| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // |
| // Implements helper functions and classes for intelligibility enhancement. |
| // |
| |
| #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h" |
| |
| #include <math.h> |
| #include <string.h> |
| #include <algorithm> |
| |
| using std::complex; |
| using std::min; |
| |
| namespace webrtc { |
| |
| namespace intelligibility { |
| |
| float UpdateFactor(float target, float current, float limit) { |
| float delta = fabsf(target - current); |
| float sign = copysign(1.0f, target - current); |
| return current + sign * fminf(delta, limit); |
| } |
| |
| bool cplxfinite(complex<float> c) { |
| return std::isfinite(c.real()) && std::isfinite(c.imag()); |
| } |
| |
| bool cplxnormal(complex<float> c) { |
| return std::isnormal(c.real()) && std::isnormal(c.imag()); |
| } |
| |
| complex<float> zerofudge(complex<float> c) { |
| const static complex<float> fudge[7] = {{0.001f, 0.002f}, |
| {0.008f, 0.001f}, |
| {0.003f, 0.008f}, |
| {0.0006f, 0.0009f}, |
| {0.001f, 0.004f}, |
| {0.003f, 0.004f}, |
| {0.002f, 0.009f}}; |
| static int fudge_index = 0; |
| if (cplxfinite(c) && !cplxnormal(c)) { |
| fudge_index = (fudge_index + 1) % 7; |
| return c + fudge[fudge_index]; |
| } |
| return c; |
| } |
| |
| complex<float> NewMean(complex<float> mean, complex<float> data, int count) { |
| return mean + (data - mean) / static_cast<float>(count); |
| } |
| |
| void AddToMean(complex<float> data, int count, complex<float>* mean) { |
| (*mean) = NewMean(*mean, data, count); |
| } |
| |
| |
| static const int kWindowBlockSize = 10; |
| |
| VarianceArray::VarianceArray(int freqs, |
| StepType type, |
| int window_size, |
| float decay) |
| : running_mean_(new complex<float>[freqs]()), |
| running_mean_sq_(new complex<float>[freqs]()), |
| sub_running_mean_(new complex<float>[freqs]()), |
| sub_running_mean_sq_(new complex<float>[freqs]()), |
| variance_(new float[freqs]()), |
| conj_sum_(new float[freqs]()), |
| freqs_(freqs), |
| window_size_(window_size), |
| decay_(decay), |
| history_cursor_(0), |
| count_(0), |
| array_mean_(0.0f), |
| buffer_full_(false) { |
| history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
| for (int i = 0; i < freqs_; ++i) { |
| history_[i].reset(new complex<float>[window_size_]()); |
| } |
| subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
| for (int i = 0; i < freqs_; ++i) { |
| subhistory_[i].reset(new complex<float>[window_size_]()); |
| } |
| subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
| for (int i = 0; i < freqs_; ++i) { |
| subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
| } |
| switch (type) { |
| case kStepInfinite: |
| step_func_ = &VarianceArray::InfiniteStep; |
| break; |
| case kStepDecaying: |
| step_func_ = &VarianceArray::DecayStep; |
| break; |
| case kStepWindowed: |
| step_func_ = &VarianceArray::WindowedStep; |
| break; |
| case kStepBlocked: |
| step_func_ = &VarianceArray::BlockedStep; |
| break; |
| case kStepBlockBasedMovingAverage: |
| step_func_ = &VarianceArray::BlockBasedMovingAverage; |
| break; |
| } |
| } |
| |
| // Compute the variance with Welford's algorithm, adding some fudge to |
| // the input in case of all-zeroes. |
| void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
| array_mean_ = 0.0f; |
| ++count_; |
| for (int i = 0; i < freqs_; ++i) { |
| complex<float> sample = data[i]; |
| if (!skip_fudge) { |
| sample = zerofudge(sample); |
| } |
| if (count_ == 1) { |
| running_mean_[i] = sample; |
| variance_[i] = 0.0f; |
| } else { |
| float old_sum = conj_sum_[i]; |
| complex<float> old_mean = running_mean_[i]; |
| running_mean_[i] = |
| old_mean + (sample - old_mean) / static_cast<float>(count_); |
| conj_sum_[i] = |
| (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) |
| .real(); |
| variance_[i] = |
| conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real(); |
| // if (skip_fudge) { |
| // variance_[i] -= fudge[fudge_index].real(); |
| // } |
| } |
| array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| } |
| } |
| |
| // Compute the variance from the beginning, with exponential decaying of the |
| // series data. |
| void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
| array_mean_ = 0.0f; |
| ++count_; |
| for (int i = 0; i < freqs_; ++i) { |
| complex<float> sample = data[i]; |
| sample = zerofudge(sample); |
| |
| if (count_ == 1) { |
| running_mean_[i] = sample; |
| running_mean_sq_[i] = sample * std::conj(sample); |
| variance_[i] = 0.0f; |
| } else { |
| complex<float> prev = running_mean_[i]; |
| complex<float> prev2 = running_mean_sq_[i]; |
| running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; |
| running_mean_sq_[i] = |
| decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); |
| // variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( |
| // (sample - running_mean_[i]) * std::conj(sample - |
| // running_mean_[i])).real(); |
| variance_[i] = (running_mean_sq_[i] - |
| running_mean_[i] * std::conj(running_mean_[i])).real(); |
| } |
| |
| array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| } |
| } |
| |
| // Windowed variance computation. On each step, the variances for the |
| // window are recomputed from scratch, using Welford's algorithm. |
| void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
| int num = min(count_ + 1, window_size_); |
| array_mean_ = 0.0f; |
| for (int i = 0; i < freqs_; ++i) { |
| complex<float> mean; |
| float conj_sum = 0.0f; |
| |
| history_[i][history_cursor_] = data[i]; |
| |
| mean = history_[i][history_cursor_]; |
| variance_[i] = 0.0f; |
| for (int j = 1; j < num; ++j) { |
| complex<float> sample = |
| zerofudge(history_[i][(history_cursor_ + j) % window_size_]); |
| sample = history_[i][(history_cursor_ + j) % window_size_]; |
| float old_sum = conj_sum; |
| complex<float> old_mean = mean; |
| |
| mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); |
| conj_sum = |
| (old_sum + std::conj(sample - old_mean) * (sample - mean)).real(); |
| variance_[i] = conj_sum / (j); |
| } |
| array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| } |
| history_cursor_ = (history_cursor_ + 1) % window_size_; |
| ++count_; |
| } |
| |
| // Variance with a window of blocks. Within each block, the variances are |
| // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
| // Once a block is filled with kWindowBlockSize samples, it is added to the |
| // history window and a new block is started. The variances for the window |
| // are recomputed from scratch at each of these transitions. |
| void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
| int blocks = min(window_size_, history_cursor_ + 1); |
| for (int i = 0; i < freqs_; ++i) { |
| AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
| AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
| &sub_running_mean_sq_[i]); |
| subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
| subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
| |
| variance_[i] = |
| (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
| NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
| std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
| .real(); |
| if (count_ == kWindowBlockSize - 1) { |
| sub_running_mean_[i] = complex<float>(0.0f, 0.0f); |
| sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| running_mean_[i] = complex<float>(0.0f, 0.0f); |
| running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
| AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); |
| AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); |
| } |
| ++history_cursor_; |
| } |
| } |
| ++count_; |
| if (count_ == kWindowBlockSize) { |
| count_ = 0; |
| } |
| } |
| |
| // Recomputes variances for each window from scratch based on previous window. |
| void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, |
| bool /*dummy*/) { |
| // TODO(ekmeyerson) To mitigate potential divergence, add counter so that |
| // after every so often sums are computed scratch by summing over all |
| // elements instead of subtracting oldest and adding newest. |
| for (int i = 0; i < freqs_; ++i) { |
| sub_running_mean_[i] += data[i]; |
| sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); |
| } |
| ++count_; |
| |
| // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow |
| // experimentation with different block size,window size pairs. |
| if (count_ >= kWindowBlockSize) { |
| count_ = 0; |
| |
| for (int i = 0; i < freqs_; ++i) { |
| running_mean_[i] -= subhistory_[i][history_cursor_]; |
| running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; |
| |
| float scale = 1.f / kWindowBlockSize; |
| subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; |
| subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; |
| |
| sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); |
| sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); |
| |
| running_mean_[i] += subhistory_[i][history_cursor_]; |
| running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; |
| |
| scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); |
| variance_[i] = std::real(running_mean_sq_[i] * scale - |
| running_mean_[i] * scale * |
| std::conj(running_mean_[i]) * scale); |
| } |
| |
| ++history_cursor_; |
| if (history_cursor_ >= window_size_) { |
| buffer_full_ = true; |
| history_cursor_ = 0; |
| } |
| } |
| } |
| |
| void VarianceArray::Clear() { |
| memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); |
| memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); |
| memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); |
| memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); |
| history_cursor_ = 0; |
| count_ = 0; |
| array_mean_ = 0.0f; |
| } |
| |
| void VarianceArray::ApplyScale(float scale) { |
| array_mean_ = 0.0f; |
| for (int i = 0; i < freqs_; ++i) { |
| variance_[i] *= scale * scale; |
| array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| } |
| } |
| |
| GainApplier::GainApplier(int freqs, float change_limit) |
| : freqs_(freqs), |
| change_limit_(change_limit), |
| target_(new float[freqs]()), |
| current_(new float[freqs]()) { |
| for (int i = 0; i < freqs; ++i) { |
| target_[i] = 1.0f; |
| current_[i] = 1.0f; |
| } |
| } |
| |
| void GainApplier::Apply(const complex<float>* in_block, |
| complex<float>* out_block) { |
| for (int i = 0; i < freqs_; ++i) { |
| float factor = sqrtf(fabsf(current_[i])); |
| if (!std::isnormal(factor)) { |
| factor = 1.0f; |
| } |
| out_block[i] = factor * in_block[i]; |
| current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
| } |
| } |
| |
| } // namespace intelligibility |
| |
| } // namespace webrtc |