blob: 150bf4d32aa5f5a56b074d6b7cf26adab77e4e4f [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/decision_logic.h"
#include <stdio.h>
#include <cstdint>
#include <memory>
#include <string>
#include "absl/types/optional.h"
#include "api/neteq/neteq.h"
#include "api/neteq/neteq_controller.h"
#include "modules/audio_coding/neteq/packet_arrival_history.h"
#include "modules/audio_coding/neteq/packet_buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
constexpr int kPostponeDecodingLevel = 50;
constexpr int kTargetLevelWindowMs = 100;
constexpr int kMaxWaitForPacketMs = 100;
// The granularity of delay adjustments (accelerate/preemptive expand) is 15ms,
// but round up since the clock has a granularity of 10ms.
constexpr int kDelayAdjustmentGranularityMs = 20;
constexpr int kReinitAfterExpandsMs = 1000;
std::unique_ptr<DelayManager> CreateDelayManager(
const NetEqController::Config& neteq_config) {
DelayManager::Config config;
config.max_packets_in_buffer = neteq_config.max_packets_in_buffer;
config.base_minimum_delay_ms = neteq_config.base_min_delay_ms;
config.Log();
return std::make_unique<DelayManager>(config, neteq_config.tick_timer);
}
bool IsTimestretch(NetEq::Mode mode) {
return mode == NetEq::Mode::kAccelerateSuccess ||
mode == NetEq::Mode::kAccelerateLowEnergy ||
mode == NetEq::Mode::kPreemptiveExpandSuccess ||
mode == NetEq::Mode::kPreemptiveExpandLowEnergy;
}
bool IsCng(NetEq::Mode mode) {
return mode == NetEq::Mode::kRfc3389Cng ||
mode == NetEq::Mode::kCodecInternalCng;
}
bool IsExpand(NetEq::Mode mode) {
return mode == NetEq::Mode::kExpand || mode == NetEq::Mode::kCodecPlc;
}
} // namespace
DecisionLogic::Config::Config() {
StructParametersParser::Create(
"enable_stable_playout_delay", &enable_stable_playout_delay, //
"combine_concealment_decision", &combine_concealment_decision, //
"packet_history_size_ms", &packet_history_size_ms, //
"cng_timeout_ms", &cng_timeout_ms, //
"deceleration_target_level_offset_ms",
&deceleration_target_level_offset_ms)
->Parse(webrtc::field_trial::FindFullName(
"WebRTC-Audio-NetEqDecisionLogicConfig"));
RTC_LOG(LS_INFO) << "NetEq decision logic config:"
<< " enable_stable_playout_delay="
<< enable_stable_playout_delay
<< " combine_concealment_decision="
<< combine_concealment_decision
<< " packet_history_size_ms=" << packet_history_size_ms
<< " cng_timeout_ms=" << cng_timeout_ms.value_or(-1)
<< " deceleration_target_level_offset_ms="
<< deceleration_target_level_offset_ms;
}
DecisionLogic::DecisionLogic(NetEqController::Config config)
: DecisionLogic(config,
CreateDelayManager(config),
std::make_unique<BufferLevelFilter>()) {}
DecisionLogic::DecisionLogic(
NetEqController::Config config,
std::unique_ptr<DelayManager> delay_manager,
std::unique_ptr<BufferLevelFilter> buffer_level_filter)
: delay_manager_(std::move(delay_manager)),
buffer_level_filter_(std::move(buffer_level_filter)),
packet_arrival_history_(config_.packet_history_size_ms),
tick_timer_(config.tick_timer),
disallow_time_stretching_(!config.allow_time_stretching),
timescale_countdown_(
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1)) {}
DecisionLogic::~DecisionLogic() = default;
void DecisionLogic::SoftReset() {
packet_length_samples_ = 0;
sample_memory_ = 0;
prev_time_scale_ = false;
timescale_countdown_ =
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1);
time_stretched_cn_samples_ = 0;
delay_manager_->Reset();
buffer_level_filter_->Reset();
packet_arrival_history_.Reset();
last_playout_delay_ms_ = 0;
}
void DecisionLogic::SetSampleRate(int fs_hz, size_t output_size_samples) {
// TODO(hlundin): Change to an enumerator and skip assert.
RTC_DCHECK(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 ||
fs_hz == 48000);
sample_rate_khz_ = fs_hz / 1000;
output_size_samples_ = output_size_samples;
packet_arrival_history_.set_sample_rate(fs_hz);
}
NetEq::Operation DecisionLogic::GetDecision(const NetEqStatus& status,
bool* reset_decoder) {
if (!IsExpand(status.last_mode) && !IsCng(status.last_mode)) {
last_playout_delay_ms_ = GetPlayoutDelayMs(status);
}
prev_time_scale_ = prev_time_scale_ && IsTimestretch(status.last_mode);
if (prev_time_scale_) {
timescale_countdown_ = tick_timer_->GetNewCountdown(kMinTimescaleInterval);
}
if (!IsCng(status.last_mode) &&
!(config_.combine_concealment_decision && IsExpand(status.last_mode))) {
FilterBufferLevel(status.packet_buffer_info.span_samples);
}
// Guard for errors, to avoid getting stuck in error mode.
if (status.last_mode == NetEq::Mode::kError) {
if (!status.next_packet) {
return NetEq::Operation::kExpand;
} else {
// Use kUndefined to flag for a reset.
return NetEq::Operation::kUndefined;
}
}
if (status.next_packet && status.next_packet->is_cng) {
return CngOperation(status);
}
// Handle the case with no packet at all available (except maybe DTMF).
if (!status.next_packet) {
return NoPacket(status);
}
// If the expand period was very long, reset NetEQ since it is likely that the
// sender was restarted.
if (!config_.combine_concealment_decision && IsExpand(status.last_mode) &&
status.generated_noise_samples >
static_cast<size_t>(kReinitAfterExpandsMs * sample_rate_khz_)) {
*reset_decoder = true;
return NetEq::Operation::kNormal;
}
if (PostponeDecode(status)) {
return NoPacket(status);
}
const uint32_t five_seconds_samples =
static_cast<uint32_t>(5000 * sample_rate_khz_);
// Check if the required packet is available.
if (status.target_timestamp == status.next_packet->timestamp) {
return ExpectedPacketAvailable(status);
}
if (!PacketBuffer::IsObsoleteTimestamp(status.next_packet->timestamp,
status.target_timestamp,
five_seconds_samples)) {
return FuturePacketAvailable(status);
}
// This implies that available_timestamp < target_timestamp, which can
// happen when a new stream or codec is received. Signal for a reset.
return NetEq::Operation::kUndefined;
}
int DecisionLogic::TargetLevelMs() const {
int target_delay_ms = delay_manager_->TargetDelayMs();
if (!config_.enable_stable_playout_delay) {
target_delay_ms =
std::max(target_delay_ms,
static_cast<int>(packet_length_samples_ / sample_rate_khz_));
}
return target_delay_ms;
}
int DecisionLogic::UnlimitedTargetLevelMs() const {
return delay_manager_->UnlimitedTargetLevelMs();
}
int DecisionLogic::GetFilteredBufferLevel() const {
if (config_.enable_stable_playout_delay) {
return last_playout_delay_ms_ * sample_rate_khz_;
}
return buffer_level_filter_->filtered_current_level();
}
absl::optional<int> DecisionLogic::PacketArrived(
int fs_hz,
bool should_update_stats,
const PacketArrivedInfo& info) {
buffer_flush_ = buffer_flush_ || info.buffer_flush;
if (!should_update_stats || info.is_cng_or_dtmf) {
return absl::nullopt;
}
if (info.packet_length_samples > 0 && fs_hz > 0 &&
info.packet_length_samples != packet_length_samples_) {
packet_length_samples_ = info.packet_length_samples;
delay_manager_->SetPacketAudioLength(packet_length_samples_ * 1000 / fs_hz);
}
int64_t time_now_ms = tick_timer_->ticks() * tick_timer_->ms_per_tick();
packet_arrival_history_.Insert(info.main_timestamp, time_now_ms);
if (packet_arrival_history_.size() < 2) {
// No meaningful delay estimate unless at least 2 packets have arrived.
return absl::nullopt;
}
int arrival_delay_ms =
packet_arrival_history_.GetDelayMs(info.main_timestamp, time_now_ms);
bool reordered =
!packet_arrival_history_.IsNewestRtpTimestamp(info.main_timestamp);
delay_manager_->Update(arrival_delay_ms, reordered);
return arrival_delay_ms;
}
void DecisionLogic::FilterBufferLevel(size_t buffer_size_samples) {
buffer_level_filter_->SetTargetBufferLevel(TargetLevelMs());
int time_stretched_samples = time_stretched_cn_samples_;
if (prev_time_scale_) {
time_stretched_samples += sample_memory_;
}
if (buffer_flush_) {
buffer_level_filter_->SetFilteredBufferLevel(buffer_size_samples);
buffer_flush_ = false;
} else {
buffer_level_filter_->Update(buffer_size_samples, time_stretched_samples);
}
prev_time_scale_ = false;
time_stretched_cn_samples_ = 0;
}
NetEq::Operation DecisionLogic::CngOperation(
NetEqController::NetEqStatus status) {
// Signed difference between target and available timestamp.
int32_t timestamp_diff = static_cast<int32_t>(
static_cast<uint32_t>(status.generated_noise_samples +
status.target_timestamp) -
status.next_packet->timestamp);
int optimal_level_samp = TargetLevelMs() * sample_rate_khz_;
const int64_t excess_waiting_time_samp =
-static_cast<int64_t>(timestamp_diff) - optimal_level_samp;
if (excess_waiting_time_samp > optimal_level_samp / 2) {
// The waiting time for this packet will be longer than 1.5
// times the wanted buffer delay. Apply fast-forward to cut the
// waiting time down to the optimal.
noise_fast_forward_ = rtc::saturated_cast<size_t>(noise_fast_forward_ +
excess_waiting_time_samp);
timestamp_diff =
rtc::saturated_cast<int32_t>(timestamp_diff + excess_waiting_time_samp);
}
if (timestamp_diff < 0 && status.last_mode == NetEq::Mode::kRfc3389Cng) {
// Not time to play this packet yet. Wait another round before using this
// packet. Keep on playing CNG from previous CNG parameters.
return NetEq::Operation::kRfc3389CngNoPacket;
} else {
// Otherwise, go for the CNG packet now.
noise_fast_forward_ = 0;
return NetEq::Operation::kRfc3389Cng;
}
}
NetEq::Operation DecisionLogic::NoPacket(NetEqController::NetEqStatus status) {
switch (status.last_mode) {
case NetEq::Mode::kRfc3389Cng:
return NetEq::Operation::kRfc3389CngNoPacket;
case NetEq::Mode::kCodecInternalCng: {
// Stop CNG after a timeout.
if (config_.cng_timeout_ms &&
status.generated_noise_samples >
static_cast<size_t>(*config_.cng_timeout_ms * sample_rate_khz_)) {
return NetEq::Operation::kExpand;
}
return NetEq::Operation::kCodecInternalCng;
}
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
NetEq::Operation DecisionLogic::ExpectedPacketAvailable(
NetEqController::NetEqStatus status) {
if (!disallow_time_stretching_ && status.last_mode != NetEq::Mode::kExpand &&
!status.play_dtmf) {
if (config_.enable_stable_playout_delay) {
const int playout_delay_ms = GetPlayoutDelayMs(status);
if (playout_delay_ms >= HighThreshold() << 2) {
return NetEq::Operation::kFastAccelerate;
}
if (TimescaleAllowed()) {
if (playout_delay_ms >= HighThreshold()) {
return NetEq::Operation::kAccelerate;
}
if (playout_delay_ms < LowThreshold()) {
return NetEq::Operation::kPreemptiveExpand;
}
}
} else {
const int target_level_samples = TargetLevelMs() * sample_rate_khz_;
const int low_limit = std::max(
target_level_samples * 3 / 4,
target_level_samples -
config_.deceleration_target_level_offset_ms * sample_rate_khz_);
const int high_limit = std::max(
target_level_samples,
low_limit + kDelayAdjustmentGranularityMs * sample_rate_khz_);
const int buffer_level_samples =
buffer_level_filter_->filtered_current_level();
if (buffer_level_samples >= high_limit << 2)
return NetEq::Operation::kFastAccelerate;
if (TimescaleAllowed()) {
if (buffer_level_samples >= high_limit)
return NetEq::Operation::kAccelerate;
if (buffer_level_samples < low_limit)
return NetEq::Operation::kPreemptiveExpand;
}
}
}
return NetEq::Operation::kNormal;
}
NetEq::Operation DecisionLogic::FuturePacketAvailable(
NetEqController::NetEqStatus status) {
// Required packet is not available, but a future packet is.
// Check if we should continue with an ongoing concealment because the new
// packet is too far into the future.
if (config_.combine_concealment_decision || IsCng(status.last_mode)) {
const int buffer_delay_samples =
config_.combine_concealment_decision
? status.packet_buffer_info.span_samples_wait_time
: status.packet_buffer_info.span_samples;
const int buffer_delay_ms = buffer_delay_samples / sample_rate_khz_;
const bool above_target_delay = buffer_delay_ms > HighThresholdCng();
const bool below_target_delay = buffer_delay_ms < LowThresholdCng();
if ((PacketTooEarly(status) && !above_target_delay) ||
(below_target_delay && !config_.combine_concealment_decision)) {
return NoPacket(status);
}
uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
if (config_.combine_concealment_decision) {
if (timestamp_leap != status.generated_noise_samples) {
// The delay was adjusted, reinitialize the buffer level filter.
buffer_level_filter_->SetFilteredBufferLevel(buffer_delay_samples);
}
} else {
time_stretched_cn_samples_ =
timestamp_leap - status.generated_noise_samples;
}
} else if (IsExpand(status.last_mode) && ShouldContinueExpand(status)) {
return NoPacket(status);
}
// Time to play the next packet.
switch (status.last_mode) {
case NetEq::Mode::kExpand:
return NetEq::Operation::kMerge;
case NetEq::Mode::kCodecPlc:
case NetEq::Mode::kRfc3389Cng:
case NetEq::Mode::kCodecInternalCng:
return NetEq::Operation::kNormal;
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
bool DecisionLogic::UnderTargetLevel() const {
return buffer_level_filter_->filtered_current_level() <
TargetLevelMs() * sample_rate_khz_;
}
bool DecisionLogic::PostponeDecode(NetEqController::NetEqStatus status) const {
// Make sure we don't restart audio too soon after CNG or expand to avoid
// running out of data right away again.
const size_t min_buffer_level_samples =
TargetLevelMs() * sample_rate_khz_ * kPostponeDecodingLevel / 100;
const size_t buffer_level_samples =
config_.combine_concealment_decision
? status.packet_buffer_info.span_samples_wait_time
: status.packet_buffer_info.span_samples;
if (buffer_level_samples >= min_buffer_level_samples) {
return false;
}
// Don't postpone decoding if there is a future DTX packet in the packet
// buffer.
if (status.packet_buffer_info.dtx_or_cng) {
return false;
}
// Continue CNG until the buffer is at least at the minimum level.
if (config_.combine_concealment_decision && IsCng(status.last_mode)) {
return true;
}
// Only continue expand if the mute factor is low enough (otherwise the
// expansion was short enough to not be noticable). Note that the MuteFactor
// is in Q14, so a value of 16384 corresponds to 1.
if (IsExpand(status.last_mode) && status.expand_mutefactor < 16384 / 2) {
return true;
}
return false;
}
bool DecisionLogic::ReinitAfterExpands(
NetEqController::NetEqStatus status) const {
const uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
return timestamp_leap >=
static_cast<uint32_t>(kReinitAfterExpandsMs * sample_rate_khz_);
}
bool DecisionLogic::PacketTooEarly(NetEqController::NetEqStatus status) const {
const uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
return timestamp_leap > status.generated_noise_samples;
}
bool DecisionLogic::MaxWaitForPacket(
NetEqController::NetEqStatus status) const {
return status.generated_noise_samples >=
static_cast<size_t>(kMaxWaitForPacketMs * sample_rate_khz_);
}
bool DecisionLogic::ShouldContinueExpand(
NetEqController::NetEqStatus status) const {
if (config_.enable_stable_playout_delay) {
return GetNextPacketDelayMs(status) < HighThreshold() &&
PacketTooEarly(status);
}
return !ReinitAfterExpands(status) && !MaxWaitForPacket(status) &&
PacketTooEarly(status) && UnderTargetLevel();
}
int DecisionLogic::GetNextPacketDelayMs(
NetEqController::NetEqStatus status) const {
if (config_.enable_stable_playout_delay) {
return packet_arrival_history_.GetDelayMs(
status.next_packet->timestamp,
tick_timer_->ticks() * tick_timer_->ms_per_tick());
}
return status.packet_buffer_info.span_samples / sample_rate_khz_;
}
int DecisionLogic::GetPlayoutDelayMs(
NetEqController::NetEqStatus status) const {
uint32_t playout_timestamp =
status.target_timestamp - status.sync_buffer_samples;
return packet_arrival_history_.GetDelayMs(
playout_timestamp, tick_timer_->ticks() * tick_timer_->ms_per_tick());
}
int DecisionLogic::LowThreshold() const {
int target_delay_ms = TargetLevelMs();
return std::max(
target_delay_ms * 3 / 4,
target_delay_ms - config_.deceleration_target_level_offset_ms);
}
int DecisionLogic::HighThreshold() const {
if (config_.enable_stable_playout_delay) {
return std::max(TargetLevelMs(), packet_arrival_history_.GetMaxDelayMs()) +
kDelayAdjustmentGranularityMs;
}
return std::max(TargetLevelMs(),
LowThreshold() + kDelayAdjustmentGranularityMs);
}
int DecisionLogic::LowThresholdCng() const {
if (config_.enable_stable_playout_delay) {
return LowThreshold();
}
return std::max(0, TargetLevelMs() - kTargetLevelWindowMs / 2);
}
int DecisionLogic::HighThresholdCng() const {
if (config_.enable_stable_playout_delay) {
return HighThreshold();
}
return TargetLevelMs() + kTargetLevelWindowMs / 2;
}
} // namespace webrtc