| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "audio/utility/channel_mixing_matrix.h" |
| |
| #include <stddef.h> |
| |
| #include "audio/utility/channel_mixer.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| // Test all possible layout conversions can be constructed and mixed. |
| // Also ensure that the channel matrix fulfill certain conditions when remapping |
| // is supported. |
| TEST(ChannelMixingMatrixTest, ConstructAllPossibleLayouts) { |
| for (ChannelLayout input_layout = CHANNEL_LAYOUT_MONO; |
| input_layout <= CHANNEL_LAYOUT_MAX; |
| input_layout = static_cast<ChannelLayout>(input_layout + 1)) { |
| for (ChannelLayout output_layout = CHANNEL_LAYOUT_MONO; |
| output_layout <= CHANNEL_LAYOUT_MAX; |
| output_layout = static_cast<ChannelLayout>(output_layout + 1)) { |
| // DISCRETE, BITSTREAM can't be tested here based on the current approach. |
| // CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC is not mixable. |
| // Stereo down mix should never be the output layout. |
| if (input_layout == CHANNEL_LAYOUT_BITSTREAM || |
| input_layout == CHANNEL_LAYOUT_DISCRETE || |
| input_layout == CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC || |
| output_layout == CHANNEL_LAYOUT_BITSTREAM || |
| output_layout == CHANNEL_LAYOUT_DISCRETE || |
| output_layout == CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC || |
| output_layout == CHANNEL_LAYOUT_STEREO_DOWNMIX) { |
| continue; |
| } |
| |
| rtc::StringBuilder ss; |
| ss << "Input Layout: " << input_layout |
| << ", Output Layout: " << output_layout; |
| SCOPED_TRACE(ss.str()); |
| ChannelMixingMatrix matrix_builder( |
| input_layout, ChannelLayoutToChannelCount(input_layout), |
| output_layout, ChannelLayoutToChannelCount(output_layout)); |
| const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| if (remapping) { |
| // Also ensure that (when remapping can take place), a maximum of one |
| // input channel is included per output. This knowledge will simplify |
| // the channel mixing algorithm since it allows us to find the only |
| // scale factor which equals 1.0 and copy that input to its |
| // corresponding output. If no such factor can be found, the |
| // corresponding output can be set to zero. |
| for (int i = 0; i < output_channels; i++) { |
| EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size()); |
| int num_input_channels_accounted_for_per_output = 0; |
| for (int j = 0; j < input_channels; j++) { |
| float scale = matrix[i][j]; |
| if (scale > 0) { |
| EXPECT_EQ(scale, 1.0f); |
| num_input_channels_accounted_for_per_output++; |
| } |
| } |
| // Each output channel shall contain contribution from one or less |
| // input channels. |
| EXPECT_LE(num_input_channels_accounted_for_per_output, 1); |
| } |
| } |
| } |
| } |
| } |
| |
| // Verify channels are mixed and scaled correctly. |
| TEST(ChannelMixingMatrixTest, StereoToMono) { |
| ChannelLayout input_layout = CHANNEL_LAYOUT_STEREO; |
| ChannelLayout output_layout = CHANNEL_LAYOUT_MONO; |
| ChannelMixingMatrix matrix_builder( |
| input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| ChannelLayoutToChannelCount(output_layout)); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| // Input: stereo |
| // LEFT RIGHT |
| // Output: mono CENTER 0.5 0.5 |
| // |
| EXPECT_FALSE(remapping); |
| EXPECT_EQ(1u, matrix.size()); |
| EXPECT_EQ(2u, matrix[0].size()); |
| EXPECT_EQ(0.5f, matrix[0][0]); |
| EXPECT_EQ(0.5f, matrix[0][1]); |
| } |
| |
| TEST(ChannelMixingMatrixTest, MonoToStereo) { |
| ChannelLayout input_layout = CHANNEL_LAYOUT_MONO; |
| ChannelLayout output_layout = CHANNEL_LAYOUT_STEREO; |
| ChannelMixingMatrix matrix_builder( |
| input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| ChannelLayoutToChannelCount(output_layout)); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| // Input: mono |
| // CENTER |
| // Output: stereo LEFT 1 |
| // RIGHT 1 |
| // |
| EXPECT_TRUE(remapping); |
| EXPECT_EQ(2u, matrix.size()); |
| EXPECT_EQ(1u, matrix[0].size()); |
| EXPECT_EQ(1.0f, matrix[0][0]); |
| EXPECT_EQ(1u, matrix[1].size()); |
| EXPECT_EQ(1.0f, matrix[1][0]); |
| } |
| |
| TEST(ChannelMixingMatrixTest, MonoToTwoOne) { |
| ChannelLayout input_layout = CHANNEL_LAYOUT_MONO; |
| ChannelLayout output_layout = CHANNEL_LAYOUT_2_1; |
| ChannelMixingMatrix matrix_builder( |
| input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| ChannelLayoutToChannelCount(output_layout)); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| // Input: mono |
| // CENTER |
| // Output: 2.1 FRONT_LEFT 1 |
| // FRONT_RIGHT 1 |
| // BACK_CENTER 0 |
| // |
| EXPECT_FALSE(remapping); |
| EXPECT_EQ(3u, matrix.size()); |
| EXPECT_EQ(1u, matrix[0].size()); |
| EXPECT_EQ(1.0f, matrix[0][0]); |
| EXPECT_EQ(1.0f, matrix[1][0]); |
| EXPECT_EQ(0.0f, matrix[2][0]); |
| } |
| |
| TEST(ChannelMixingMatrixTest, FiveOneToMono) { |
| ChannelLayout input_layout = CHANNEL_LAYOUT_5_1; |
| ChannelLayout output_layout = CHANNEL_LAYOUT_MONO; |
| ChannelMixingMatrix matrix_builder( |
| input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| ChannelLayoutToChannelCount(output_layout)); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| // Note: 1/sqrt(2) is shown as 0.707. |
| // |
| // Input: 5.1 |
| // LEFT RIGHT CENTER LFE SIDE_LEFT SIDE_RIGHT |
| // Output: mono CENTER 0.707 0.707 1 0.707 0.707 0.707 |
| // |
| EXPECT_FALSE(remapping); |
| EXPECT_EQ(1u, matrix.size()); |
| EXPECT_EQ(6u, matrix[0].size()); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][0]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][1]); |
| // The center channel will be mixed at scale 1. |
| EXPECT_EQ(1.0f, matrix[0][2]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][3]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][4]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][5]); |
| } |
| |
| TEST(ChannelMixingMatrixTest, FiveOneBackToStereo) { |
| // Front L, Front R, Front C, LFE, Back L, Back R |
| ChannelLayout input_layout = CHANNEL_LAYOUT_5_1_BACK; |
| ChannelLayout output_layout = CHANNEL_LAYOUT_STEREO; |
| const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| ChannelMixingMatrix matrix_builder(input_layout, input_channels, |
| output_layout, output_channels); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| // Note: 1/sqrt(2) is shown as 0.707. |
| // Note: The Channels enumerator is given by {LEFT = 0, RIGHT, CENTER, LFE, |
| // BACK_LEFT, BACK_RIGHT,...}, hence we can use the enumerator values as |
| // indexes in the matrix when verifying the scaling factors. |
| // |
| // Input: 5.1 |
| // LEFT RIGHT CENTER LFE BACK_LEFT BACK_RIGHT |
| // Output: stereo LEFT 1 0 0.707 0.707 0.707 0 |
| // RIGHT 0 1 0.707 0.707 0 0.707 |
| // |
| EXPECT_FALSE(remapping); |
| EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| EXPECT_EQ(static_cast<size_t>(input_channels), matrix[LEFT].size()); |
| EXPECT_EQ(static_cast<size_t>(input_channels), matrix[RIGHT].size()); |
| EXPECT_EQ(1.0f, matrix[LEFT][LEFT]); |
| EXPECT_EQ(1.0f, matrix[RIGHT][RIGHT]); |
| EXPECT_EQ(0.0f, matrix[LEFT][RIGHT]); |
| EXPECT_EQ(0.0f, matrix[RIGHT][LEFT]); |
| EXPECT_EQ(0.0f, matrix[LEFT][BACK_RIGHT]); |
| EXPECT_EQ(0.0f, matrix[RIGHT][BACK_LEFT]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][CENTER]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][LFE]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][BACK_LEFT]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][CENTER]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][LFE]); |
| EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][BACK_RIGHT]); |
| } |
| |
| TEST(ChannelMixingMatrixTest, FiveOneToSevenOne) { |
| // Front L, Front R, Front C, LFE, Side L, Side R |
| ChannelLayout input_layout = CHANNEL_LAYOUT_5_1; |
| // Front L, Front R, Front C, LFE, Side L, Side R, Back L, Back R |
| ChannelLayout output_layout = CHANNEL_LAYOUT_7_1; |
| const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| ChannelMixingMatrix matrix_builder(input_layout, input_channels, |
| output_layout, output_channels); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| // Input: 5.1 |
| // LEFT RIGHT CENTER LFE SIDE_LEFT SIDE_RIGHT |
| // Output: 7.1 LEFT 1 0 0 0 0 0 |
| // RIGHT 0 1 0 0 0 0 |
| // CENTER 0 0 1 0 0 0 |
| // LFE 0 0 0 1 0 0 |
| // SIDE_LEFT 0 0 0 0 1 0 |
| // SIDE_RIGHT 0 0 0 0 0 1 |
| // BACK_LEFT 0 0 0 0 0 0 |
| // BACK_RIGHT 0 0 0 0 0 0 |
| // |
| EXPECT_TRUE(remapping); |
| EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| for (int i = 0; i < output_channels; i++) { |
| EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size()); |
| for (int j = 0; j < input_channels; j++) { |
| if (i == j) { |
| EXPECT_EQ(1.0f, matrix[i][j]); |
| } else { |
| EXPECT_EQ(0.0f, matrix[i][j]); |
| } |
| } |
| } |
| } |
| |
| TEST(ChannelMixingMatrixTest, StereoToFiveOne) { |
| ChannelLayout input_layout = CHANNEL_LAYOUT_STEREO; |
| ChannelLayout output_layout = CHANNEL_LAYOUT_5_1; |
| const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| ChannelMixingMatrix matrix_builder(input_layout, input_channels, |
| output_layout, output_channels); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| |
| // Input: Stereo |
| // LEFT RIGHT |
| // Output: 5.1 LEFT 1 0 |
| // RIGHT 0 1 |
| // CENTER 0 0 |
| // LFE 0 0 |
| // SIDE_LEFT 0 0 |
| // SIDE_RIGHT 0 0 |
| // |
| EXPECT_TRUE(remapping); |
| EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| for (int n = 0; n < output_channels; n++) { |
| EXPECT_EQ(static_cast<size_t>(input_channels), matrix[n].size()); |
| if (n == LEFT) { |
| EXPECT_EQ(1.0f, matrix[LEFT][LEFT]); |
| EXPECT_EQ(0.0f, matrix[LEFT][RIGHT]); |
| } else if (n == RIGHT) { |
| EXPECT_EQ(0.0f, matrix[RIGHT][LEFT]); |
| EXPECT_EQ(1.0f, matrix[RIGHT][RIGHT]); |
| } else { |
| EXPECT_EQ(0.0f, matrix[n][LEFT]); |
| EXPECT_EQ(0.0f, matrix[n][RIGHT]); |
| } |
| } |
| } |
| |
| TEST(ChannelMixingMatrixTest, DiscreteToDiscrete) { |
| const struct { |
| int input_channels; |
| int output_channels; |
| } test_case[] = { |
| {2, 2}, |
| {2, 5}, |
| {5, 2}, |
| }; |
| |
| for (size_t n = 0; n < arraysize(test_case); n++) { |
| int input_channels = test_case[n].input_channels; |
| int output_channels = test_case[n].output_channels; |
| ChannelMixingMatrix matrix_builder(CHANNEL_LAYOUT_DISCRETE, input_channels, |
| CHANNEL_LAYOUT_DISCRETE, |
| output_channels); |
| std::vector<std::vector<float>> matrix; |
| bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| EXPECT_TRUE(remapping); |
| EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| for (int i = 0; i < output_channels; i++) { |
| EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size()); |
| for (int j = 0; j < input_channels; j++) { |
| if (i == j) { |
| EXPECT_EQ(1.0f, matrix[i][j]); |
| } else { |
| EXPECT_EQ(0.0f, matrix[i][j]); |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace webrtc |