| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/ns/noise_suppressor.h" |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <algorithm> |
| |
| #include "modules/audio_processing/ns/fast_math.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| // Maps sample rate to number of bands. |
| size_t NumBandsForRate(size_t sample_rate_hz) { |
| RTC_DCHECK(sample_rate_hz == 16000 || sample_rate_hz == 32000 || |
| sample_rate_hz == 48000); |
| return sample_rate_hz / 16000; |
| } |
| |
| // Maximum number of channels for which the channel data is stored on |
| // the stack. If the number of channels are larger than this, they are stored |
| // using scratch memory that is pre-allocated on the heap. The reason for this |
| // partitioning is not to waste heap space for handling the more common numbers |
| // of channels, while at the same time not limiting the support for higher |
| // numbers of channels by enforcing the channel data to be stored on the |
| // stack using a fixed maximum value. |
| constexpr size_t kMaxNumChannelsOnStack = 2; |
| |
| // Chooses the number of channels to store on the heap when that is required due |
| // to the number of channels being larger than the pre-defined number |
| // of channels to store on the stack. |
| size_t NumChannelsOnHeap(size_t num_channels) { |
| return num_channels > kMaxNumChannelsOnStack ? num_channels : 0; |
| } |
| |
| // Hybrib Hanning and flat window for the filterbank. |
| constexpr std::array<float, 96> kBlocks160w256FirstHalf = { |
| 0.00000000f, 0.01636173f, 0.03271908f, 0.04906767f, 0.06540313f, |
| 0.08172107f, 0.09801714f, 0.11428696f, 0.13052619f, 0.14673047f, |
| 0.16289547f, 0.17901686f, 0.19509032f, 0.21111155f, 0.22707626f, |
| 0.24298018f, 0.25881905f, 0.27458862f, 0.29028468f, 0.30590302f, |
| 0.32143947f, 0.33688985f, 0.35225005f, 0.36751594f, 0.38268343f, |
| 0.39774847f, 0.41270703f, 0.42755509f, 0.44228869f, 0.45690388f, |
| 0.47139674f, 0.48576339f, 0.50000000f, 0.51410274f, 0.52806785f, |
| 0.54189158f, 0.55557023f, 0.56910015f, 0.58247770f, 0.59569930f, |
| 0.60876143f, 0.62166057f, 0.63439328f, 0.64695615f, 0.65934582f, |
| 0.67155895f, 0.68359230f, 0.69544264f, 0.70710678f, 0.71858162f, |
| 0.72986407f, 0.74095113f, 0.75183981f, 0.76252720f, 0.77301045f, |
| 0.78328675f, 0.79335334f, 0.80320753f, 0.81284668f, 0.82226822f, |
| 0.83146961f, 0.84044840f, 0.84920218f, 0.85772861f, 0.86602540f, |
| 0.87409034f, 0.88192126f, 0.88951608f, 0.89687274f, 0.90398929f, |
| 0.91086382f, 0.91749450f, 0.92387953f, 0.93001722f, 0.93590593f, |
| 0.94154407f, 0.94693013f, 0.95206268f, 0.95694034f, 0.96156180f, |
| 0.96592583f, 0.97003125f, 0.97387698f, 0.97746197f, 0.98078528f, |
| 0.98384601f, 0.98664333f, 0.98917651f, 0.99144486f, 0.99344778f, |
| 0.99518473f, 0.99665524f, 0.99785892f, 0.99879546f, 0.99946459f, |
| 0.99986614f}; |
| |
| // Applies the filterbank window to a buffer. |
| void ApplyFilterBankWindow(rtc::ArrayView<float, kFftSize> x) { |
| for (size_t i = 0; i < 96; ++i) { |
| x[i] = kBlocks160w256FirstHalf[i] * x[i]; |
| } |
| |
| for (size_t i = 161, k = 95; i < kFftSize; ++i, --k) { |
| RTC_DCHECK_NE(0, k); |
| x[i] = kBlocks160w256FirstHalf[k] * x[i]; |
| } |
| } |
| |
| // Extends a frame with previous data. |
| void FormExtendedFrame(rtc::ArrayView<const float, kNsFrameSize> frame, |
| rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data, |
| rtc::ArrayView<float, kFftSize> extended_frame) { |
| std::copy(old_data.begin(), old_data.end(), extended_frame.begin()); |
| std::copy(frame.begin(), frame.end(), |
| extended_frame.begin() + old_data.size()); |
| std::copy(extended_frame.end() - old_data.size(), extended_frame.end(), |
| old_data.begin()); |
| } |
| |
| // Uses overlap-and-add to produce an output frame. |
| void OverlapAndAdd(rtc::ArrayView<const float, kFftSize> extended_frame, |
| rtc::ArrayView<float, kOverlapSize> overlap_memory, |
| rtc::ArrayView<float, kNsFrameSize> output_frame) { |
| for (size_t i = 0; i < kOverlapSize; ++i) { |
| output_frame[i] = overlap_memory[i] + extended_frame[i]; |
| } |
| std::copy(extended_frame.begin() + kOverlapSize, |
| extended_frame.begin() + kNsFrameSize, |
| output_frame.begin() + kOverlapSize); |
| std::copy(extended_frame.begin() + kNsFrameSize, extended_frame.end(), |
| overlap_memory.begin()); |
| } |
| |
| // Produces a delayed frame. |
| void DelaySignal(rtc::ArrayView<const float, kNsFrameSize> frame, |
| rtc::ArrayView<float, kFftSize - kNsFrameSize> delay_buffer, |
| rtc::ArrayView<float, kNsFrameSize> delayed_frame) { |
| constexpr size_t kSamplesFromFrame = kNsFrameSize - (kFftSize - kNsFrameSize); |
| std::copy(delay_buffer.begin(), delay_buffer.end(), delayed_frame.begin()); |
| std::copy(frame.begin(), frame.begin() + kSamplesFromFrame, |
| delayed_frame.begin() + delay_buffer.size()); |
| |
| std::copy(frame.begin() + kSamplesFromFrame, frame.end(), |
| delay_buffer.begin()); |
| } |
| |
| // Computes the energy of an extended frame. |
| float ComputeEnergyOfExtendedFrame(rtc::ArrayView<const float, kFftSize> x) { |
| float energy = 0.f; |
| for (float x_k : x) { |
| energy += x_k * x_k; |
| } |
| |
| return energy; |
| } |
| |
| // Computes the energy of an extended frame based on its subcomponents. |
| float ComputeEnergyOfExtendedFrame( |
| rtc::ArrayView<const float, kNsFrameSize> frame, |
| rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data) { |
| float energy = 0.f; |
| for (float v : old_data) { |
| energy += v * v; |
| } |
| for (float v : frame) { |
| energy += v * v; |
| } |
| |
| return energy; |
| } |
| |
| // Computes the magnitude spectrum based on an FFT output. |
| void ComputeMagnitudeSpectrum( |
| rtc::ArrayView<const float, kFftSize> real, |
| rtc::ArrayView<const float, kFftSize> imag, |
| rtc::ArrayView<float, kFftSizeBy2Plus1> signal_spectrum) { |
| signal_spectrum[0] = fabsf(real[0]) + 1.f; |
| signal_spectrum[kFftSizeBy2Plus1 - 1] = |
| fabsf(real[kFftSizeBy2Plus1 - 1]) + 1.f; |
| |
| for (size_t i = 1; i < kFftSizeBy2Plus1 - 1; ++i) { |
| signal_spectrum[i] = |
| SqrtFastApproximation(real[i] * real[i] + imag[i] * imag[i]) + 1.f; |
| } |
| } |
| |
| // Compute prior and post SNR. |
| void ComputeSnr(rtc::ArrayView<const float, kFftSizeBy2Plus1> filter, |
| rtc::ArrayView<const float> prev_signal_spectrum, |
| rtc::ArrayView<const float> signal_spectrum, |
| rtc::ArrayView<const float> prev_noise_spectrum, |
| rtc::ArrayView<const float> noise_spectrum, |
| rtc::ArrayView<float> prior_snr, |
| rtc::ArrayView<float> post_snr) { |
| for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { |
| // Previous post SNR. |
| // Previous estimate: based on previous frame with gain filter. |
| float prev_estimate = prev_signal_spectrum[i] / |
| (prev_noise_spectrum[i] + 0.0001f) * filter[i]; |
| // Post SNR. |
| if (signal_spectrum[i] > noise_spectrum[i]) { |
| post_snr[i] = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f; |
| } else { |
| post_snr[i] = 0.f; |
| } |
| // The directed decision estimate of the prior SNR is a sum the current and |
| // previous estimates. |
| prior_snr[i] = 0.98f * prev_estimate + (1.f - 0.98f) * post_snr[i]; |
| } |
| } |
| |
| // Computes the attenuating gain for the noise suppression of the upper bands. |
| float ComputeUpperBandsGain( |
| float minimum_attenuating_gain, |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> filter, |
| rtc::ArrayView<const float> speech_probability, |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> prev_analysis_signal_spectrum, |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) { |
| // Average speech prob and filter gain for the end of the lowest band. |
| constexpr int kNumAvgBins = 32; |
| constexpr float kOneByNumAvgBins = 1.f / kNumAvgBins; |
| |
| float avg_prob_speech = 0.f; |
| float avg_filter_gain = 0.f; |
| for (size_t i = kFftSizeBy2Plus1 - kNumAvgBins - 1; i < kFftSizeBy2Plus1 - 1; |
| i++) { |
| avg_prob_speech += speech_probability[i]; |
| avg_filter_gain += filter[i]; |
| } |
| avg_prob_speech = avg_prob_speech * kOneByNumAvgBins; |
| avg_filter_gain = avg_filter_gain * kOneByNumAvgBins; |
| |
| // If the speech was suppressed by a component between Analyze and Process, an |
| // example being by an AEC, it should not be considered speech for the purpose |
| // of high band suppression. To that end, the speech probability is scaled |
| // accordingly. |
| float sum_analysis_spectrum = 0.f; |
| float sum_processing_spectrum = 0.f; |
| for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { |
| sum_analysis_spectrum += prev_analysis_signal_spectrum[i]; |
| sum_processing_spectrum += signal_spectrum[i]; |
| } |
| |
| // The magnitude spectrum computation enforces the spectrum to be strictly |
| // positive. |
| RTC_DCHECK_GT(sum_analysis_spectrum, 0.f); |
| avg_prob_speech *= sum_processing_spectrum / sum_analysis_spectrum; |
| |
| // Compute gain based on speech probability. |
| float gain = |
| 0.5f * (1.f + static_cast<float>(tanh(2.f * avg_prob_speech - 1.f))); |
| |
| // Combine gain with low band gain. |
| if (avg_prob_speech >= 0.5f) { |
| gain = 0.25f * gain + 0.75f * avg_filter_gain; |
| } else { |
| gain = 0.5f * gain + 0.5f * avg_filter_gain; |
| } |
| |
| // Make sure gain is within flooring range. |
| return std::min(std::max(gain, minimum_attenuating_gain), 1.f); |
| } |
| |
| } // namespace |
| |
| NoiseSuppressor::ChannelState::ChannelState( |
| const SuppressionParams& suppression_params, |
| size_t num_bands) |
| : wiener_filter(suppression_params), |
| noise_estimator(suppression_params), |
| process_delay_memory(num_bands > 1 ? num_bands - 1 : 0) { |
| analyze_analysis_memory.fill(0.f); |
| prev_analysis_signal_spectrum.fill(1.f); |
| process_analysis_memory.fill(0.f); |
| process_synthesis_memory.fill(0.f); |
| for (auto& d : process_delay_memory) { |
| d.fill(0.f); |
| } |
| } |
| |
| NoiseSuppressor::NoiseSuppressor(const NsConfig& config, |
| size_t sample_rate_hz, |
| size_t num_channels) |
| : num_bands_(NumBandsForRate(sample_rate_hz)), |
| num_channels_(num_channels), |
| suppression_params_(config.target_level), |
| filter_bank_states_heap_(NumChannelsOnHeap(num_channels_)), |
| upper_band_gains_heap_(NumChannelsOnHeap(num_channels_)), |
| energies_before_filtering_heap_(NumChannelsOnHeap(num_channels_)), |
| gain_adjustments_heap_(NumChannelsOnHeap(num_channels_)), |
| channels_(num_channels_) { |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| channels_[ch] = |
| std::make_unique<ChannelState>(suppression_params_, num_bands_); |
| } |
| } |
| |
| void NoiseSuppressor::AggregateWienerFilters( |
| rtc::ArrayView<float, kFftSizeBy2Plus1> filter) const { |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> filter0 = |
| channels_[0]->wiener_filter.get_filter(); |
| std::copy(filter0.begin(), filter0.end(), filter.begin()); |
| |
| for (size_t ch = 1; ch < num_channels_; ++ch) { |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> filter_ch = |
| channels_[ch]->wiener_filter.get_filter(); |
| |
| for (size_t k = 0; k < kFftSizeBy2Plus1; ++k) { |
| filter[k] = std::min(filter[k], filter_ch[k]); |
| } |
| } |
| } |
| |
| void NoiseSuppressor::Analyze(const AudioBuffer& audio) { |
| // Prepare the noise estimator for the analysis stage. |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| channels_[ch]->noise_estimator.PrepareAnalysis(); |
| } |
| |
| // Check for zero frames. |
| bool zero_frame = true; |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| rtc::ArrayView<const float, kNsFrameSize> y_band0( |
| &audio.split_bands_const(ch)[0][0], kNsFrameSize); |
| float energy = ComputeEnergyOfExtendedFrame( |
| y_band0, channels_[ch]->analyze_analysis_memory); |
| if (energy > 0.f) { |
| zero_frame = false; |
| break; |
| } |
| } |
| |
| if (zero_frame) { |
| // We want to avoid updating statistics in this case: |
| // Updating feature statistics when we have zeros only will cause |
| // thresholds to move towards zero signal situations. This in turn has the |
| // effect that once the signal is "turned on" (non-zero values) everything |
| // will be treated as speech and there is no noise suppression effect. |
| // Depending on the duration of the inactive signal it takes a |
| // considerable amount of time for the system to learn what is noise and |
| // what is speech. |
| return; |
| } |
| |
| // Only update analysis counter for frames that are properly analyzed. |
| if (++num_analyzed_frames_ < 0) { |
| num_analyzed_frames_ = 0; |
| } |
| |
| // Analyze all channels. |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| std::unique_ptr<ChannelState>& ch_p = channels_[ch]; |
| rtc::ArrayView<const float, kNsFrameSize> y_band0( |
| &audio.split_bands_const(ch)[0][0], kNsFrameSize); |
| |
| // Form an extended frame and apply analysis filter bank windowing. |
| std::array<float, kFftSize> extended_frame; |
| FormExtendedFrame(y_band0, ch_p->analyze_analysis_memory, extended_frame); |
| ApplyFilterBankWindow(extended_frame); |
| |
| // Compute the magnitude spectrum. |
| std::array<float, kFftSize> real; |
| std::array<float, kFftSize> imag; |
| fft_.Fft(extended_frame, real, imag); |
| |
| std::array<float, kFftSizeBy2Plus1> signal_spectrum; |
| ComputeMagnitudeSpectrum(real, imag, signal_spectrum); |
| |
| // Compute energies. |
| float signal_energy = 0.f; |
| for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { |
| signal_energy += real[i] * real[i] + imag[i] * imag[i]; |
| } |
| signal_energy /= kFftSizeBy2Plus1; |
| |
| float signal_spectral_sum = 0.f; |
| for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { |
| signal_spectral_sum += signal_spectrum[i]; |
| } |
| |
| // Estimate the noise spectra and the probability estimates of speech |
| // presence. |
| ch_p->noise_estimator.PreUpdate(num_analyzed_frames_, signal_spectrum, |
| signal_spectral_sum); |
| |
| std::array<float, kFftSizeBy2Plus1> post_snr; |
| std::array<float, kFftSizeBy2Plus1> prior_snr; |
| ComputeSnr(ch_p->wiener_filter.get_filter(), |
| ch_p->prev_analysis_signal_spectrum, signal_spectrum, |
| ch_p->noise_estimator.get_prev_noise_spectrum(), |
| ch_p->noise_estimator.get_noise_spectrum(), prior_snr, post_snr); |
| |
| ch_p->speech_probability_estimator.Update( |
| num_analyzed_frames_, prior_snr, post_snr, |
| ch_p->noise_estimator.get_conservative_noise_spectrum(), |
| signal_spectrum, signal_spectral_sum, signal_energy); |
| |
| ch_p->noise_estimator.PostUpdate( |
| ch_p->speech_probability_estimator.get_probability(), signal_spectrum); |
| |
| // Store the magnitude spectrum to make it avalilable for the process |
| // method. |
| std::copy(signal_spectrum.begin(), signal_spectrum.end(), |
| ch_p->prev_analysis_signal_spectrum.begin()); |
| } |
| } |
| |
| void NoiseSuppressor::Process(AudioBuffer* audio) { |
| // Select the space for storing data during the processing. |
| std::array<FilterBankState, kMaxNumChannelsOnStack> filter_bank_states_stack; |
| rtc::ArrayView<FilterBankState> filter_bank_states( |
| filter_bank_states_stack.data(), num_channels_); |
| std::array<float, kMaxNumChannelsOnStack> upper_band_gains_stack; |
| rtc::ArrayView<float> upper_band_gains(upper_band_gains_stack.data(), |
| num_channels_); |
| std::array<float, kMaxNumChannelsOnStack> energies_before_filtering_stack; |
| rtc::ArrayView<float> energies_before_filtering( |
| energies_before_filtering_stack.data(), num_channels_); |
| std::array<float, kMaxNumChannelsOnStack> gain_adjustments_stack; |
| rtc::ArrayView<float> gain_adjustments(gain_adjustments_stack.data(), |
| num_channels_); |
| if (NumChannelsOnHeap(num_channels_) > 0) { |
| // If the stack-allocated space is too small, use the heap for storing the |
| // data. |
| filter_bank_states = rtc::ArrayView<FilterBankState>( |
| filter_bank_states_heap_.data(), num_channels_); |
| upper_band_gains = |
| rtc::ArrayView<float>(upper_band_gains_heap_.data(), num_channels_); |
| energies_before_filtering = rtc::ArrayView<float>( |
| energies_before_filtering_heap_.data(), num_channels_); |
| gain_adjustments = |
| rtc::ArrayView<float>(gain_adjustments_heap_.data(), num_channels_); |
| } |
| |
| // Compute the suppression filters for all channels. |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| // Form an extended frame and apply analysis filter bank windowing. |
| rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0], |
| kNsFrameSize); |
| |
| FormExtendedFrame(y_band0, channels_[ch]->process_analysis_memory, |
| filter_bank_states[ch].extended_frame); |
| |
| ApplyFilterBankWindow(filter_bank_states[ch].extended_frame); |
| |
| energies_before_filtering[ch] = |
| ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame); |
| |
| // Perform filter bank analysis and compute the magnitude spectrum. |
| fft_.Fft(filter_bank_states[ch].extended_frame, filter_bank_states[ch].real, |
| filter_bank_states[ch].imag); |
| |
| std::array<float, kFftSizeBy2Plus1> signal_spectrum; |
| ComputeMagnitudeSpectrum(filter_bank_states[ch].real, |
| filter_bank_states[ch].imag, signal_spectrum); |
| |
| // Compute the frequency domain gain filter for noise attenuation. |
| channels_[ch]->wiener_filter.Update( |
| num_analyzed_frames_, |
| channels_[ch]->noise_estimator.get_noise_spectrum(), |
| channels_[ch]->noise_estimator.get_prev_noise_spectrum(), |
| channels_[ch]->noise_estimator.get_parametric_noise_spectrum(), |
| signal_spectrum); |
| |
| if (num_bands_ > 1) { |
| // Compute the time-domain gain for attenuating the noise in the upper |
| // bands. |
| |
| upper_band_gains[ch] = ComputeUpperBandsGain( |
| suppression_params_.minimum_attenuating_gain, |
| channels_[ch]->wiener_filter.get_filter(), |
| channels_[ch]->speech_probability_estimator.get_probability(), |
| channels_[ch]->prev_analysis_signal_spectrum, signal_spectrum); |
| } |
| } |
| |
| // Only do the below processing if the output of the audio processing module |
| // is used. |
| if (!capture_output_used_) { |
| return; |
| } |
| |
| // Aggregate the Wiener filters for all channels. |
| std::array<float, kFftSizeBy2Plus1> filter_data; |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> filter = filter_data; |
| if (num_channels_ == 1) { |
| filter = channels_[0]->wiener_filter.get_filter(); |
| } else { |
| AggregateWienerFilters(filter_data); |
| } |
| |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| // Apply the filter to the lower band. |
| for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { |
| filter_bank_states[ch].real[i] *= filter[i]; |
| filter_bank_states[ch].imag[i] *= filter[i]; |
| } |
| } |
| |
| // Perform filter bank synthesis |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| fft_.Ifft(filter_bank_states[ch].real, filter_bank_states[ch].imag, |
| filter_bank_states[ch].extended_frame); |
| } |
| |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| const float energy_after_filtering = |
| ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame); |
| |
| // Apply synthesis window. |
| ApplyFilterBankWindow(filter_bank_states[ch].extended_frame); |
| |
| // Compute the adjustment of the noise attenuation filter based on the |
| // effect of the attenuation. |
| gain_adjustments[ch] = |
| channels_[ch]->wiener_filter.ComputeOverallScalingFactor( |
| num_analyzed_frames_, |
| channels_[ch]->speech_probability_estimator.get_prior_probability(), |
| energies_before_filtering[ch], energy_after_filtering); |
| } |
| |
| // Select and apply adjustment of the noise attenuation filter based on the |
| // effect of the attenuation. |
| float gain_adjustment = gain_adjustments[0]; |
| for (size_t ch = 1; ch < num_channels_; ++ch) { |
| gain_adjustment = std::min(gain_adjustment, gain_adjustments[ch]); |
| } |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| for (size_t i = 0; i < kFftSize; ++i) { |
| filter_bank_states[ch].extended_frame[i] = |
| gain_adjustment * filter_bank_states[ch].extended_frame[i]; |
| } |
| } |
| |
| // Use overlap-and-add to form the output frame of the lowest band. |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0], |
| kNsFrameSize); |
| OverlapAndAdd(filter_bank_states[ch].extended_frame, |
| channels_[ch]->process_synthesis_memory, y_band0); |
| } |
| |
| if (num_bands_ > 1) { |
| // Select the noise attenuating gain to apply to the upper band. |
| float upper_band_gain = upper_band_gains[0]; |
| for (size_t ch = 1; ch < num_channels_; ++ch) { |
| upper_band_gain = std::min(upper_band_gain, upper_band_gains[ch]); |
| } |
| |
| // Process the upper bands. |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| for (size_t b = 1; b < num_bands_; ++b) { |
| // Delay the upper bands to match the delay of the filterbank applied to |
| // the lowest band. |
| rtc::ArrayView<float, kNsFrameSize> y_band( |
| &audio->split_bands(ch)[b][0], kNsFrameSize); |
| std::array<float, kNsFrameSize> delayed_frame; |
| DelaySignal(y_band, channels_[ch]->process_delay_memory[b - 1], |
| delayed_frame); |
| |
| // Apply the time-domain noise-attenuating gain. |
| for (size_t j = 0; j < kNsFrameSize; j++) { |
| y_band[j] = upper_band_gain * delayed_frame[j]; |
| } |
| } |
| } |
| } |
| |
| // Limit the output the allowed range. |
| for (size_t ch = 0; ch < num_channels_; ++ch) { |
| for (size_t b = 0; b < num_bands_; ++b) { |
| rtc::ArrayView<float, kNsFrameSize> y_band(&audio->split_bands(ch)[b][0], |
| kNsFrameSize); |
| for (size_t j = 0; j < kNsFrameSize; j++) { |
| y_band[j] = std::min(std::max(y_band[j], -32768.f), 32767.f); |
| } |
| } |
| } |
| } |
| |
| } // namespace webrtc |