| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: inlined_vector.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file contains the declaration and definition of an "inlined |
| // vector" which behaves in an equivalent fashion to a `std::vector`, except |
| // that storage for small sequences of the vector are provided inline without |
| // requiring any heap allocation. |
| |
| // An `absl::InlinedVector<T,N>` specifies the size N at which to inline as one |
| // of its template parameters. Vectors of length <= N are provided inline. |
| // Typically N is very small (e.g., 4) so that sequences that are expected to be |
| // short do not require allocations. |
| |
| // An `absl::InlinedVector` does not usually require a specific allocator; if |
| // the inlined vector grows beyond its initial constraints, it will need to |
| // allocate (as any normal `std::vector` would) and it will generally use the |
| // default allocator in that case; optionally, a custom allocator may be |
| // specified using an `absl::InlinedVector<T,N,A>` construction. |
| |
| #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ |
| #define ABSL_CONTAINER_INLINED_VECTOR_H_ |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <cstring> |
| #include <initializer_list> |
| #include <iterator> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/algorithm/algorithm.h" |
| #include "absl/base/internal/throw_delegate.h" |
| #include "absl/base/optimization.h" |
| #include "absl/base/port.h" |
| #include "absl/memory/memory.h" |
| |
| namespace absl { |
| |
| // ----------------------------------------------------------------------------- |
| // InlinedVector |
| // ----------------------------------------------------------------------------- |
| // |
| // An `absl::InlinedVector` is designed to be a drop-in replacement for |
| // `std::vector` for use cases where the vector's size is sufficiently small |
| // that it can be inlined. If the inlined vector does grow beyond its estimated |
| // size, it will trigger an initial allocation on the heap, and will behave as a |
| // `std:vector`. The API of the `absl::InlinedVector` within this file is |
| // designed to cover the same API footprint as covered by `std::vector`. |
| template <typename T, size_t N, typename A = std::allocator<T> > |
| class InlinedVector { |
| using AllocatorTraits = std::allocator_traits<A>; |
| |
| public: |
| using allocator_type = A; |
| using value_type = typename allocator_type::value_type; |
| using pointer = typename allocator_type::pointer; |
| using const_pointer = typename allocator_type::const_pointer; |
| using reference = typename allocator_type::reference; |
| using const_reference = typename allocator_type::const_reference; |
| using size_type = typename allocator_type::size_type; |
| using difference_type = typename allocator_type::difference_type; |
| using iterator = pointer; |
| using const_iterator = const_pointer; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| |
| InlinedVector() noexcept(noexcept(allocator_type())) |
| : allocator_and_tag_(allocator_type()) {} |
| |
| explicit InlinedVector(const allocator_type& alloc) noexcept |
| : allocator_and_tag_(alloc) {} |
| |
| // Create a vector with n copies of value_type(). |
| explicit InlinedVector(size_type n) : allocator_and_tag_(allocator_type()) { |
| InitAssign(n); |
| } |
| |
| // Create a vector with n copies of elem |
| InlinedVector(size_type n, const value_type& elem, |
| const allocator_type& alloc = allocator_type()) |
| : allocator_and_tag_(alloc) { |
| InitAssign(n, elem); |
| } |
| |
| // Create and initialize with the elements [first .. last). |
| // The unused enable_if argument restricts this constructor so that it is |
| // elided when value_type is an integral type. This prevents ambiguous |
| // interpretation between a call to this constructor with two integral |
| // arguments and a call to the preceding (n, elem) constructor. |
| template <typename InputIterator> |
| InlinedVector( |
| InputIterator first, InputIterator last, |
| const allocator_type& alloc = allocator_type(), |
| typename std::enable_if<!std::is_integral<InputIterator>::value>::type* = |
| nullptr) |
| : allocator_and_tag_(alloc) { |
| AppendRange(first, last); |
| } |
| |
| InlinedVector(std::initializer_list<value_type> init, |
| const allocator_type& alloc = allocator_type()) |
| : allocator_and_tag_(alloc) { |
| AppendRange(init.begin(), init.end()); |
| } |
| |
| InlinedVector(const InlinedVector& v); |
| InlinedVector(const InlinedVector& v, const allocator_type& alloc); |
| |
| // This move constructor does not allocate and only moves the underlying |
| // objects, so its `noexcept` specification depends on whether moving the |
| // underlying objects can throw or not. We assume |
| // a) move constructors should only throw due to allocation failure and |
| // b) if `value_type`'s move constructor allocates, it uses the same |
| // allocation function as the `InlinedVector`'s allocator, so the move |
| // constructor is non-throwing if the allocator is non-throwing or |
| // `value_type`'s move constructor is specified as `noexcept`. |
| InlinedVector(InlinedVector&& v) noexcept( |
| absl::allocator_is_nothrow<allocator_type>::value || |
| std::is_nothrow_move_constructible<value_type>::value); |
| |
| // This move constructor allocates and also moves the underlying objects, so |
| // its `noexcept` specification depends on whether the allocation can throw |
| // and whether moving the underlying objects can throw. Based on the same |
| // assumptions above, the `noexcept` specification is dominated by whether the |
| // allocation can throw regardless of whether `value_type`'s move constructor |
| // is specified as `noexcept`. |
| InlinedVector(InlinedVector&& v, const allocator_type& alloc) noexcept( |
| absl::allocator_is_nothrow<allocator_type>::value); |
| |
| ~InlinedVector() { clear(); } |
| |
| InlinedVector& operator=(const InlinedVector& v) { |
| if (this == &v) { |
| return *this; |
| } |
| // Optimized to avoid reallocation. |
| // Prefer reassignment to copy construction for elements. |
| if (size() < v.size()) { // grow |
| reserve(v.size()); |
| std::copy(v.begin(), v.begin() + size(), begin()); |
| std::copy(v.begin() + size(), v.end(), std::back_inserter(*this)); |
| } else { // maybe shrink |
| erase(begin() + v.size(), end()); |
| std::copy(v.begin(), v.end(), begin()); |
| } |
| return *this; |
| } |
| |
| InlinedVector& operator=(InlinedVector&& v) { |
| if (this == &v) { |
| return *this; |
| } |
| if (v.allocated()) { |
| clear(); |
| tag().set_allocated_size(v.size()); |
| init_allocation(v.allocation()); |
| v.tag() = Tag(); |
| } else { |
| if (allocated()) clear(); |
| // Both are inlined now. |
| if (size() < v.size()) { |
| auto mid = std::make_move_iterator(v.begin() + size()); |
| std::copy(std::make_move_iterator(v.begin()), mid, begin()); |
| UninitializedCopy(mid, std::make_move_iterator(v.end()), end()); |
| } else { |
| auto new_end = std::copy(std::make_move_iterator(v.begin()), |
| std::make_move_iterator(v.end()), begin()); |
| Destroy(new_end, end()); |
| } |
| tag().set_inline_size(v.size()); |
| } |
| return *this; |
| } |
| |
| InlinedVector& operator=(std::initializer_list<value_type> init) { |
| AssignRange(init.begin(), init.end()); |
| return *this; |
| } |
| |
| // InlinedVector::assign() |
| // |
| // Replaces the contents of the inlined vector with copies of those in the |
| // iterator range [first, last). |
| template <typename InputIterator> |
| void assign( |
| InputIterator first, InputIterator last, |
| typename std::enable_if<!std::is_integral<InputIterator>::value>::type* = |
| nullptr) { |
| AssignRange(first, last); |
| } |
| |
| // Overload of `InlinedVector::assign()` to take values from elements of an |
| // initializer list |
| void assign(std::initializer_list<value_type> init) { |
| AssignRange(init.begin(), init.end()); |
| } |
| |
| // Overload of `InlinedVector::assign()` to replace the first `n` elements of |
| // the inlined vector with `elem` values. |
| void assign(size_type n, const value_type& elem) { |
| if (n <= size()) { // Possibly shrink |
| std::fill_n(begin(), n, elem); |
| erase(begin() + n, end()); |
| return; |
| } |
| // Grow |
| reserve(n); |
| std::fill_n(begin(), size(), elem); |
| if (allocated()) { |
| UninitializedFill(allocated_space() + size(), allocated_space() + n, |
| elem); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space() + size(), inlined_space() + n, elem); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| // InlinedVector::size() |
| // |
| // Returns the number of elements in the inlined vector. |
| size_type size() const noexcept { return tag().size(); } |
| |
| // InlinedVector::empty() |
| // |
| // Checks if the inlined vector has no elements. |
| bool empty() const noexcept { return (size() == 0); } |
| |
| // InlinedVector::capacity() |
| // |
| // Returns the number of elements that can be stored in an inlined vector |
| // without requiring a reallocation of underlying memory. Note that for |
| // most inlined vectors, `capacity()` should equal its initial size `N`; for |
| // inlined vectors which exceed this capacity, they will no longer be inlined, |
| // and `capacity()` will equal its capacity on the allocated heap. |
| size_type capacity() const noexcept { |
| return allocated() ? allocation().capacity() : N; |
| } |
| |
| // InlinedVector::max_size() |
| // |
| // Returns the maximum number of elements the vector can hold. |
| size_type max_size() const noexcept { |
| // One bit of the size storage is used to indicate whether the inlined |
| // vector is allocated; as a result, the maximum size of the container that |
| // we can express is half of the max for our size type. |
| return std::numeric_limits<size_type>::max() / 2; |
| } |
| |
| // InlinedVector::data() |
| // |
| // Returns a const T* pointer to elements of the inlined vector. This pointer |
| // can be used to access (but not modify) the contained elements. |
| // Only results within the range `[0,size())` are defined. |
| const_pointer data() const noexcept { |
| return allocated() ? allocated_space() : inlined_space(); |
| } |
| |
| // Overload of InlinedVector::data() to return a T* pointer to elements of the |
| // inlined vector. This pointer can be used to access and modify the contained |
| // elements. |
| pointer data() noexcept { |
| return allocated() ? allocated_space() : inlined_space(); |
| } |
| |
| // InlinedVector::clear() |
| // |
| // Removes all elements from the inlined vector. |
| void clear() noexcept { |
| size_type s = size(); |
| if (allocated()) { |
| Destroy(allocated_space(), allocated_space() + s); |
| allocation().Dealloc(allocator()); |
| } else if (s != 0) { // do nothing for empty vectors |
| Destroy(inlined_space(), inlined_space() + s); |
| } |
| tag() = Tag(); |
| } |
| |
| // InlinedVector::at() |
| // |
| // Returns the ith element of an inlined vector. |
| const value_type& at(size_type i) const { |
| if (ABSL_PREDICT_FALSE(i >= size())) { |
| base_internal::ThrowStdOutOfRange( |
| "InlinedVector::at failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // InlinedVector::operator[] |
| // |
| // Returns the ith element of an inlined vector using the array operator. |
| const value_type& operator[](size_type i) const { |
| assert(i < size()); |
| return data()[i]; |
| } |
| |
| // Overload of InlinedVector::at() to return the ith element of an inlined |
| // vector. |
| value_type& at(size_type i) { |
| if (i >= size()) { |
| base_internal::ThrowStdOutOfRange( |
| "InlinedVector::at failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // Overload of InlinedVector::operator[] to return the ith element of an |
| // inlined vector. |
| value_type& operator[](size_type i) { |
| assert(i < size()); |
| return data()[i]; |
| } |
| |
| // InlinedVector::back() |
| // |
| // Returns a reference to the last element of an inlined vector. |
| value_type& back() { |
| assert(!empty()); |
| return at(size() - 1); |
| } |
| |
| // Overload of InlinedVector::back() returns a reference to the last element |
| // of an inlined vector of const values. |
| const value_type& back() const { |
| assert(!empty()); |
| return at(size() - 1); |
| } |
| |
| // InlinedVector::front() |
| // |
| // Returns a reference to the first element of an inlined vector. |
| value_type& front() { |
| assert(!empty()); |
| return at(0); |
| } |
| |
| // Overload of InlinedVector::front() returns a reference to the first element |
| // of an inlined vector of const values. |
| const value_type& front() const { |
| assert(!empty()); |
| return at(0); |
| } |
| |
| // InlinedVector::emplace_back() |
| // |
| // Constructs and appends an object to the inlined vector. |
| // |
| // Returns a reference to the inserted element. |
| template <typename... Args> |
| value_type& emplace_back(Args&&... args) { |
| size_type s = size(); |
| assert(s <= capacity()); |
| if (ABSL_PREDICT_FALSE(s == capacity())) { |
| return GrowAndEmplaceBack(std::forward<Args>(args)...); |
| } |
| assert(s < capacity()); |
| |
| value_type* space; |
| if (allocated()) { |
| tag().set_allocated_size(s + 1); |
| space = allocated_space(); |
| } else { |
| tag().set_inline_size(s + 1); |
| space = inlined_space(); |
| } |
| return Construct(space + s, std::forward<Args>(args)...); |
| } |
| |
| // InlinedVector::push_back() |
| // |
| // Appends a const element to the inlined vector. |
| void push_back(const value_type& t) { emplace_back(t); } |
| |
| // Overload of InlinedVector::push_back() to append a move-only element to the |
| // inlined vector. |
| void push_back(value_type&& t) { emplace_back(std::move(t)); } |
| |
| // InlinedVector::pop_back() |
| // |
| // Removes the last element (which is destroyed) in the inlined vector. |
| void pop_back() { |
| assert(!empty()); |
| size_type s = size(); |
| if (allocated()) { |
| Destroy(allocated_space() + s - 1, allocated_space() + s); |
| tag().set_allocated_size(s - 1); |
| } else { |
| Destroy(inlined_space() + s - 1, inlined_space() + s); |
| tag().set_inline_size(s - 1); |
| } |
| } |
| |
| // InlinedVector::resize() |
| // |
| // Resizes the inlined vector to contain `n` elements. If `n` is smaller than |
| // the inlined vector's current size, extra elements are destroyed. If `n` is |
| // larger than the initial size, new elements are value-initialized. |
| void resize(size_type n); |
| |
| // Overload of InlinedVector::resize() to resize the inlined vector to contain |
| // `n` elements. If `n` is larger than the current size, enough copies of |
| // `elem` are appended to increase its size to `n`. |
| void resize(size_type n, const value_type& elem); |
| |
| // InlinedVector::begin() |
| // |
| // Returns an iterator to the beginning of the inlined vector. |
| iterator begin() noexcept { return data(); } |
| |
| // Overload of InlinedVector::begin() for returning a const iterator to the |
| // beginning of the inlined vector. |
| const_iterator begin() const noexcept { return data(); } |
| |
| // InlinedVector::cbegin() |
| // |
| // Returns a const iterator to the beginning of the inlined vector. |
| const_iterator cbegin() const noexcept { return begin(); } |
| |
| // InlinedVector::end() |
| // |
| // Returns an iterator to the end of the inlined vector. |
| iterator end() noexcept { return data() + size(); } |
| |
| // Overload of InlinedVector::end() for returning a const iterator to the end |
| // of the inlined vector. |
| const_iterator end() const noexcept { return data() + size(); } |
| |
| // InlinedVector::cend() |
| // |
| // Returns a const iterator to the end of the inlined vector. |
| const_iterator cend() const noexcept { return end(); } |
| |
| // InlinedVector::rbegin() |
| // |
| // Returns a reverse iterator from the end of the inlined vector. |
| reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } |
| |
| // Overload of InlinedVector::rbegin() for returning a const reverse iterator |
| // from the end of the inlined vector. |
| const_reverse_iterator rbegin() const noexcept { |
| return const_reverse_iterator(end()); |
| } |
| |
| // InlinedVector::crbegin() |
| // |
| // Returns a const reverse iterator from the end of the inlined vector. |
| const_reverse_iterator crbegin() const noexcept { return rbegin(); } |
| |
| // InlinedVector::rend() |
| // |
| // Returns a reverse iterator from the beginning of the inlined vector. |
| reverse_iterator rend() noexcept { return reverse_iterator(begin()); } |
| |
| // Overload of InlinedVector::rend() for returning a const reverse iterator |
| // from the beginning of the inlined vector. |
| const_reverse_iterator rend() const noexcept { |
| return const_reverse_iterator(begin()); |
| } |
| |
| // InlinedVector::crend() |
| // |
| // Returns a reverse iterator from the beginning of the inlined vector. |
| const_reverse_iterator crend() const noexcept { return rend(); } |
| |
| // InlinedVector::emplace() |
| // |
| // Constructs and inserts an object to the inlined vector at the given |
| // `position`, returning an iterator pointing to the newly emplaced element. |
| template <typename... Args> |
| iterator emplace(const_iterator position, Args&&... args); |
| |
| // InlinedVector::insert() |
| // |
| // Inserts an element of the specified value at `position`, returning an |
| // iterator pointing to the newly inserted element. |
| iterator insert(const_iterator position, const value_type& v) { |
| return emplace(position, v); |
| } |
| |
| // Overload of InlinedVector::insert() for inserting an element of the |
| // specified rvalue, returning an iterator pointing to the newly inserted |
| // element. |
| iterator insert(const_iterator position, value_type&& v) { |
| return emplace(position, std::move(v)); |
| } |
| |
| // Overload of InlinedVector::insert() for inserting `n` elements of the |
| // specified value at `position`, returning an iterator pointing to the first |
| // of the newly inserted elements. |
| iterator insert(const_iterator position, size_type n, const value_type& v) { |
| return InsertWithCount(position, n, v); |
| } |
| |
| // Overload of `InlinedVector::insert()` to disambiguate the two |
| // three-argument overloads of `insert()`, returning an iterator pointing to |
| // the first of the newly inserted elements. |
| template <typename InputIterator, |
| typename = typename std::enable_if<std::is_convertible< |
| typename std::iterator_traits<InputIterator>::iterator_category, |
| std::input_iterator_tag>::value>::type> |
| iterator insert(const_iterator position, InputIterator first, |
| InputIterator last) { |
| using IterType = |
| typename std::iterator_traits<InputIterator>::iterator_category; |
| return InsertWithRange(position, first, last, IterType()); |
| } |
| |
| // Overload of InlinedVector::insert() for inserting a list of elements at |
| // `position`, returning an iterator pointing to the first of the newly |
| // inserted elements. |
| iterator insert(const_iterator position, |
| std::initializer_list<value_type> init) { |
| return insert(position, init.begin(), init.end()); |
| } |
| |
| // InlinedVector::erase() |
| // |
| // Erases the element at `position` of the inlined vector, returning an |
| // iterator pointing to the following element or the container's end if the |
| // last element was erased. |
| iterator erase(const_iterator position) { |
| assert(position >= begin()); |
| assert(position < end()); |
| |
| iterator pos = const_cast<iterator>(position); |
| std::move(pos + 1, end(), pos); |
| pop_back(); |
| return pos; |
| } |
| |
| // Overload of InlinedVector::erase() for erasing all elements in the |
| // iterator range [first, last) in the inlined vector, returning an iterator |
| // pointing to the first element following the range erased, or the |
| // container's end if range included the container's last element. |
| iterator erase(const_iterator first, const_iterator last); |
| |
| // InlinedVector::reserve() |
| // |
| // Enlarges the underlying representation of the inlined vector so it can hold |
| // at least `n` elements. This method does not change `size()` or the actual |
| // contents of the vector. |
| // |
| // Note that if `n` does not exceed the inlined vector's initial size `N`, |
| // `reserve()` will have no effect; if it does exceed its initial size, |
| // `reserve()` will trigger an initial allocation and move the inlined vector |
| // onto the heap. If the vector already exists on the heap and the requested |
| // size exceeds it, a reallocation will be performed. |
| void reserve(size_type n) { |
| if (n > capacity()) { |
| // Make room for new elements |
| EnlargeBy(n - size()); |
| } |
| } |
| |
| // InlinedVector::shrink_to_fit() |
| // |
| // Reduces memory usage by freeing unused memory. |
| // After this call `capacity()` will be equal to `max(N, size())`. |
| // |
| // If `size() <= N` and the elements are currently stored on the heap, they |
| // will be moved to the inlined storage and the heap memory deallocated. |
| // If `size() > N` and `size() < capacity()` the elements will be moved to |
| // a reallocated storage on heap. |
| void shrink_to_fit() { |
| const auto s = size(); |
| if (!allocated() || s == capacity()) { |
| // There's nothing to deallocate. |
| return; |
| } |
| |
| if (s <= N) { |
| // Move the elements to the inlined storage. |
| // We have to do this using a temporary, because inlined_storage and |
| // allocation_storage are in a union field. |
| auto temp = std::move(*this); |
| assign(std::make_move_iterator(temp.begin()), |
| std::make_move_iterator(temp.end())); |
| return; |
| } |
| |
| // Reallocate storage and move elements. |
| // We can't simply use the same approach as above, because assign() would |
| // call into reserve() internally and reserve larger capacity than we need. |
| Allocation new_allocation(allocator(), s); |
| UninitializedCopy(std::make_move_iterator(allocated_space()), |
| std::make_move_iterator(allocated_space() + s), |
| new_allocation.buffer()); |
| ResetAllocation(new_allocation, s); |
| } |
| |
| // InlinedVector::swap() |
| // |
| // Swaps the contents of this inlined vector with the contents of `other`. |
| void swap(InlinedVector& other); |
| |
| // InlinedVector::get_allocator() |
| // |
| // Returns the allocator of this inlined vector. |
| allocator_type get_allocator() const { return allocator(); } |
| |
| private: |
| static_assert(N > 0, "inlined vector with nonpositive size"); |
| |
| // It holds whether the vector is allocated or not in the lowest bit. |
| // The size is held in the high bits: |
| // size_ = (size << 1) | is_allocated; |
| class Tag { |
| public: |
| Tag() : size_(0) {} |
| size_type size() const { return size_ >> 1; } |
| void add_size(size_type n) { size_ += n << 1; } |
| void set_inline_size(size_type n) { size_ = n << 1; } |
| void set_allocated_size(size_type n) { size_ = (n << 1) | 1; } |
| bool allocated() const { return size_ & 1; } |
| |
| private: |
| size_type size_; |
| }; |
| |
| // Derives from allocator_type to use the empty base class optimization. |
| // If the allocator_type is stateless, we can 'store' |
| // our instance of it for free. |
| class AllocatorAndTag : private allocator_type { |
| public: |
| explicit AllocatorAndTag(const allocator_type& a, Tag t = Tag()) |
| : allocator_type(a), tag_(t) { |
| } |
| Tag& tag() { return tag_; } |
| const Tag& tag() const { return tag_; } |
| allocator_type& allocator() { return *this; } |
| const allocator_type& allocator() const { return *this; } |
| private: |
| Tag tag_; |
| }; |
| |
| class Allocation { |
| public: |
| Allocation(allocator_type& a, // NOLINT(runtime/references) |
| size_type capacity) |
| : capacity_(capacity), |
| buffer_(AllocatorTraits::allocate(a, capacity_)) {} |
| |
| void Dealloc(allocator_type& a) { // NOLINT(runtime/references) |
| AllocatorTraits::deallocate(a, buffer(), capacity()); |
| } |
| |
| size_type capacity() const { return capacity_; } |
| const value_type* buffer() const { return buffer_; } |
| value_type* buffer() { return buffer_; } |
| |
| private: |
| size_type capacity_; |
| value_type* buffer_; |
| }; |
| |
| const Tag& tag() const { return allocator_and_tag_.tag(); } |
| Tag& tag() { return allocator_and_tag_.tag(); } |
| |
| Allocation& allocation() { |
| return reinterpret_cast<Allocation&>(rep_.allocation_storage.allocation); |
| } |
| const Allocation& allocation() const { |
| return reinterpret_cast<const Allocation&>( |
| rep_.allocation_storage.allocation); |
| } |
| void init_allocation(const Allocation& allocation) { |
| new (&rep_.allocation_storage.allocation) Allocation(allocation); |
| } |
| |
| value_type* inlined_space() { |
| return reinterpret_cast<value_type*>(&rep_.inlined_storage.inlined); |
| } |
| const value_type* inlined_space() const { |
| return reinterpret_cast<const value_type*>(&rep_.inlined_storage.inlined); |
| } |
| |
| value_type* allocated_space() { |
| return allocation().buffer(); |
| } |
| const value_type* allocated_space() const { |
| return allocation().buffer(); |
| } |
| |
| const allocator_type& allocator() const { |
| return allocator_and_tag_.allocator(); |
| } |
| allocator_type& allocator() { |
| return allocator_and_tag_.allocator(); |
| } |
| |
| bool allocated() const { return tag().allocated(); } |
| |
| // Enlarge the underlying representation so we can store size_ + delta elems. |
| // The size is not changed, and any newly added memory is not initialized. |
| void EnlargeBy(size_type delta); |
| |
| // Shift all elements from position to end() n places to the right. |
| // If the vector needs to be enlarged, memory will be allocated. |
| // Returns iterators pointing to the start of the previously-initialized |
| // portion and the start of the uninitialized portion of the created gap. |
| // The number of initialized spots is pair.second - pair.first; |
| // the number of raw spots is n - (pair.second - pair.first). |
| // |
| // Updates the size of the InlinedVector internally. |
| std::pair<iterator, iterator> ShiftRight(const_iterator position, |
| size_type n); |
| |
| void ResetAllocation(Allocation new_allocation, size_type new_size) { |
| if (allocated()) { |
| Destroy(allocated_space(), allocated_space() + size()); |
| assert(begin() == allocated_space()); |
| allocation().Dealloc(allocator()); |
| allocation() = new_allocation; |
| } else { |
| Destroy(inlined_space(), inlined_space() + size()); |
| init_allocation(new_allocation); // bug: only init once |
| } |
| tag().set_allocated_size(new_size); |
| } |
| |
| template <typename... Args> |
| value_type& GrowAndEmplaceBack(Args&&... args) { |
| assert(size() == capacity()); |
| const size_type s = size(); |
| |
| Allocation new_allocation(allocator(), 2 * capacity()); |
| |
| value_type& new_element = |
| Construct(new_allocation.buffer() + s, std::forward<Args>(args)...); |
| UninitializedCopy(std::make_move_iterator(data()), |
| std::make_move_iterator(data() + s), |
| new_allocation.buffer()); |
| |
| ResetAllocation(new_allocation, s + 1); |
| |
| return new_element; |
| } |
| |
| void InitAssign(size_type n); |
| void InitAssign(size_type n, const value_type& t); |
| |
| template <typename... Args> |
| value_type& Construct(pointer p, Args&&... args) { |
| AllocatorTraits::construct(allocator(), p, std::forward<Args>(args)...); |
| return *p; |
| } |
| |
| template <typename Iter> |
| void UninitializedCopy(Iter src, Iter src_last, value_type* dst) { |
| for (; src != src_last; ++dst, ++src) Construct(dst, *src); |
| } |
| |
| template <typename... Args> |
| void UninitializedFill(value_type* dst, value_type* dst_last, |
| const Args&... args) { |
| for (; dst != dst_last; ++dst) Construct(dst, args...); |
| } |
| |
| // Destroy [ptr, ptr_last) in place. |
| void Destroy(value_type* ptr, value_type* ptr_last); |
| |
| template <typename Iter> |
| void AppendRange(Iter first, Iter last, std::input_iterator_tag) { |
| std::copy(first, last, std::back_inserter(*this)); |
| } |
| |
| // Faster path for forward iterators. |
| template <typename Iter> |
| void AppendRange(Iter first, Iter last, std::forward_iterator_tag); |
| |
| template <typename Iter> |
| void AppendRange(Iter first, Iter last) { |
| using IterTag = typename std::iterator_traits<Iter>::iterator_category; |
| AppendRange(first, last, IterTag()); |
| } |
| |
| template <typename Iter> |
| void AssignRange(Iter first, Iter last, std::input_iterator_tag); |
| |
| // Faster path for forward iterators. |
| template <typename Iter> |
| void AssignRange(Iter first, Iter last, std::forward_iterator_tag); |
| |
| template <typename Iter> |
| void AssignRange(Iter first, Iter last) { |
| using IterTag = typename std::iterator_traits<Iter>::iterator_category; |
| AssignRange(first, last, IterTag()); |
| } |
| |
| iterator InsertWithCount(const_iterator position, size_type n, |
| const value_type& v); |
| |
| template <typename InputIter> |
| iterator InsertWithRange(const_iterator position, InputIter first, |
| InputIter last, std::input_iterator_tag); |
| template <typename ForwardIter> |
| iterator InsertWithRange(const_iterator position, ForwardIter first, |
| ForwardIter last, std::forward_iterator_tag); |
| |
| AllocatorAndTag allocator_and_tag_; |
| |
| // Either the inlined or allocated representation |
| union Rep { |
| // Use struct to perform indirection that solves a bizarre compilation |
| // error on Visual Studio (all known versions). |
| struct { |
| typename std::aligned_storage<sizeof(value_type), |
| alignof(value_type)>::type inlined[N]; |
| } inlined_storage; |
| struct { |
| typename std::aligned_storage<sizeof(Allocation), |
| alignof(Allocation)>::type allocation; |
| } allocation_storage; |
| } rep_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // InlinedVector Non-Member Functions |
| // ----------------------------------------------------------------------------- |
| |
| // swap() |
| // |
| // Swaps the contents of two inlined vectors. This convenience function |
| // simply calls InlinedVector::swap(other_inlined_vector). |
| template <typename T, size_t N, typename A> |
| void swap(InlinedVector<T, N, A>& a, |
| InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) { |
| a.swap(b); |
| } |
| |
| // operator==() |
| // |
| // Tests the equivalency of the contents of two inlined vectors. |
| template <typename T, size_t N, typename A> |
| bool operator==(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) { |
| return absl::equal(a.begin(), a.end(), b.begin(), b.end()); |
| } |
| |
| // operator!=() |
| // |
| // Tests the inequality of the contents of two inlined vectors. |
| template <typename T, size_t N, typename A> |
| bool operator!=(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) { |
| return !(a == b); |
| } |
| |
| // operator<() |
| // |
| // Tests whether the contents of one inlined vector are less than the contents |
| // of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| bool operator<(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) { |
| return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); |
| } |
| |
| // operator>() |
| // |
| // Tests whether the contents of one inlined vector are greater than the |
| // contents of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| bool operator>(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) { |
| return b < a; |
| } |
| |
| // operator<=() |
| // |
| // Tests whether the contents of one inlined vector are less than or equal to |
| // the contents of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| bool operator<=(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) { |
| return !(b < a); |
| } |
| |
| // operator>=() |
| // |
| // Tests whether the contents of one inlined vector are greater than or equal to |
| // the contents of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| bool operator>=(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) { |
| return !(a < b); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of InlinedVector |
| // ----------------------------------------------------------------------------- |
| // |
| // Do not depend on any implementation details below this line. |
| |
| template <typename T, size_t N, typename A> |
| InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v) |
| : allocator_and_tag_(v.allocator()) { |
| reserve(v.size()); |
| if (allocated()) { |
| UninitializedCopy(v.begin(), v.end(), allocated_space()); |
| tag().set_allocated_size(v.size()); |
| } else { |
| UninitializedCopy(v.begin(), v.end(), inlined_space()); |
| tag().set_inline_size(v.size()); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v, |
| const allocator_type& alloc) |
| : allocator_and_tag_(alloc) { |
| reserve(v.size()); |
| if (allocated()) { |
| UninitializedCopy(v.begin(), v.end(), allocated_space()); |
| tag().set_allocated_size(v.size()); |
| } else { |
| UninitializedCopy(v.begin(), v.end(), inlined_space()); |
| tag().set_inline_size(v.size()); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| InlinedVector<T, N, A>::InlinedVector(InlinedVector&& v) noexcept( |
| absl::allocator_is_nothrow<allocator_type>::value || |
| std::is_nothrow_move_constructible<value_type>::value) |
| : allocator_and_tag_(v.allocator_and_tag_) { |
| if (v.allocated()) { |
| // We can just steal the underlying buffer from the source. |
| // That leaves the source empty, so we clear its size. |
| init_allocation(v.allocation()); |
| v.tag() = Tag(); |
| } else { |
| UninitializedCopy(std::make_move_iterator(v.inlined_space()), |
| std::make_move_iterator(v.inlined_space() + v.size()), |
| inlined_space()); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| InlinedVector<T, N, A>::InlinedVector( |
| InlinedVector&& v, |
| const allocator_type& |
| alloc) noexcept(absl::allocator_is_nothrow<allocator_type>::value) |
| : allocator_and_tag_(alloc) { |
| if (v.allocated()) { |
| if (alloc == v.allocator()) { |
| // We can just steal the allocation from the source. |
| tag() = v.tag(); |
| init_allocation(v.allocation()); |
| v.tag() = Tag(); |
| } else { |
| // We need to use our own allocator |
| reserve(v.size()); |
| UninitializedCopy(std::make_move_iterator(v.begin()), |
| std::make_move_iterator(v.end()), allocated_space()); |
| tag().set_allocated_size(v.size()); |
| } |
| } else { |
| UninitializedCopy(std::make_move_iterator(v.inlined_space()), |
| std::make_move_iterator(v.inlined_space() + v.size()), |
| inlined_space()); |
| tag().set_inline_size(v.size()); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| void InlinedVector<T, N, A>::InitAssign(size_type n, const value_type& t) { |
| if (n > static_cast<size_type>(N)) { |
| Allocation new_allocation(allocator(), n); |
| init_allocation(new_allocation); |
| UninitializedFill(allocated_space(), allocated_space() + n, t); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space(), inlined_space() + n, t); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| void InlinedVector<T, N, A>::InitAssign(size_type n) { |
| if (n > static_cast<size_type>(N)) { |
| Allocation new_allocation(allocator(), n); |
| init_allocation(new_allocation); |
| UninitializedFill(allocated_space(), allocated_space() + n); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space(), inlined_space() + n); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| void InlinedVector<T, N, A>::resize(size_type n) { |
| size_type s = size(); |
| if (n < s) { |
| erase(begin() + n, end()); |
| return; |
| } |
| reserve(n); |
| assert(capacity() >= n); |
| |
| // Fill new space with elements constructed in-place. |
| if (allocated()) { |
| UninitializedFill(allocated_space() + s, allocated_space() + n); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space() + s, inlined_space() + n); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| void InlinedVector<T, N, A>::resize(size_type n, const value_type& elem) { |
| size_type s = size(); |
| if (n < s) { |
| erase(begin() + n, end()); |
| return; |
| } |
| reserve(n); |
| assert(capacity() >= n); |
| |
| // Fill new space with copies of 'elem'. |
| if (allocated()) { |
| UninitializedFill(allocated_space() + s, allocated_space() + n, elem); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space() + s, inlined_space() + n, elem); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| template <typename... Args> |
| typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::emplace( |
| const_iterator position, Args&&... args) { |
| assert(position >= begin()); |
| assert(position <= end()); |
| if (position == end()) { |
| emplace_back(std::forward<Args>(args)...); |
| return end() - 1; |
| } |
| |
| T new_t = T(std::forward<Args>(args)...); |
| |
| auto range = ShiftRight(position, 1); |
| if (range.first == range.second) { |
| // constructing into uninitialized memory |
| Construct(range.first, std::move(new_t)); |
| } else { |
| // assigning into moved-from object |
| *range.first = T(std::move(new_t)); |
| } |
| |
| return range.first; |
| } |
| |
| template <typename T, size_t N, typename A> |
| typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::erase( |
| const_iterator first, const_iterator last) { |
| assert(begin() <= first); |
| assert(first <= last); |
| assert(last <= end()); |
| |
| iterator range_start = const_cast<iterator>(first); |
| iterator range_end = const_cast<iterator>(last); |
| |
| size_type s = size(); |
| ptrdiff_t erase_gap = std::distance(range_start, range_end); |
| if (erase_gap > 0) { |
| pointer space; |
| if (allocated()) { |
| space = allocated_space(); |
| tag().set_allocated_size(s - erase_gap); |
| } else { |
| space = inlined_space(); |
| tag().set_inline_size(s - erase_gap); |
| } |
| std::move(range_end, space + s, range_start); |
| Destroy(space + s - erase_gap, space + s); |
| } |
| return range_start; |
| } |
| |
| template <typename T, size_t N, typename A> |
| void InlinedVector<T, N, A>::swap(InlinedVector& other) { |
| using std::swap; // Augment ADL with std::swap. |
| if (&other == this) { |
| return; |
| } |
| if (allocated() && other.allocated()) { |
| // Both out of line, so just swap the tag, allocation, and allocator. |
| swap(tag(), other.tag()); |
| swap(allocation(), other.allocation()); |
| swap(allocator(), other.allocator()); |
| return; |
| } |
| if (!allocated() && !other.allocated()) { |
| // Both inlined: swap up to smaller size, then move remaining elements. |
| InlinedVector* a = this; |
| InlinedVector* b = &other; |
| if (size() < other.size()) { |
| swap(a, b); |
| } |
| |
| const size_type a_size = a->size(); |
| const size_type b_size = b->size(); |
| assert(a_size >= b_size); |
| // 'a' is larger. Swap the elements up to the smaller array size. |
| std::swap_ranges(a->inlined_space(), |
| a->inlined_space() + b_size, |
| b->inlined_space()); |
| |
| // Move the remaining elements: A[b_size,a_size) -> B[b_size,a_size) |
| b->UninitializedCopy(a->inlined_space() + b_size, |
| a->inlined_space() + a_size, |
| b->inlined_space() + b_size); |
| a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size); |
| |
| swap(a->tag(), b->tag()); |
| swap(a->allocator(), b->allocator()); |
| assert(b->size() == a_size); |
| assert(a->size() == b_size); |
| return; |
| } |
| // One is out of line, one is inline. |
| // We first move the elements from the inlined vector into the |
| // inlined space in the other vector. We then put the other vector's |
| // pointer/capacity into the originally inlined vector and swap |
| // the tags. |
| InlinedVector* a = this; |
| InlinedVector* b = &other; |
| if (a->allocated()) { |
| swap(a, b); |
| } |
| assert(!a->allocated()); |
| assert(b->allocated()); |
| const size_type a_size = a->size(); |
| const size_type b_size = b->size(); |
| // In an optimized build, b_size would be unused. |
| (void)b_size; |
| |
| // Made Local copies of size(), don't need tag() accurate anymore |
| swap(a->tag(), b->tag()); |
| |
| // Copy b_allocation out before b's union gets clobbered by inline_space. |
| Allocation b_allocation = b->allocation(); |
| |
| b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size, |
| b->inlined_space()); |
| a->Destroy(a->inlined_space(), a->inlined_space() + a_size); |
| |
| a->allocation() = b_allocation; |
| |
| if (a->allocator() != b->allocator()) { |
| swap(a->allocator(), b->allocator()); |
| } |
| |
| assert(b->size() == a_size); |
| assert(a->size() == b_size); |
| } |
| |
| template <typename T, size_t N, typename A> |
| void InlinedVector<T, N, A>::EnlargeBy(size_type delta) { |
| const size_type s = size(); |
| assert(s <= capacity()); |
| |
| size_type target = std::max(static_cast<size_type>(N), s + delta); |
| |
| // Compute new capacity by repeatedly doubling current capacity |
| // TODO(psrc): Check and avoid overflow? |
| size_type new_capacity = capacity(); |
| while (new_capacity < target) { |
| new_capacity <<= 1; |
| } |
| |
| Allocation new_allocation(allocator(), new_capacity); |
| |
| UninitializedCopy(std::make_move_iterator(data()), |
| std::make_move_iterator(data() + s), |
| new_allocation.buffer()); |
| |
| ResetAllocation(new_allocation, s); |
| } |
| |
| template <typename T, size_t N, typename A> |
| auto InlinedVector<T, N, A>::ShiftRight(const_iterator position, size_type n) |
| -> std::pair<iterator, iterator> { |
| iterator start_used = const_cast<iterator>(position); |
| iterator start_raw = const_cast<iterator>(position); |
| size_type s = size(); |
| size_type required_size = s + n; |
| |
| if (required_size > capacity()) { |
| // Compute new capacity by repeatedly doubling current capacity |
| size_type new_capacity = capacity(); |
| while (new_capacity < required_size) { |
| new_capacity <<= 1; |
| } |
| // Move everyone into the new allocation, leaving a gap of n for the |
| // requested shift. |
| Allocation new_allocation(allocator(), new_capacity); |
| size_type index = position - begin(); |
| UninitializedCopy(std::make_move_iterator(data()), |
| std::make_move_iterator(data() + index), |
| new_allocation.buffer()); |
| UninitializedCopy(std::make_move_iterator(data() + index), |
| std::make_move_iterator(data() + s), |
| new_allocation.buffer() + index + n); |
| ResetAllocation(new_allocation, s); |
| |
| // New allocation means our iterator is invalid, so we'll recalculate. |
| // Since the entire gap is in new space, there's no used space to reuse. |
| start_raw = begin() + index; |
| start_used = start_raw; |
| } else { |
| // If we had enough space, it's a two-part move. Elements going into |
| // previously-unoccupied space need an UninitializedCopy. Elements |
| // going into a previously-occupied space are just a move. |
| iterator pos = const_cast<iterator>(position); |
| iterator raw_space = end(); |
| size_type slots_in_used_space = raw_space - pos; |
| size_type new_elements_in_used_space = std::min(n, slots_in_used_space); |
| size_type new_elements_in_raw_space = n - new_elements_in_used_space; |
| size_type old_elements_in_used_space = |
| slots_in_used_space - new_elements_in_used_space; |
| |
| UninitializedCopy(std::make_move_iterator(pos + old_elements_in_used_space), |
| std::make_move_iterator(raw_space), |
| raw_space + new_elements_in_raw_space); |
| std::move_backward(pos, pos + old_elements_in_used_space, raw_space); |
| |
| // If the gap is entirely in raw space, the used space starts where the raw |
| // space starts, leaving no elements in used space. If the gap is entirely |
| // in used space, the raw space starts at the end of the gap, leaving all |
| // elements accounted for within the used space. |
| start_used = pos; |
| start_raw = pos + new_elements_in_used_space; |
| } |
| tag().add_size(n); |
| return std::make_pair(start_used, start_raw); |
| } |
| |
| template <typename T, size_t N, typename A> |
| void InlinedVector<T, N, A>::Destroy(value_type* ptr, value_type* ptr_last) { |
| for (value_type* p = ptr; p != ptr_last; ++p) { |
| AllocatorTraits::destroy(allocator(), p); |
| } |
| |
| // Overwrite unused memory with 0xab so we can catch uninitialized usage. |
| // Cast to void* to tell the compiler that we don't care that we might be |
| // scribbling on a vtable pointer. |
| #ifndef NDEBUG |
| if (ptr != ptr_last) { |
| memset(reinterpret_cast<void*>(ptr), 0xab, |
| sizeof(*ptr) * (ptr_last - ptr)); |
| } |
| #endif |
| } |
| |
| template <typename T, size_t N, typename A> |
| template <typename Iter> |
| void InlinedVector<T, N, A>::AppendRange(Iter first, Iter last, |
| std::forward_iterator_tag) { |
| using Length = typename std::iterator_traits<Iter>::difference_type; |
| Length length = std::distance(first, last); |
| reserve(size() + length); |
| if (allocated()) { |
| UninitializedCopy(first, last, allocated_space() + size()); |
| tag().set_allocated_size(size() + length); |
| } else { |
| UninitializedCopy(first, last, inlined_space() + size()); |
| tag().set_inline_size(size() + length); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| template <typename Iter> |
| void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last, |
| std::input_iterator_tag) { |
| // Optimized to avoid reallocation. |
| // Prefer reassignment to copy construction for elements. |
| iterator out = begin(); |
| for ( ; first != last && out != end(); ++first, ++out) |
| *out = *first; |
| erase(out, end()); |
| std::copy(first, last, std::back_inserter(*this)); |
| } |
| |
| template <typename T, size_t N, typename A> |
| template <typename Iter> |
| void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last, |
| std::forward_iterator_tag) { |
| using Length = typename std::iterator_traits<Iter>::difference_type; |
| Length length = std::distance(first, last); |
| // Prefer reassignment to copy construction for elements. |
| if (static_cast<size_type>(length) <= size()) { |
| erase(std::copy(first, last, begin()), end()); |
| return; |
| } |
| reserve(length); |
| iterator out = begin(); |
| for (; out != end(); ++first, ++out) *out = *first; |
| if (allocated()) { |
| UninitializedCopy(first, last, out); |
| tag().set_allocated_size(length); |
| } else { |
| UninitializedCopy(first, last, out); |
| tag().set_inline_size(length); |
| } |
| } |
| |
| template <typename T, size_t N, typename A> |
| auto InlinedVector<T, N, A>::InsertWithCount(const_iterator position, |
| size_type n, const value_type& v) |
| -> iterator { |
| assert(position >= begin() && position <= end()); |
| if (n == 0) return const_cast<iterator>(position); |
| |
| value_type copy = v; |
| std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
| std::fill(it_pair.first, it_pair.second, copy); |
| UninitializedFill(it_pair.second, it_pair.first + n, copy); |
| |
| return it_pair.first; |
| } |
| |
| template <typename T, size_t N, typename A> |
| template <typename InputIter> |
| auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position, |
| InputIter first, InputIter last, |
| std::input_iterator_tag) |
| -> iterator { |
| assert(position >= begin() && position <= end()); |
| size_type index = position - cbegin(); |
| size_type i = index; |
| while (first != last) insert(begin() + i++, *first++); |
| return begin() + index; |
| } |
| |
| // Overload of InlinedVector::InsertWithRange() |
| template <typename T, size_t N, typename A> |
| template <typename ForwardIter> |
| auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position, |
| ForwardIter first, |
| ForwardIter last, |
| std::forward_iterator_tag) |
| -> iterator { |
| assert(position >= begin() && position <= end()); |
| if (first == last) { |
| return const_cast<iterator>(position); |
| } |
| using Length = typename std::iterator_traits<ForwardIter>::difference_type; |
| Length n = std::distance(first, last); |
| std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
| size_type used_spots = it_pair.second - it_pair.first; |
| ForwardIter open_spot = std::next(first, used_spots); |
| std::copy(first, open_spot, it_pair.first); |
| UninitializedCopy(open_spot, last, it_pair.second); |
| return it_pair.first; |
| } |
| |
| } // namespace absl |
| |
| #endif // ABSL_CONTAINER_INLINED_VECTOR_H_ |