blob: 1a20807756cac7dd4d2e31db5ecb5100e60d86c0 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/goog_cc/probe_controller.h"
#include <algorithm>
#include <cstdint>
#include <initializer_list>
#include <memory>
#include <vector>
#include "absl/strings/match.h"
#include "absl/types/optional.h"
#include "api/field_trials_view.h"
#include "api/rtc_event_log/rtc_event_log.h"
#include "api/transport/network_types.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
// Maximum waiting time from the time of initiating probing to getting
// the measured results back.
constexpr TimeDelta kMaxWaitingTimeForProbingResult = TimeDelta::Seconds(1);
// Default probing bitrate limit. Applied only when the application didn't
// specify max bitrate.
constexpr DataRate kDefaultMaxProbingBitrate = DataRate::KilobitsPerSec(5000);
// If the bitrate drops to a factor `kBitrateDropThreshold` or lower
// and we recover within `kBitrateDropTimeoutMs`, then we'll send
// a probe at a fraction `kProbeFractionAfterDrop` of the original bitrate.
constexpr double kBitrateDropThreshold = 0.66;
constexpr TimeDelta kBitrateDropTimeout = TimeDelta::Seconds(5);
constexpr double kProbeFractionAfterDrop = 0.85;
// Timeout for probing after leaving ALR. If the bitrate drops significantly,
// (as determined by the delay based estimator) and we leave ALR, then we will
// send a probe if we recover within `kLeftAlrTimeoutMs` ms.
constexpr TimeDelta kAlrEndedTimeout = TimeDelta::Seconds(3);
// The expected uncertainty of probe result (as a fraction of the target probe
// This is a limit on how often probing can be done when there is a BW
// drop detected in ALR.
constexpr TimeDelta kMinTimeBetweenAlrProbes = TimeDelta::Seconds(5);
// bitrate). Used to avoid probing if the probe bitrate is close to our current
// estimate.
constexpr double kProbeUncertainty = 0.05;
// Use probing to recover faster after large bitrate estimate drops.
constexpr char kBweRapidRecoveryExperiment[] =
"WebRTC-BweRapidRecoveryExperiment";
void MaybeLogProbeClusterCreated(RtcEventLog* event_log,
const ProbeClusterConfig& probe) {
RTC_DCHECK(event_log);
if (!event_log) {
return;
}
DataSize min_data_size = probe.target_data_rate * probe.target_duration;
event_log->Log(std::make_unique<RtcEventProbeClusterCreated>(
probe.id, probe.target_data_rate.bps(), probe.target_probe_count,
min_data_size.bytes()));
}
} // namespace
ProbeControllerConfig::ProbeControllerConfig(
const FieldTrialsView* key_value_config)
: first_exponential_probe_scale("p1", 3.0),
second_exponential_probe_scale("p2", 6.0),
further_exponential_probe_scale("step_size", 2),
further_probe_threshold("further_probe_threshold", 0.7),
abort_further_probe_if_max_lower_than_current("abort_further", false),
repeated_initial_probing_duration("initial_probing_duration",
TimeDelta::Seconds(5)),
alr_probing_interval("alr_interval", TimeDelta::Seconds(5)),
alr_probe_scale("alr_scale", 2),
network_state_estimate_probing_interval("network_state_interval",
TimeDelta::PlusInfinity()),
probe_if_estimate_lower_than_network_state_estimate_ratio(
"est_lower_than_network_ratio",
0),
estimate_lower_than_network_state_estimate_probing_interval(
"est_lower_than_network_interval",
TimeDelta::Seconds(3)),
network_state_probe_scale("network_state_scale", 1.0),
network_state_probe_duration("network_state_probe_duration",
TimeDelta::Millis(15)),
probe_on_max_allocated_bitrate_change("probe_max_allocation", true),
first_allocation_probe_scale("alloc_p1", 1),
second_allocation_probe_scale("alloc_p2", 2),
allocation_probe_limit_by_current_scale("alloc_current_bwe_limit"),
min_probe_packets_sent("min_probe_packets_sent", 5),
min_probe_duration("min_probe_duration", TimeDelta::Millis(15)),
loss_limited_probe_scale("loss_limited_scale", 1.5),
skip_if_estimate_larger_than_fraction_of_max(
"skip_if_est_larger_than_fraction_of_max",
0.0) {
ParseFieldTrial({&first_exponential_probe_scale,
&second_exponential_probe_scale,
&further_exponential_probe_scale,
&further_probe_threshold,
&abort_further_probe_if_max_lower_than_current,
&repeated_initial_probing_duration,
&alr_probing_interval,
&alr_probe_scale,
&probe_on_max_allocated_bitrate_change,
&first_allocation_probe_scale,
&second_allocation_probe_scale,
&allocation_probe_limit_by_current_scale,
&min_probe_duration,
&network_state_estimate_probing_interval,
&probe_if_estimate_lower_than_network_state_estimate_ratio,
&estimate_lower_than_network_state_estimate_probing_interval,
&network_state_probe_scale,
&network_state_probe_duration,
&min_probe_packets_sent,
&loss_limited_probe_scale,
&skip_if_estimate_larger_than_fraction_of_max},
key_value_config->Lookup("WebRTC-Bwe-ProbingConfiguration"));
// Specialized keys overriding subsets of WebRTC-Bwe-ProbingConfiguration
ParseFieldTrial(
{&first_exponential_probe_scale, &second_exponential_probe_scale},
key_value_config->Lookup("WebRTC-Bwe-InitialProbing"));
ParseFieldTrial({&further_exponential_probe_scale, &further_probe_threshold},
key_value_config->Lookup("WebRTC-Bwe-ExponentialProbing"));
ParseFieldTrial(
{&alr_probing_interval, &alr_probe_scale, &loss_limited_probe_scale},
key_value_config->Lookup("WebRTC-Bwe-AlrProbing"));
ParseFieldTrial(
{&first_allocation_probe_scale, &second_allocation_probe_scale,
&allocation_probe_limit_by_current_scale},
key_value_config->Lookup("WebRTC-Bwe-AllocationProbing"));
ParseFieldTrial({&min_probe_packets_sent, &min_probe_duration},
key_value_config->Lookup("WebRTC-Bwe-ProbingBehavior"));
}
ProbeControllerConfig::ProbeControllerConfig(const ProbeControllerConfig&) =
default;
ProbeControllerConfig::~ProbeControllerConfig() = default;
ProbeController::ProbeController(const FieldTrialsView* key_value_config,
RtcEventLog* event_log)
: network_available_(false),
enable_periodic_alr_probing_(false),
in_rapid_recovery_experiment_(absl::StartsWith(
key_value_config->Lookup(kBweRapidRecoveryExperiment),
"Enabled")),
event_log_(event_log),
config_(ProbeControllerConfig(key_value_config)) {
Reset(Timestamp::Zero());
}
ProbeController::~ProbeController() {}
std::vector<ProbeClusterConfig> ProbeController::SetBitrates(
DataRate min_bitrate,
DataRate start_bitrate,
DataRate max_bitrate,
Timestamp at_time) {
if (start_bitrate > DataRate::Zero()) {
start_bitrate_ = start_bitrate;
estimated_bitrate_ = start_bitrate;
} else if (start_bitrate_.IsZero()) {
start_bitrate_ = min_bitrate;
}
// The reason we use the variable `old_max_bitrate_pbs` is because we
// need to set `max_bitrate_` before we call InitiateProbing.
DataRate old_max_bitrate = max_bitrate_;
max_bitrate_ =
max_bitrate.IsFinite() ? max_bitrate : kDefaultMaxProbingBitrate;
switch (state_) {
case State::kInit:
if (network_available_)
return InitiateExponentialProbing(at_time);
break;
case State::kWaitingForProbingResult:
break;
case State::kProbingComplete:
// If the new max bitrate is higher than both the old max bitrate and the
// estimate then initiate probing.
if (!estimated_bitrate_.IsZero() && old_max_bitrate < max_bitrate_ &&
estimated_bitrate_ < max_bitrate_) {
return InitiateProbing(at_time, {max_bitrate_}, false);
}
break;
}
return std::vector<ProbeClusterConfig>();
}
std::vector<ProbeClusterConfig> ProbeController::OnMaxTotalAllocatedBitrate(
DataRate max_total_allocated_bitrate,
Timestamp at_time) {
const bool in_alr = alr_start_time_.has_value();
const bool allow_allocation_probe = in_alr;
if (config_.probe_on_max_allocated_bitrate_change &&
state_ == State::kProbingComplete &&
max_total_allocated_bitrate != max_total_allocated_bitrate_ &&
estimated_bitrate_ < max_bitrate_ &&
estimated_bitrate_ < max_total_allocated_bitrate &&
allow_allocation_probe) {
max_total_allocated_bitrate_ = max_total_allocated_bitrate;
if (!config_.first_allocation_probe_scale)
return std::vector<ProbeClusterConfig>();
DataRate first_probe_rate = max_total_allocated_bitrate *
config_.first_allocation_probe_scale.Value();
DataRate current_bwe_limit =
!config_.allocation_probe_limit_by_current_scale
? DataRate::PlusInfinity()
: estimated_bitrate_ *
config_.allocation_probe_limit_by_current_scale.Value();
bool limited_by_current_bwe = current_bwe_limit < first_probe_rate;
if (limited_by_current_bwe) {
first_probe_rate = current_bwe_limit;
}
std::vector<DataRate> probes = {first_probe_rate};
if (!limited_by_current_bwe && config_.second_allocation_probe_scale) {
DataRate second_probe_rate =
max_total_allocated_bitrate *
config_.second_allocation_probe_scale.Value();
limited_by_current_bwe = current_bwe_limit < second_probe_rate;
if (limited_by_current_bwe) {
second_probe_rate = current_bwe_limit;
}
if (second_probe_rate > first_probe_rate)
probes.push_back(second_probe_rate);
}
bool allow_further_probing = limited_by_current_bwe;
return InitiateProbing(at_time, probes, allow_further_probing);
}
max_total_allocated_bitrate_ = max_total_allocated_bitrate;
return std::vector<ProbeClusterConfig>();
}
std::vector<ProbeClusterConfig> ProbeController::OnNetworkAvailability(
NetworkAvailability msg) {
network_available_ = msg.network_available;
if (!network_available_ && state_ == State::kWaitingForProbingResult) {
state_ = State::kProbingComplete;
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
}
if (network_available_ && state_ == State::kInit && !start_bitrate_.IsZero())
return InitiateExponentialProbing(msg.at_time);
return std::vector<ProbeClusterConfig>();
}
void ProbeController::UpdateState(State new_state) {
switch (new_state) {
case State::kInit:
state_ = State::kInit;
break;
case State::kWaitingForProbingResult:
state_ = State::kWaitingForProbingResult;
break;
case State::kProbingComplete:
state_ = State::kProbingComplete;
waiting_for_initial_probe_result_ = false;
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
break;
}
}
std::vector<ProbeClusterConfig> ProbeController::InitiateExponentialProbing(
Timestamp at_time) {
RTC_DCHECK(network_available_);
RTC_DCHECK(state_ == State::kInit);
RTC_DCHECK_GT(start_bitrate_, DataRate::Zero());
// When probing at 1.8 Mbps ( 6x 300), this represents a threshold of
// 1.2 Mbps to continue probing.
std::vector<DataRate> probes = {config_.first_exponential_probe_scale *
start_bitrate_};
if (config_.second_exponential_probe_scale &&
config_.second_exponential_probe_scale.GetOptional().value() > 0) {
probes.push_back(config_.second_exponential_probe_scale.Value() *
start_bitrate_);
}
waiting_for_initial_probe_result_ = true;
if (repeated_initial_probing_enabled_) {
last_allowed_repeated_initial_probe_ =
at_time + config_.repeated_initial_probing_duration;
RTC_LOG(LS_INFO) << "Repeated initial probing enabled, last allowed probe: "
<< last_allowed_repeated_initial_probe_
<< "now: " << at_time;
}
return InitiateProbing(at_time, probes, true);
}
std::vector<ProbeClusterConfig> ProbeController::SetEstimatedBitrate(
DataRate bitrate,
BandwidthLimitedCause bandwidth_limited_cause,
Timestamp at_time) {
bandwidth_limited_cause_ = bandwidth_limited_cause;
if (bitrate < kBitrateDropThreshold * estimated_bitrate_) {
time_of_last_large_drop_ = at_time;
bitrate_before_last_large_drop_ = estimated_bitrate_;
}
estimated_bitrate_ = bitrate;
if (state_ == State::kWaitingForProbingResult) {
// Continue probing if probing results indicate channel has greater
// capacity unless we already reached the needed bitrate.
if (config_.abort_further_probe_if_max_lower_than_current &&
(bitrate > max_bitrate_ ||
(!max_total_allocated_bitrate_.IsZero() &&
!(waiting_for_initial_probe_result_ &&
repeated_initial_probing_enabled_) &&
bitrate > 2 * max_total_allocated_bitrate_))) {
// No need to continue probing.
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
}
DataRate network_state_estimate_probe_further_limit =
config_.network_state_estimate_probing_interval->IsFinite() &&
network_estimate_
? network_estimate_->link_capacity_upper *
config_.further_probe_threshold
: DataRate::PlusInfinity();
RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate
<< " Minimum to probe further: "
<< min_bitrate_to_probe_further_ << " upper limit: "
<< network_state_estimate_probe_further_limit;
if (bitrate > min_bitrate_to_probe_further_ &&
bitrate <= network_state_estimate_probe_further_limit) {
return InitiateProbing(
at_time, {config_.further_exponential_probe_scale * bitrate}, true);
}
}
return {};
}
void ProbeController::EnablePeriodicAlrProbing(bool enable) {
enable_periodic_alr_probing_ = enable;
}
void ProbeController::EnableRepeatedInitialProbing(bool enable) {
repeated_initial_probing_enabled_ = enable;
}
void ProbeController::SetAlrStartTimeMs(
absl::optional<int64_t> alr_start_time_ms) {
if (alr_start_time_ms) {
alr_start_time_ = Timestamp::Millis(*alr_start_time_ms);
} else {
alr_start_time_ = absl::nullopt;
}
}
void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) {
alr_end_time_.emplace(Timestamp::Millis(alr_end_time_ms));
}
std::vector<ProbeClusterConfig> ProbeController::RequestProbe(
Timestamp at_time) {
// Called once we have returned to normal state after a large drop in
// estimated bandwidth. The current response is to initiate a single probe
// session (if not already probing) at the previous bitrate.
//
// If the probe session fails, the assumption is that this drop was a
// real one from a competing flow or a network change.
bool in_alr = alr_start_time_.has_value();
bool alr_ended_recently =
(alr_end_time_.has_value() &&
at_time - alr_end_time_.value() < kAlrEndedTimeout);
if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) {
if (state_ == State::kProbingComplete) {
DataRate suggested_probe =
kProbeFractionAfterDrop * bitrate_before_last_large_drop_;
DataRate min_expected_probe_result =
(1 - kProbeUncertainty) * suggested_probe;
TimeDelta time_since_drop = at_time - time_of_last_large_drop_;
TimeDelta time_since_probe = at_time - last_bwe_drop_probing_time_;
if (min_expected_probe_result > estimated_bitrate_ &&
time_since_drop < kBitrateDropTimeout &&
time_since_probe > kMinTimeBetweenAlrProbes) {
RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing.";
// Track how often we probe in response to bandwidth drop in ALR.
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.BWE.BweDropProbingIntervalInS",
(at_time - last_bwe_drop_probing_time_).seconds());
last_bwe_drop_probing_time_ = at_time;
return InitiateProbing(at_time, {suggested_probe}, false);
}
}
}
return std::vector<ProbeClusterConfig>();
}
void ProbeController::SetNetworkStateEstimate(
webrtc::NetworkStateEstimate estimate) {
network_estimate_ = estimate;
}
void ProbeController::Reset(Timestamp at_time) {
bandwidth_limited_cause_ = BandwidthLimitedCause::kDelayBasedLimited;
state_ = State::kInit;
waiting_for_initial_probe_result_ = false;
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
time_last_probing_initiated_ = Timestamp::Zero();
estimated_bitrate_ = DataRate::Zero();
network_estimate_ = absl::nullopt;
start_bitrate_ = DataRate::Zero();
max_bitrate_ = kDefaultMaxProbingBitrate;
Timestamp now = at_time;
last_bwe_drop_probing_time_ = now;
alr_end_time_.reset();
time_of_last_large_drop_ = now;
bitrate_before_last_large_drop_ = DataRate::Zero();
max_total_allocated_bitrate_ = DataRate::Zero();
}
bool ProbeController::TimeForAlrProbe(Timestamp at_time) const {
if (enable_periodic_alr_probing_ && alr_start_time_) {
Timestamp next_probe_time =
std::max(*alr_start_time_, time_last_probing_initiated_) +
config_.alr_probing_interval;
return at_time >= next_probe_time;
}
return false;
}
bool ProbeController::TimeForNetworkStateProbe(Timestamp at_time) const {
if (!network_estimate_ ||
network_estimate_->link_capacity_upper.IsInfinite()) {
return false;
}
bool probe_due_to_low_estimate =
bandwidth_limited_cause_ == BandwidthLimitedCause::kDelayBasedLimited &&
estimated_bitrate_ <
config_.probe_if_estimate_lower_than_network_state_estimate_ratio *
network_estimate_->link_capacity_upper;
if (probe_due_to_low_estimate &&
config_.estimate_lower_than_network_state_estimate_probing_interval
->IsFinite()) {
Timestamp next_probe_time =
time_last_probing_initiated_ +
config_.estimate_lower_than_network_state_estimate_probing_interval;
return at_time >= next_probe_time;
}
bool periodic_probe =
estimated_bitrate_ < network_estimate_->link_capacity_upper;
if (periodic_probe &&
config_.network_state_estimate_probing_interval->IsFinite()) {
Timestamp next_probe_time = time_last_probing_initiated_ +
config_.network_state_estimate_probing_interval;
return at_time >= next_probe_time;
}
return false;
}
bool ProbeController::TimeForNextRepeatedInitialProbe(Timestamp at_time) const {
if (state_ != State::kWaitingForProbingResult &&
last_allowed_repeated_initial_probe_ > at_time) {
Timestamp next_probe_time =
time_last_probing_initiated_ + kMaxWaitingTimeForProbingResult;
if (at_time >= next_probe_time) {
return true;
}
}
return false;
}
std::vector<ProbeClusterConfig> ProbeController::Process(Timestamp at_time) {
if (at_time - time_last_probing_initiated_ >
kMaxWaitingTimeForProbingResult) {
if (state_ == State::kWaitingForProbingResult) {
RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout";
UpdateState(State::kProbingComplete);
}
}
if (estimated_bitrate_.IsZero() || state_ != State::kProbingComplete) {
return {};
}
if (TimeForNextRepeatedInitialProbe(at_time)) {
waiting_for_initial_probe_result_ = true;
return InitiateProbing(
at_time, {estimated_bitrate_ * config_.first_exponential_probe_scale},
true);
}
if (TimeForAlrProbe(at_time) || TimeForNetworkStateProbe(at_time)) {
return InitiateProbing(
at_time, {estimated_bitrate_ * config_.alr_probe_scale}, true);
}
return std::vector<ProbeClusterConfig>();
}
std::vector<ProbeClusterConfig> ProbeController::InitiateProbing(
Timestamp now,
std::vector<DataRate> bitrates_to_probe,
bool probe_further) {
if (config_.skip_if_estimate_larger_than_fraction_of_max > 0) {
DataRate network_estimate = network_estimate_
? network_estimate_->link_capacity_upper
: DataRate::PlusInfinity();
DataRate max_probe_rate =
max_total_allocated_bitrate_.IsZero()
? max_bitrate_
: std::min(max_total_allocated_bitrate_, max_bitrate_);
if (std::min(network_estimate, estimated_bitrate_) >
config_.skip_if_estimate_larger_than_fraction_of_max * max_probe_rate) {
UpdateState(State::kProbingComplete);
return {};
}
}
DataRate max_probe_bitrate = max_bitrate_;
if (max_total_allocated_bitrate_ > DataRate::Zero() &&
!(repeated_initial_probing_enabled_ &&
waiting_for_initial_probe_result_)) {
// If a max allocated bitrate has been configured, allow probing up to 2x
// that rate. This allows some overhead to account for bursty streams,
// which otherwise would have to ramp up when the overshoot is already in
// progress.
// It also avoids minor quality reduction caused by probes often being
// received at slightly less than the target probe bitrate.
max_probe_bitrate =
std::min(max_probe_bitrate, max_total_allocated_bitrate_ * 2);
}
DataRate estimate_capped_bitrate = DataRate::PlusInfinity();
switch (bandwidth_limited_cause_) {
case BandwidthLimitedCause::kRttBasedBackOffHighRtt:
case BandwidthLimitedCause::kDelayBasedLimitedDelayIncreased:
case BandwidthLimitedCause::kLossLimitedBwe:
RTC_LOG(LS_INFO) << "Not sending probe in bandwidth limited state.";
return {};
case BandwidthLimitedCause::kLossLimitedBweIncreasing:
estimate_capped_bitrate =
std::min(max_probe_bitrate,
estimated_bitrate_ * config_.loss_limited_probe_scale);
break;
case BandwidthLimitedCause::kDelayBasedLimited:
break;
default:
break;
}
if (config_.network_state_estimate_probing_interval->IsFinite() &&
network_estimate_ && network_estimate_->link_capacity_upper.IsFinite()) {
if (network_estimate_->link_capacity_upper.IsZero()) {
RTC_LOG(LS_INFO) << "Not sending probe, Network state estimate is zero";
return {};
}
estimate_capped_bitrate = std::min(
{estimate_capped_bitrate, max_probe_bitrate,
std::max(estimated_bitrate_, network_estimate_->link_capacity_upper *
config_.network_state_probe_scale)});
}
std::vector<ProbeClusterConfig> pending_probes;
for (DataRate bitrate : bitrates_to_probe) {
RTC_DCHECK(!bitrate.IsZero());
bitrate = std::min(bitrate, estimate_capped_bitrate);
if (bitrate > max_probe_bitrate) {
bitrate = max_probe_bitrate;
probe_further = false;
}
ProbeClusterConfig config;
config.at_time = now;
config.target_data_rate = bitrate;
if (network_estimate_ &&
config_.network_state_estimate_probing_interval->IsFinite()) {
config.target_duration = config_.network_state_probe_duration;
} else {
config.target_duration = config_.min_probe_duration;
}
config.target_probe_count = config_.min_probe_packets_sent;
config.id = next_probe_cluster_id_;
next_probe_cluster_id_++;
MaybeLogProbeClusterCreated(event_log_, config);
pending_probes.push_back(config);
}
time_last_probing_initiated_ = now;
if (probe_further) {
UpdateState(State::kWaitingForProbingResult);
// Dont expect probe results to be larger than a fraction of the actual
// probe rate.
min_bitrate_to_probe_further_ =
std::min(estimate_capped_bitrate, (*(bitrates_to_probe.end() - 1))) *
config_.further_probe_threshold;
} else {
UpdateState(State::kProbingComplete);
}
return pending_probes;
}
} // namespace webrtc