_receiver_ = receiver;
}
void DemuxerImpl::DeliverPacket(const NetworkPacket* packet,
const PacketTime& packet_time) {
// No packet receiver means that this demuxer will terminate the flow of
// packets.
if (!packet_receiver_)
return;
const uint8_t* const packet_data = packet->data();
const size_t packet_length = packet->data_length();
MediaType media_type = MediaType::ANY;
if (!RtpHeaderParser::IsRtcp(packet_data, packet_length)) {
RTC_CHECK_GE(packet_length, 2);
const uint8_t payload_type = packet_data[1] & 0x7f;
std::map<uint8_t, MediaType>::const_iterator it =
payload_type_map_.find(payload_type);
RTC_CHECK(it != payload_type_map_.end())
<< "payload type " << static_cast<int>(payload_type) << " unknown.";
media_type = it->second;
}
packet_receiver_->DeliverPacket(
media_type, rtc::CopyOnWriteBuffer(packet_data, packet_length),
packet_time);
}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config)
: FakeNetworkPipe(clock, config, nullptr, 1) {}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config,
std::unique_ptr<Demuxer> demuxer)
: FakeNetworkPipe(clock, config, std::move(demuxer), 1) {}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config,
std::unique_ptr<Demuxer> demuxer,
uint64_t seed)
: clock_(clock),
demuxer_(std::move(demuxer)),
receiver_(nullptr),
transport_(nullptr),
random_(seed),
clock_offset_ms_(0),
config_(),
dropped_packets_(0),
sent_packets_(0),
total_packet_delay_(0),
bursting_(false),
next_process_time_(clock_->TimeInMilliseconds()),
last_log_time_(clock_->TimeInMilliseconds()) {
SetConfig(config);
}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config,
Transport* transport)
: clock_(clock),
receiver_(nullptr),
transport_(transport),
random_(1),
clock_offset_ms_(0),
config_(),
dropped_packets_(0),
sent_packets_(0),
total_packet_delay_(0),
bursting_(false),
next_process_time_(clock_->TimeInMilliseconds()),
last_log_time_(clock_->TimeInMilliseconds()) {
SetConfig(config);
}
FakeNetworkPipe::~FakeNetworkPipe() = default;
void FakeNetworkPipe::SetReceiver(PacketReceiver* receiver) {
rtc::CritScope crit(&config_lock_);
if (demuxer_)
demuxer_->SetReceiver(receiver);
receiver_ = receiver;
}
bool FakeNetworkPipe::SendRtp(const uint8_t* packet,
size_t length,
const PacketOptions& options) {
RTC_DCHECK(HasTransport());
EnqueuePacket(rtc::CopyOnWriteBuffer(packet, length), options, false,
MediaType::ANY, rtc::nullopt);
return true;
}
bool FakeNetworkPipe::SendRtcp(const uint8_t* packet, size_t length) {
RTC_DCHECK(HasTransport());
EnqueuePacket(rtc::CopyOnWriteBuffer(packet, length), rtc::nullopt, true,
MediaType::ANY, rtc::nullopt);
return true;
}
PacketReceiver::DeliveryStatus FakeNetworkPipe::DeliverPacket(
MediaType media_type,
rtc::CopyOnWriteBuffer packet,
const PacketTime& packet_time) {
return EnqueuePacket(std::move(packet), rtc::nullopt, false, media_type,
packet_time)
? PacketReceiver::DELIVERY_OK
: PacketReceiver::DELIVERY_PACKET_ERROR;
}
void FakeNetworkPipe::SetClockOffset(int64_t offset_ms) {
rtc::CritScope crit(&config_lock_);
clock_offset_ms_ = offset_ms;
}
void FakeNetworkPipe::SetConfig(const FakeNetworkPipe::Config& config) {
rtc::CritScope crit(&config_lock_);
config_ = config; // Shallow copy of the struct.
double prob_loss = config.loss_percent / 100.0;
if (config_.avg_burst_loss_length == -1) {
// Uniform loss
prob_loss_bursting_ = prob_loss;
prob_start_bursting_ = prob_loss;
} else {
// Lose packets according to a gilbert-elliot model.
int avg_burst_loss_length = config.avg_burst_loss_length;
int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss));
RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length)
<< "For a total packet loss of " << config.loss_percent << "%% then"
<< " avg_burst_loss_length must be " << min_avg_burst_loss_length + 1
<< " or higher.";
prob_loss_bursting_ = (1.0 - 1.0 / avg_burst_loss_length);
prob_start_bursting_ = prob_loss / (1 - prob_loss) / avg_burst_loss_length;
}
}
void FakeNetworkPipe::SendPacket(const uint8_t* data, size_t data_length) {
RTC_DCHECK(HasDemuxer());
PacketTime packet_time(clock_->TimeInMicroseconds(), 0);
EnqueuePacket(rtc::CopyOnWriteBuffer(data, data_length), rtc::nullopt, false,
MediaType::ANY, packet_time);
}
bool FakeNetworkPipe::EnqueuePacket(rtc::CopyOnWriteBuffer packet,
rtc::Optional<PacketOptions> options,
bool is_rtcp,
MediaType media_type,
rtc::Optional<PacketTime> packet_time) {
Config config;
{
rtc::CritScope crit(&config_lock_);
config = config_;
}
rtc::CritScope crit(&process_lock_);
if (config.queue_length_packets > 0 &&
capacity_link_.size() >= config.queue_length_packets) {
// Too many packet on the link, drop this one.
++dropped_packets_;
return false;
}
int64_t time_now = clock_->TimeInMilliseconds();
// Delay introduced by the link capacity.
int64_t capacity_delay_ms = 0;
if (config.link_capacity_kbps > 0) {
const int bytes_per_millisecond = config.link_capacity_kbps / 8;
// To round to the closest millisecond we add half a milliseconds worth of
// bytes to the delay calculation.
capacity_delay_ms = (packet.size() + capacity_delay_error_bytes_ +
bytes_per_millisecond / 2) /
bytes_per_millisecond;
capacity_delay_error_bytes_ +=
packet.size() - capacity_delay_ms * bytes_per_millisecond;
}
int64_t network_start_time = time_now;
// Check if there already are packets on the link and change network start
// time forward if there is.
if (!capacity_link_.empty() &&
network_start_time < capacity_link_.back().arrival_time())
network_start_time = capacity_link_.back().arrival_time();
int64_t arrival_time = network_start_time + capacity_delay_ms;
capacity_link_.emplace(std::move(packet), time_now, arrival_time, options,
is_rtcp, media_type, packet_time);
return true;
}
float FakeNetworkPipe::PercentageLoss() {
rtc::CritScope crit(&process_lock_);
if (sent_packets_ == 0)
return 0;
return static_cast<float>(dropped_packets_) /
(sent_packets_ + dropped_packets_);
}
int FakeNetworkPipe::AverageDelay() {
rtc::CritScope crit(&process_lock_);
if (sent_packets_ == 0)
return 0;
return static_cast<int>(total_packet_delay_ /
static_cast<int64_t>(sent_packets_));
}
size_t FakeNetworkPipe::DroppedPackets() {
rtc::CritScope crit(&process_lock_);
return dropped_packets_;
}
size_t FakeNetworkPipe::SentPackets() {
rtc::CritScope crit(&process_lock_);
return sent_packets_;
}
void FakeNetworkPipe::Process() {
int64_t time_now = clock_->TimeInMilliseconds();
std::queue<NetworkPacket> packets_to_deliver;
Config config;
double prob_loss_bursting;
double prob_start_bursting;
{
rtc::CritScope crit(&config_lock_);
config = config_;
prob_loss_bursting = prob_loss_bursting_;
prob_start_bursting = prob_start_bursting_;
}
{
rtc::CritScope crit(&process_lock_);
if (time_now - last_log_time_ > 5000) {
int64_t queueing_delay_ms = 0;
if (!capacity_link_.empty()) {
queueing_delay_ms = time_now - capacity_link_.front().send_time();
}
RTC_LOG(LS_INFO) << "Network queue: " << queueing_delay_ms << " ms.";
last_log_time_ = time_now;
}
// Check the capacity link first.
if (!capacity_link_.empty()) {
int64_t last_arrival_time =
delay_link_.empty() ? -1 : delay_link_.back().arrival_time();
bool needs_sort = false;
while (!capacity_link_.empty() &&
time_now >= capacity_link_.front().arrival_time()) {
// Time to get this packet.
NetworkPacket packet = std::move(capacity_link_.front());
capacity_link_.pop();
// Drop packets at an average rate of |config_.loss_percent| with
// and average loss burst length of |config_.avg_burst_loss_length|.
if ((bursting_ && random_.Rand<double>() < prob_loss_bursting) ||
(!bursting_ && random_.Rand<double>() < prob_start_bursting)) {
bursting_ = true;
continue;
} else {
bursting_ = false;
}
int arrival_time_jitter = random_.Gaussian(
config.queue_delay_ms, config.delay_standard_deviation_ms);
// If reordering is not allowed then adjust arrival_time_jitter
// to make sure all packets are sent in order.
if (!config.allow_reordering && !delay_link_.empty() &&
packet.arrival_time() + arrival_time_jitter < last_arrival_time) {
arrival_time_jitter = last_arrival_time - packet.arrival_time();
}
packet.IncrementArrivalTime(arrival_time_jitter);
if (packet.arrival_time() >= last_arrival_time) {
last_arrival_time = packet.arrival_time();
} else {
needs_sort = true;
}
delay_link_.emplace_back(std::move(packet));
}
if (needs_sort) {
// Packet(s) arrived out of order, make sure list is sorted.
std::sort(delay_link_.begin(), delay_link_.end(),
PacketArrivalTimeComparator());
}
}
// Check the extra delay queue.
while (!delay_link_.empty() &&
time_now >= delay_link_.front().arrival_time()) {
// Deliver this packet.
NetworkPacket packet(std::move(delay_link_.front()));
delay_link_.pop_front();
// |time_now| might be later than when the packet should have arrived, due
// to NetworkProcess being called too late. For stats, use the time it
// should have been on the link.
total_packet_delay_ += packet.arrival_time() - packet.send_time();
packets_to_deliver.push(std::move(packet));
}
sent_packets_ += packets_to_deliver.size();
}
rtc::CritScope crit(&config_lock_);
while (!packets_to_deliver.empty()) {
NetworkPacket packet = std::move(packets_to_deliver.front());
packets_to_deliver.pop();
DeliverPacket(&packet);
}
next_process_time_ = !delay_link_.empty()
? delay_link_.begin()->arrival_time()
: time_now + kDefaultProcessIntervalMs;
}
void FakeNetworkPipe::DeliverPacket(NetworkPacket* packet) {
if (transport_) {
RTC_DCHECK(!receiver_);
RTC_DCHECK(!demuxer_);
if (packet->is_rtcp()) {
transport_->SendRtcp(packet->data(), packet->data_length());
} else {
transport_->SendRtp(packet->data(), packet->data_length(),
packet->packet_options());
}
} else {
PacketTime packet_time = packet->packet_time();
if (packet_time.timestamp != -1) {
int64_t queue_time = packet->arrival_time() - packet->send_time();
RTC_CHECK(queue_time >= 0);
packet_time.timestamp += (queue_time * 1000);
packet_time.timestamp += (clock_offset_ms_ * 1000);
}
if (demuxer_) {
demuxer_->DeliverPacket(packet, packet_time);
} else if (receiver_) {
receiver_->DeliverPacket(packet->media_type(),
std::move(*packet->raw_packet()), packet_time);
}
}
}
int64_t FakeNetworkPipe::TimeUntilNextProcess() {
rtc::CritScope crit(&process_lock_);
return std::max<int64_t>(next_process_time_ - clock_->TimeInMilliseconds(),
0);
}
bool FakeNetworkPipe::HasTransport() const {
rtc::CritScope crit(&config_lock_);
return transport_ != nullptr;
}
bool FakeNetworkPipe::HasDemuxer() const {
rtc::CritScope crit(&config_lock_);
return demuxer_ != nullptr;
}
void FakeNetworkPipe::DeliverPacketWithLock(NetworkPacket* packet) {
rtc::CritScope crit(&config_lock_);
DeliverPacket(packet);
}
void FakeNetworkPipe::ResetStats() {
rtc::CritScope crit(&process_lock_);
dropped_packets_ = 0;
sent_packets_ = 0;
total_packet_delay_ = 0;
}
int FakeNetworkPipe::GetConfigCapacityKbps() const {
rtc::CritScope crit(&config_lock_);
return config_.link_capacity_kbps;
}
void FakeNetworkPipe::AddToPacketDropCount() {
rtc::CritScope crit(&process_lock_);
++dropped_packets_;
}
void FakeNetworkPipe::AddToPacketSentCount(int count) {
rtc::CritScope crit(&process_lock_);
sent_packets_ += count;
}
void FakeNetworkPipe::AddToTotalDelay(int delay_ms) {
rtc::CritScope crit(&process_lock_);
total_packet_delay_ += delay_ms;
}
int64_t FakeNetworkPipe::GetTimeInMilliseconds() const {
return clock_->TimeInMilliseconds();
}
bool FakeNetworkPipe::IsRandomLoss(double prob_loss) {
return random_.Rand<double>() < prob_loss;
}
bool FakeNetworkPipe::ShouldProcess(int64_t time_now) const {
return time_now >= next_process_time_;
}
void FakeNetworkPipe::SetTimeToNextProcess(int64_t skip_ms) {
next_process_time_ += skip_ms;
}
} // namespace webrtc