| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/audio_processing/utility/delay_estimator.h" |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <algorithm> |
| |
| // Number of right shifts for scaling is linearly depending on number of bits in |
| // the far-end binary spectrum. |
| static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum. |
| static const int kShiftsLinearSlope = 3; |
| |
| static const int32_t kProbabilityOffset = 1024; // 2 in Q9. |
| static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9. |
| static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9. |
| |
| // Robust validation settings |
| static const float kHistogramMax = 3000.f; |
| static const float kLastHistogramMax = 250.f; |
| static const float kMinHistogramThreshold = 1.5f; |
| static const int kMinRequiredHits = 10; |
| static const int kMaxHitsWhenPossiblyNonCausal = 10; |
| static const int kMaxHitsWhenPossiblyCausal = 1000; |
| static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0. |
| static const float kFractionSlope = 0.05f; |
| static const float kMinFractionWhenPossiblyCausal = 0.5f; |
| static const float kMinFractionWhenPossiblyNonCausal = 0.25f; |
| |
| // Counts and returns number of bits of a 32-bit word. |
| static int BitCount(uint32_t u32) { |
| uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) - |
| ((u32 >> 2) & 011111111111); |
| tmp = ((tmp + (tmp >> 3)) & 030707070707); |
| tmp = (tmp + (tmp >> 6)); |
| tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; |
| |
| return ((int) tmp); |
| } |
| |
| // Compares the |binary_vector| with all rows of the |binary_matrix| and counts |
| // per row the number of times they have the same value. |
| // |
| // Inputs: |
| // - binary_vector : binary "vector" stored in a long |
| // - binary_matrix : binary "matrix" stored as a vector of long |
| // - matrix_size : size of binary "matrix" |
| // |
| // Output: |
| // - bit_counts : "Vector" stored as a long, containing for each |
| // row the number of times the matrix row and the |
| // input vector have the same value |
| // |
| static void BitCountComparison(uint32_t binary_vector, |
| const uint32_t* binary_matrix, |
| int matrix_size, |
| int32_t* bit_counts) { |
| int n = 0; |
| |
| // Compare |binary_vector| with all rows of the |binary_matrix| |
| for (; n < matrix_size; n++) { |
| bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]); |
| } |
| } |
| |
| // Collects necessary statistics for the HistogramBasedValidation(). This |
| // function has to be called prior to calling HistogramBasedValidation(). The |
| // statistics updated and used by the HistogramBasedValidation() are: |
| // 1. the number of |candidate_hits|, which states for how long we have had the |
| // same |candidate_delay| |
| // 2. the |histogram| of candidate delays over time. This histogram is |
| // weighted with respect to a reliability measure and time-varying to cope |
| // with possible delay shifts. |
| // For further description see commented code. |
| // |
| // Inputs: |
| // - candidate_delay : The delay to validate. |
| // - valley_depth_q14 : The cost function has a valley/minimum at the |
| // |candidate_delay| location. |valley_depth_q14| is the |
| // cost function difference between the minimum and |
| // maximum locations. The value is in the Q14 domain. |
| // - valley_level_q14 : Is the cost function value at the minimum, in Q14. |
| static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self, |
| int candidate_delay, |
| int32_t valley_depth_q14, |
| int32_t valley_level_q14) { |
| const float valley_depth = valley_depth_q14 * kQ14Scaling; |
| float decrease_in_last_set = valley_depth; |
| const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ? |
| kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal; |
| int i = 0; |
| |
| assert(self->history_size == self->farend->history_size); |
| // Reset |candidate_hits| if we have a new candidate. |
| if (candidate_delay != self->last_candidate_delay) { |
| self->candidate_hits = 0; |
| self->last_candidate_delay = candidate_delay; |
| } |
| self->candidate_hits++; |
| |
| // The |histogram| is updated differently across the bins. |
| // 1. The |candidate_delay| histogram bin is increased with the |
| // |valley_depth|, which is a simple measure of how reliable the |
| // |candidate_delay| is. The histogram is not increased above |
| // |kHistogramMax|. |
| self->histogram[candidate_delay] += valley_depth; |
| if (self->histogram[candidate_delay] > kHistogramMax) { |
| self->histogram[candidate_delay] = kHistogramMax; |
| } |
| // 2. The histogram bins in the neighborhood of |candidate_delay| are |
| // unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}. |
| // 3. The histogram bins in the neighborhood of |last_delay| are decreased |
| // with |decrease_in_last_set|. This value equals the difference between |
| // the cost function values at the locations |candidate_delay| and |
| // |last_delay| until we reach |max_hits_for_slow_change| consecutive hits |
| // at the |candidate_delay|. If we exceed this amount of hits the |
| // |candidate_delay| is a "potential" candidate and we start decreasing |
| // these histogram bins more rapidly with |valley_depth|. |
| if (self->candidate_hits < max_hits_for_slow_change) { |
| decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] - |
| valley_level_q14) * kQ14Scaling; |
| } |
| // 4. All other bins are decreased with |valley_depth|. |
| // TODO(bjornv): Investigate how to make this loop more efficient. Split up |
| // the loop? Remove parts that doesn't add too much. |
| for (i = 0; i < self->history_size; ++i) { |
| int is_in_last_set = (i >= self->last_delay - 2) && |
| (i <= self->last_delay + 1) && (i != candidate_delay); |
| int is_in_candidate_set = (i >= candidate_delay - 2) && |
| (i <= candidate_delay + 1); |
| self->histogram[i] -= decrease_in_last_set * is_in_last_set + |
| valley_depth * (!is_in_last_set && !is_in_candidate_set); |
| // 5. No histogram bin can go below 0. |
| if (self->histogram[i] < 0) { |
| self->histogram[i] = 0; |
| } |
| } |
| } |
| |
| // Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(), |
| // based on a mix of counting concurring hits with a modified histogram |
| // of recent delay estimates. In brief a candidate is valid (returns 1) if it |
| // is the most likely according to the histogram. There are a couple of |
| // exceptions that are worth mentioning: |
| // 1. If the |candidate_delay| < |last_delay| it can be that we are in a |
| // non-causal state, breaking a possible echo control algorithm. Hence, we |
| // open up for a quicker change by allowing the change even if the |
| // |candidate_delay| is not the most likely one according to the histogram. |
| // 2. There's a minimum number of hits (kMinRequiredHits) and the histogram |
| // value has to reached a minimum (kMinHistogramThreshold) to be valid. |
| // 3. The action is also depending on the filter length used for echo control. |
| // If the delay difference is larger than what the filter can capture, we |
| // also move quicker towards a change. |
| // For further description see commented code. |
| // |
| // Input: |
| // - candidate_delay : The delay to validate. |
| // |
| // Return value: |
| // - is_histogram_valid : 1 - The |candidate_delay| is valid. |
| // 0 - Otherwise. |
| static int HistogramBasedValidation(const BinaryDelayEstimator* self, |
| int candidate_delay) { |
| float fraction = 1.f; |
| float histogram_threshold = self->histogram[self->compare_delay]; |
| const int delay_difference = candidate_delay - self->last_delay; |
| int is_histogram_valid = 0; |
| |
| // The histogram based validation of |candidate_delay| is done by comparing |
| // the |histogram| at bin |candidate_delay| with a |histogram_threshold|. |
| // This |histogram_threshold| equals a |fraction| of the |histogram| at bin |
| // |last_delay|. The |fraction| is a piecewise linear function of the |
| // |delay_difference| between the |candidate_delay| and the |last_delay| |
| // allowing for a quicker move if |
| // i) a potential echo control filter can not handle these large differences. |
| // ii) keeping |last_delay| instead of updating to |candidate_delay| could |
| // force an echo control into a non-causal state. |
| // We further require the histogram to have reached a minimum value of |
| // |kMinHistogramThreshold|. In addition, we also require the number of |
| // |candidate_hits| to be more than |kMinRequiredHits| to remove spurious |
| // values. |
| |
| // Calculate a comparison histogram value (|histogram_threshold|) that is |
| // depending on the distance between the |candidate_delay| and |last_delay|. |
| // TODO(bjornv): How much can we gain by turning the fraction calculation |
| // into tables? |
| if (delay_difference > self->allowed_offset) { |
| fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset); |
| fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction : |
| kMinFractionWhenPossiblyCausal); |
| } else if (delay_difference < 0) { |
| fraction = kMinFractionWhenPossiblyNonCausal - |
| kFractionSlope * delay_difference; |
| fraction = (fraction > 1.f ? 1.f : fraction); |
| } |
| histogram_threshold *= fraction; |
| histogram_threshold = (histogram_threshold > kMinHistogramThreshold ? |
| histogram_threshold : kMinHistogramThreshold); |
| |
| is_histogram_valid = |
| (self->histogram[candidate_delay] >= histogram_threshold) && |
| (self->candidate_hits > kMinRequiredHits); |
| |
| return is_histogram_valid; |
| } |
| |
| // Performs a robust validation of the |candidate_delay| estimated in |
| // WebRtc_ProcessBinarySpectrum(). The algorithm takes the |
| // |is_instantaneous_valid| and the |is_histogram_valid| and combines them |
| // into a robust validation. The HistogramBasedValidation() has to be called |
| // prior to this call. |
| // For further description on how the combination is done, see commented code. |
| // |
| // Inputs: |
| // - candidate_delay : The delay to validate. |
| // - is_instantaneous_valid : The instantaneous validation performed in |
| // WebRtc_ProcessBinarySpectrum(). |
| // - is_histogram_valid : The histogram based validation. |
| // |
| // Return value: |
| // - is_robust : 1 - The candidate_delay is valid according to a |
| // combination of the two inputs. |
| // : 0 - Otherwise. |
| static int RobustValidation(const BinaryDelayEstimator* self, |
| int candidate_delay, |
| int is_instantaneous_valid, |
| int is_histogram_valid) { |
| int is_robust = 0; |
| |
| // The final robust validation is based on the two algorithms; 1) the |
| // |is_instantaneous_valid| and 2) the histogram based with result stored in |
| // |is_histogram_valid|. |
| // i) Before we actually have a valid estimate (|last_delay| == -2), we say |
| // a candidate is valid if either algorithm states so |
| // (|is_instantaneous_valid| OR |is_histogram_valid|). |
| is_robust = (self->last_delay < 0) && |
| (is_instantaneous_valid || is_histogram_valid); |
| // ii) Otherwise, we need both algorithms to be certain |
| // (|is_instantaneous_valid| AND |is_histogram_valid|) |
| is_robust |= is_instantaneous_valid && is_histogram_valid; |
| // iii) With one exception, i.e., the histogram based algorithm can overrule |
| // the instantaneous one if |is_histogram_valid| = 1 and the histogram |
| // is significantly strong. |
| is_robust |= is_histogram_valid && |
| (self->histogram[candidate_delay] > self->last_delay_histogram); |
| |
| return is_robust; |
| } |
| |
| void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { |
| |
| if (self == NULL) { |
| return; |
| } |
| |
| free(self->binary_far_history); |
| self->binary_far_history = NULL; |
| |
| free(self->far_bit_counts); |
| self->far_bit_counts = NULL; |
| |
| free(self); |
| } |
| |
| BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend( |
| int history_size) { |
| BinaryDelayEstimatorFarend* self = NULL; |
| |
| if (history_size > 1) { |
| // Sanity conditions fulfilled. |
| self = static_cast<BinaryDelayEstimatorFarend*>( |
| malloc(sizeof(BinaryDelayEstimatorFarend))); |
| } |
| if (self == NULL) { |
| return NULL; |
| } |
| |
| self->history_size = 0; |
| self->binary_far_history = NULL; |
| self->far_bit_counts = NULL; |
| if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) { |
| WebRtc_FreeBinaryDelayEstimatorFarend(self); |
| self = NULL; |
| } |
| return self; |
| } |
| |
| int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self, |
| int history_size) { |
| assert(self != NULL); |
| // (Re-)Allocate memory for history buffers. |
| self->binary_far_history = static_cast<uint32_t*>( |
| realloc(self->binary_far_history, |
| history_size * sizeof(*self->binary_far_history))); |
| self->far_bit_counts = static_cast<int*>( |
| realloc(self->far_bit_counts, |
| history_size * sizeof(*self->far_bit_counts))); |
| if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) { |
| history_size = 0; |
| } |
| // Fill with zeros if we have expanded the buffers. |
| if (history_size > self->history_size) { |
| int size_diff = history_size - self->history_size; |
| memset(&self->binary_far_history[self->history_size], |
| 0, |
| sizeof(*self->binary_far_history) * size_diff); |
| memset(&self->far_bit_counts[self->history_size], |
| 0, |
| sizeof(*self->far_bit_counts) * size_diff); |
| } |
| self->history_size = history_size; |
| |
| return self->history_size; |
| } |
| |
| void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { |
| assert(self != NULL); |
| memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size); |
| memset(self->far_bit_counts, 0, sizeof(int) * self->history_size); |
| } |
| |
| void WebRtc_SoftResetBinaryDelayEstimatorFarend( |
| BinaryDelayEstimatorFarend* self, int delay_shift) { |
| int abs_shift = abs(delay_shift); |
| int shift_size = 0; |
| int dest_index = 0; |
| int src_index = 0; |
| int padding_index = 0; |
| |
| assert(self != NULL); |
| shift_size = self->history_size - abs_shift; |
| assert(shift_size > 0); |
| if (delay_shift == 0) { |
| return; |
| } else if (delay_shift > 0) { |
| dest_index = abs_shift; |
| } else if (delay_shift < 0) { |
| src_index = abs_shift; |
| padding_index = shift_size; |
| } |
| |
| // Shift and zero pad buffers. |
| memmove(&self->binary_far_history[dest_index], |
| &self->binary_far_history[src_index], |
| sizeof(*self->binary_far_history) * shift_size); |
| memset(&self->binary_far_history[padding_index], 0, |
| sizeof(*self->binary_far_history) * abs_shift); |
| memmove(&self->far_bit_counts[dest_index], |
| &self->far_bit_counts[src_index], |
| sizeof(*self->far_bit_counts) * shift_size); |
| memset(&self->far_bit_counts[padding_index], 0, |
| sizeof(*self->far_bit_counts) * abs_shift); |
| } |
| |
| void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle, |
| uint32_t binary_far_spectrum) { |
| assert(handle != NULL); |
| // Shift binary spectrum history and insert current |binary_far_spectrum|. |
| memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), |
| (handle->history_size - 1) * sizeof(uint32_t)); |
| handle->binary_far_history[0] = binary_far_spectrum; |
| |
| // Shift history of far-end binary spectrum bit counts and insert bit count |
| // of current |binary_far_spectrum|. |
| memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), |
| (handle->history_size - 1) * sizeof(int)); |
| handle->far_bit_counts[0] = BitCount(binary_far_spectrum); |
| } |
| |
| void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) { |
| |
| if (self == NULL) { |
| return; |
| } |
| |
| free(self->mean_bit_counts); |
| self->mean_bit_counts = NULL; |
| |
| free(self->bit_counts); |
| self->bit_counts = NULL; |
| |
| free(self->binary_near_history); |
| self->binary_near_history = NULL; |
| |
| free(self->histogram); |
| self->histogram = NULL; |
| |
| // BinaryDelayEstimator does not have ownership of |farend|, hence we do not |
| // free the memory here. That should be handled separately by the user. |
| self->farend = NULL; |
| |
| free(self); |
| } |
| |
| BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator( |
| BinaryDelayEstimatorFarend* farend, int max_lookahead) { |
| BinaryDelayEstimator* self = NULL; |
| |
| if ((farend != NULL) && (max_lookahead >= 0)) { |
| // Sanity conditions fulfilled. |
| self = static_cast<BinaryDelayEstimator*>( |
| malloc(sizeof(BinaryDelayEstimator))); |
| } |
| if (self == NULL) { |
| return NULL; |
| } |
| |
| self->farend = farend; |
| self->near_history_size = max_lookahead + 1; |
| self->history_size = 0; |
| self->robust_validation_enabled = 0; // Disabled by default. |
| self->allowed_offset = 0; |
| |
| self->lookahead = max_lookahead; |
| |
| // Allocate memory for spectrum and history buffers. |
| self->mean_bit_counts = NULL; |
| self->bit_counts = NULL; |
| self->histogram = NULL; |
| self->binary_near_history = static_cast<uint32_t*>( |
| malloc((max_lookahead + 1) * sizeof(*self->binary_near_history))); |
| if (self->binary_near_history == NULL || |
| WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) { |
| WebRtc_FreeBinaryDelayEstimator(self); |
| self = NULL; |
| } |
| |
| return self; |
| } |
| |
| int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self, |
| int history_size) { |
| BinaryDelayEstimatorFarend* far = self->farend; |
| // (Re-)Allocate memory for spectrum and history buffers. |
| if (history_size != far->history_size) { |
| // Only update far-end buffers if we need. |
| history_size = WebRtc_AllocateFarendBufferMemory(far, history_size); |
| } |
| // The extra array element in |mean_bit_counts| and |histogram| is a dummy |
| // element only used while |last_delay| == -2, i.e., before we have a valid |
| // estimate. |
| self->mean_bit_counts = static_cast<int32_t*>( |
| realloc(self->mean_bit_counts, |
| (history_size + 1) * sizeof(*self->mean_bit_counts))); |
| self->bit_counts = static_cast<int32_t*>( |
| realloc(self->bit_counts, history_size * sizeof(*self->bit_counts))); |
| self->histogram = static_cast<float*>( |
| realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram))); |
| |
| if ((self->mean_bit_counts == NULL) || |
| (self->bit_counts == NULL) || |
| (self->histogram == NULL)) { |
| history_size = 0; |
| } |
| // Fill with zeros if we have expanded the buffers. |
| if (history_size > self->history_size) { |
| int size_diff = history_size - self->history_size; |
| memset(&self->mean_bit_counts[self->history_size], |
| 0, |
| sizeof(*self->mean_bit_counts) * size_diff); |
| memset(&self->bit_counts[self->history_size], |
| 0, |
| sizeof(*self->bit_counts) * size_diff); |
| memset(&self->histogram[self->history_size], |
| 0, |
| sizeof(*self->histogram) * size_diff); |
| } |
| self->history_size = history_size; |
| |
| return self->history_size; |
| } |
| |
| void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) { |
| int i = 0; |
| assert(self != NULL); |
| |
| memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size); |
| memset(self->binary_near_history, |
| 0, |
| sizeof(uint32_t) * self->near_history_size); |
| for (i = 0; i <= self->history_size; ++i) { |
| self->mean_bit_counts[i] = (20 << 9); // 20 in Q9. |
| self->histogram[i] = 0.f; |
| } |
| self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9. |
| self->last_delay_probability = (int) kMaxBitCountsQ9; // 32 in Q9. |
| |
| // Default return value if we're unable to estimate. -1 is used for errors. |
| self->last_delay = -2; |
| |
| self->last_candidate_delay = -2; |
| self->compare_delay = self->history_size; |
| self->candidate_hits = 0; |
| self->last_delay_histogram = 0.f; |
| } |
| |
| int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self, |
| int delay_shift) { |
| int lookahead = 0; |
| assert(self != NULL); |
| lookahead = self->lookahead; |
| self->lookahead -= delay_shift; |
| if (self->lookahead < 0) { |
| self->lookahead = 0; |
| } |
| if (self->lookahead > self->near_history_size - 1) { |
| self->lookahead = self->near_history_size - 1; |
| } |
| return lookahead - self->lookahead; |
| } |
| |
| int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self, |
| uint32_t binary_near_spectrum) { |
| int i = 0; |
| int candidate_delay = -1; |
| int valid_candidate = 0; |
| |
| int32_t value_best_candidate = kMaxBitCountsQ9; |
| int32_t value_worst_candidate = 0; |
| int32_t valley_depth = 0; |
| |
| assert(self != NULL); |
| if (self->farend->history_size != self->history_size) { |
| // Non matching history sizes. |
| return -1; |
| } |
| if (self->near_history_size > 1) { |
| // If we apply lookahead, shift near-end binary spectrum history. Insert |
| // current |binary_near_spectrum| and pull out the delayed one. |
| memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]), |
| (self->near_history_size - 1) * sizeof(uint32_t)); |
| self->binary_near_history[0] = binary_near_spectrum; |
| binary_near_spectrum = self->binary_near_history[self->lookahead]; |
| } |
| |
| // Compare with delayed spectra and store the |bit_counts| for each delay. |
| BitCountComparison(binary_near_spectrum, self->farend->binary_far_history, |
| self->history_size, self->bit_counts); |
| |
| // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|. |
| for (i = 0; i < self->history_size; i++) { |
| // |bit_counts| is constrained to [0, 32], meaning we can smooth with a |
| // factor up to 2^26. We use Q9. |
| int32_t bit_count = (self->bit_counts[i] << 9); // Q9. |
| |
| // Update |mean_bit_counts| only when far-end signal has something to |
| // contribute. If |far_bit_counts| is zero the far-end signal is weak and |
| // we likely have a poor echo condition, hence don't update. |
| if (self->farend->far_bit_counts[i] > 0) { |
| // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|. |
| int shifts = kShiftsAtZero; |
| shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4; |
| WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i])); |
| } |
| } |
| |
| // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate| |
| // of |mean_bit_counts|. |
| for (i = 0; i < self->history_size; i++) { |
| if (self->mean_bit_counts[i] < value_best_candidate) { |
| value_best_candidate = self->mean_bit_counts[i]; |
| candidate_delay = i; |
| } |
| if (self->mean_bit_counts[i] > value_worst_candidate) { |
| value_worst_candidate = self->mean_bit_counts[i]; |
| } |
| } |
| valley_depth = value_worst_candidate - value_best_candidate; |
| |
| // The |value_best_candidate| is a good indicator on the probability of |
| // |candidate_delay| being an accurate delay (a small |value_best_candidate| |
| // means a good binary match). In the following sections we make a decision |
| // whether to update |last_delay| or not. |
| // 1) If the difference bit counts between the best and the worst delay |
| // candidates is too small we consider the situation to be unreliable and |
| // don't update |last_delay|. |
| // 2) If the situation is reliable we update |last_delay| if the value of the |
| // best candidate delay has a value less than |
| // i) an adaptive threshold |minimum_probability|, or |
| // ii) this corresponding value |last_delay_probability|, but updated at |
| // this time instant. |
| |
| // Update |minimum_probability|. |
| if ((self->minimum_probability > kProbabilityLowerLimit) && |
| (valley_depth > kProbabilityMinSpread)) { |
| // The "hard" threshold can't be lower than 17 (in Q9). |
| // The valley in the curve also has to be distinct, i.e., the |
| // difference between |value_worst_candidate| and |value_best_candidate| has |
| // to be large enough. |
| int32_t threshold = value_best_candidate + kProbabilityOffset; |
| if (threshold < kProbabilityLowerLimit) { |
| threshold = kProbabilityLowerLimit; |
| } |
| if (self->minimum_probability > threshold) { |
| self->minimum_probability = threshold; |
| } |
| } |
| // Update |last_delay_probability|. |
| // We use a Markov type model, i.e., a slowly increasing level over time. |
| self->last_delay_probability++; |
| // Validate |candidate_delay|. We have a reliable instantaneous delay |
| // estimate if |
| // 1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|) |
| // and |
| // 2) The depth of the valley is deep enough |
| // (|value_best_candidate| < |minimum_probability|) |
| // and deeper than the best estimate so far |
| // (|value_best_candidate| < |last_delay_probability|) |
| valid_candidate = ((valley_depth > kProbabilityOffset) && |
| ((value_best_candidate < self->minimum_probability) || |
| (value_best_candidate < self->last_delay_probability))); |
| |
| // Check for nonstationary farend signal. |
| const bool non_stationary_farend = |
| std::any_of(self->farend->far_bit_counts, |
| self->farend->far_bit_counts + self->history_size, |
| [](int a) { return a > 0; }); |
| |
| if (non_stationary_farend) { |
| // Only update the validation statistics when the farend is nonstationary |
| // as the underlying estimates are otherwise frozen. |
| UpdateRobustValidationStatistics(self, candidate_delay, valley_depth, |
| value_best_candidate); |
| } |
| |
| if (self->robust_validation_enabled) { |
| int is_histogram_valid = HistogramBasedValidation(self, candidate_delay); |
| valid_candidate = RobustValidation(self, candidate_delay, valid_candidate, |
| is_histogram_valid); |
| |
| } |
| |
| // Only update the delay estimate when the farend is nonstationary and when |
| // a valid delay candidate is available. |
| if (non_stationary_farend && valid_candidate) { |
| if (candidate_delay != self->last_delay) { |
| self->last_delay_histogram = |
| (self->histogram[candidate_delay] > kLastHistogramMax ? |
| kLastHistogramMax : self->histogram[candidate_delay]); |
| // Adjust the histogram if we made a change to |last_delay|, though it was |
| // not the most likely one according to the histogram. |
| if (self->histogram[candidate_delay] < |
| self->histogram[self->compare_delay]) { |
| self->histogram[self->compare_delay] = self->histogram[candidate_delay]; |
| } |
| } |
| self->last_delay = candidate_delay; |
| if (value_best_candidate < self->last_delay_probability) { |
| self->last_delay_probability = value_best_candidate; |
| } |
| self->compare_delay = self->last_delay; |
| } |
| |
| return self->last_delay; |
| } |
| |
| int WebRtc_binary_last_delay(BinaryDelayEstimator* self) { |
| assert(self != NULL); |
| return self->last_delay; |
| } |
| |
| float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) { |
| float quality = 0; |
| assert(self != NULL); |
| |
| if (self->robust_validation_enabled) { |
| // Simply a linear function of the histogram height at delay estimate. |
| quality = self->histogram[self->compare_delay] / kHistogramMax; |
| } else { |
| // Note that |last_delay_probability| states how deep the minimum of the |
| // cost function is, so it is rather an error probability. |
| quality = (float) (kMaxBitCountsQ9 - self->last_delay_probability) / |
| kMaxBitCountsQ9; |
| if (quality < 0) { |
| quality = 0; |
| } |
| } |
| return quality; |
| } |
| |
| void WebRtc_MeanEstimatorFix(int32_t new_value, |
| int factor, |
| int32_t* mean_value) { |
| int32_t diff = new_value - *mean_value; |
| |
| // mean_new = mean_value + ((new_value - mean_value) >> factor); |
| if (diff < 0) { |
| diff = -((-diff) >> factor); |
| } else { |
| diff = (diff >> factor); |
| } |
| *mean_value += diff; |
| } |