blob: 24efae674c5b40c91a3dd887fc1b1639922ce5af [file] [log] [blame]
/*
* Copyright 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "pc/sctp_data_channel.h"
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include "absl/cleanup/cleanup.h"
#include "media/sctp/sctp_transport_internal.h"
#include "pc/proxy.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/system/unused.h"
#include "rtc_base/thread.h"
namespace webrtc {
namespace {
static size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024;
static std::atomic<int> g_unique_id{0};
int GenerateUniqueId() {
return ++g_unique_id;
}
// Define proxy for DataChannelInterface.
BEGIN_PRIMARY_PROXY_MAP(DataChannel)
PROXY_PRIMARY_THREAD_DESTRUCTOR()
PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*)
PROXY_METHOD0(void, UnregisterObserver)
BYPASS_PROXY_CONSTMETHOD0(std::string, label)
BYPASS_PROXY_CONSTMETHOD0(bool, reliable)
BYPASS_PROXY_CONSTMETHOD0(bool, ordered)
BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmitTime)
BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmits)
BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxRetransmitsOpt)
BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxPacketLifeTime)
BYPASS_PROXY_CONSTMETHOD0(std::string, protocol)
BYPASS_PROXY_CONSTMETHOD0(bool, negotiated)
// Can't bypass the proxy since the id may change.
PROXY_CONSTMETHOD0(int, id)
BYPASS_PROXY_CONSTMETHOD0(Priority, priority)
PROXY_CONSTMETHOD0(DataState, state)
PROXY_CONSTMETHOD0(RTCError, error)
PROXY_CONSTMETHOD0(uint32_t, messages_sent)
PROXY_CONSTMETHOD0(uint64_t, bytes_sent)
PROXY_CONSTMETHOD0(uint32_t, messages_received)
PROXY_CONSTMETHOD0(uint64_t, bytes_received)
PROXY_CONSTMETHOD0(uint64_t, buffered_amount)
PROXY_METHOD0(void, Close)
// TODO(bugs.webrtc.org/11547): Change to run on the network thread.
PROXY_METHOD1(bool, Send, const DataBuffer&)
END_PROXY_MAP(DataChannel)
} // namespace
InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base)
: DataChannelInit(base), open_handshake_role(kOpener) {
// If the channel is externally negotiated, do not send the OPEN message.
if (base.negotiated) {
open_handshake_role = kNone;
} else {
// Datachannel is externally negotiated. Ignore the id value.
// Specified in createDataChannel, WebRTC spec section 6.1 bullet 13.
id = -1;
}
// Backwards compatibility: If maxRetransmits or maxRetransmitTime
// are negative, the feature is not enabled.
// Values are clamped to a 16bit range.
if (maxRetransmits) {
if (*maxRetransmits < 0) {
RTC_LOG(LS_ERROR)
<< "Accepting maxRetransmits < 0 for backwards compatibility";
maxRetransmits = absl::nullopt;
} else if (*maxRetransmits > std::numeric_limits<uint16_t>::max()) {
maxRetransmits = std::numeric_limits<uint16_t>::max();
}
}
if (maxRetransmitTime) {
if (*maxRetransmitTime < 0) {
RTC_LOG(LS_ERROR)
<< "Accepting maxRetransmitTime < 0 for backwards compatibility";
maxRetransmitTime = absl::nullopt;
} else if (*maxRetransmitTime > std::numeric_limits<uint16_t>::max()) {
maxRetransmitTime = std::numeric_limits<uint16_t>::max();
}
}
}
bool InternalDataChannelInit::IsValid() const {
if (id < -1)
return false;
if (maxRetransmits.has_value() && maxRetransmits.value() < 0)
return false;
if (maxRetransmitTime.has_value() && maxRetransmitTime.value() < 0)
return false;
// Only one of these can be set.
if (maxRetransmits.has_value() && maxRetransmitTime.has_value())
return false;
return true;
}
SctpSidAllocator::SctpSidAllocator() {
sequence_checker_.Detach();
}
StreamId SctpSidAllocator::AllocateSid(rtc::SSLRole role) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
int potential_sid = (role == rtc::SSL_CLIENT) ? 0 : 1;
while (potential_sid <= static_cast<int>(cricket::kMaxSctpSid)) {
StreamId sid(potential_sid);
if (used_sids_.insert(sid).second)
return sid;
potential_sid += 2;
}
RTC_LOG(LS_ERROR) << "SCTP sid allocation pool exhausted.";
return StreamId();
}
bool SctpSidAllocator::ReserveSid(StreamId sid) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
if (!sid.HasValue() || sid.stream_id_int() > cricket::kMaxSctpSid)
return false;
return used_sids_.insert(sid).second;
}
void SctpSidAllocator::ReleaseSid(StreamId sid) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
used_sids_.erase(sid);
}
// static
rtc::scoped_refptr<SctpDataChannel> SctpDataChannel::Create(
rtc::WeakPtr<SctpDataChannelControllerInterface> controller,
const std::string& label,
bool connected_to_transport,
const InternalDataChannelInit& config,
rtc::Thread* signaling_thread,
rtc::Thread* network_thread) {
RTC_DCHECK(controller);
RTC_DCHECK(config.IsValid());
return rtc::make_ref_counted<SctpDataChannel>(
config, std::move(controller), label, connected_to_transport,
signaling_thread, network_thread);
}
// static
rtc::scoped_refptr<DataChannelInterface> SctpDataChannel::CreateProxy(
rtc::scoped_refptr<SctpDataChannel> channel) {
// TODO(bugs.webrtc.org/11547): incorporate the network thread in the proxy.
auto* signaling_thread = channel->signaling_thread_;
return DataChannelProxy::Create(signaling_thread, std::move(channel));
}
SctpDataChannel::SctpDataChannel(
const InternalDataChannelInit& config,
rtc::WeakPtr<SctpDataChannelControllerInterface> controller,
const std::string& label,
bool connected_to_transport,
rtc::Thread* signaling_thread,
rtc::Thread* network_thread)
: signaling_thread_(signaling_thread),
network_thread_(network_thread),
id_(config.id),
internal_id_(GenerateUniqueId()),
label_(label),
protocol_(config.protocol),
max_retransmit_time_(config.maxRetransmitTime),
max_retransmits_(config.maxRetransmits),
priority_(config.priority),
negotiated_(config.negotiated),
ordered_(config.ordered),
observer_(nullptr),
controller_(std::move(controller)),
connected_to_transport_(connected_to_transport) {
RTC_DCHECK_RUN_ON(signaling_thread_);
RTC_UNUSED(network_thread_);
RTC_DCHECK(config.IsValid());
RTC_DCHECK(controller_);
switch (config.open_handshake_role) {
case InternalDataChannelInit::kNone: // pre-negotiated
handshake_state_ = kHandshakeReady;
break;
case InternalDataChannelInit::kOpener:
handshake_state_ = kHandshakeShouldSendOpen;
break;
case InternalDataChannelInit::kAcker:
handshake_state_ = kHandshakeShouldSendAck;
break;
}
// Try to connect to the transport in case the transport channel already
// exists.
if (id_.HasValue()) {
controller_->AddSctpDataStream(id_);
}
}
SctpDataChannel::~SctpDataChannel() {
RTC_DCHECK_RUN_ON(signaling_thread_);
}
void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
observer_ = observer;
DeliverQueuedReceivedData();
}
void SctpDataChannel::UnregisterObserver() {
RTC_DCHECK_RUN_ON(signaling_thread_);
observer_ = nullptr;
}
std::string SctpDataChannel::label() const {
return label_;
}
bool SctpDataChannel::reliable() const {
// May be called on any thread.
return !max_retransmits_ && !max_retransmit_time_;
}
bool SctpDataChannel::ordered() const {
return ordered_;
}
uint16_t SctpDataChannel::maxRetransmitTime() const {
return max_retransmit_time_ ? *max_retransmit_time_
: static_cast<uint16_t>(-1);
}
uint16_t SctpDataChannel::maxRetransmits() const {
return max_retransmits_ ? *max_retransmits_ : static_cast<uint16_t>(-1);
}
absl::optional<int> SctpDataChannel::maxPacketLifeTime() const {
return max_retransmit_time_;
}
absl::optional<int> SctpDataChannel::maxRetransmitsOpt() const {
return max_retransmits_;
}
std::string SctpDataChannel::protocol() const {
return protocol_;
}
bool SctpDataChannel::negotiated() const {
return negotiated_;
}
int SctpDataChannel::id() const {
return id_.stream_id_int();
}
Priority SctpDataChannel::priority() const {
return priority_ ? *priority_ : Priority::kLow;
}
uint64_t SctpDataChannel::buffered_amount() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return queued_send_data_.byte_count();
}
void SctpDataChannel::Close() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ == kClosing || state_ == kClosed)
return;
SetState(kClosing);
// Will send queued data before beginning the underlying closing procedure.
UpdateState();
}
SctpDataChannel::DataState SctpDataChannel::state() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return state_;
}
RTCError SctpDataChannel::error() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return error_;
}
uint32_t SctpDataChannel::messages_sent() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return messages_sent_;
}
uint64_t SctpDataChannel::bytes_sent() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return bytes_sent_;
}
uint32_t SctpDataChannel::messages_received() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return messages_received_;
}
uint64_t SctpDataChannel::bytes_received() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return bytes_received_;
}
bool SctpDataChannel::Send(const DataBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
// TODO(bugs.webrtc.org/11547): Expect this method to be called on the network
// thread. Bring buffer management etc to the network thread and keep the
// operational state management on the signaling thread.
if (state_ != kOpen) {
return false;
}
// If the queue is non-empty, we're waiting for SignalReadyToSend,
// so just add to the end of the queue and keep waiting.
if (!queued_send_data_.Empty()) {
return QueueSendDataMessage(buffer);
}
SendDataMessage(buffer, true);
// Always return true for SCTP DataChannel per the spec.
return true;
}
void SctpDataChannel::SetSctpSid(const StreamId& sid) {
RTC_DCHECK_RUN_ON(signaling_thread_);
RTC_DCHECK(!id_.HasValue());
RTC_DCHECK(sid.HasValue());
RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck);
RTC_DCHECK_EQ(state_, kConnecting);
id_ = sid;
controller_->AddSctpDataStream(sid);
}
void SctpDataChannel::OnClosingProcedureStartedRemotely() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ != kClosing && state_ != kClosed) {
// Don't bother sending queued data since the side that initiated the
// closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy
// discussion about this.
queued_send_data_.Clear();
queued_control_data_.Clear();
// Just need to change state to kClosing, SctpTransport will handle the
// rest of the closing procedure and OnClosingProcedureComplete will be
// called later.
started_closing_procedure_ = true;
SetState(kClosing);
}
}
void SctpDataChannel::OnClosingProcedureComplete() {
RTC_DCHECK_RUN_ON(signaling_thread_);
// If the closing procedure is complete, we should have finished sending
// all pending data and transitioned to kClosing already.
RTC_DCHECK_EQ(state_, kClosing);
RTC_DCHECK(queued_send_data_.Empty());
SetState(kClosed);
}
void SctpDataChannel::OnTransportChannelCreated() {
RTC_DCHECK_RUN_ON(signaling_thread_);
RTC_DCHECK(controller_);
connected_to_transport_ = true;
// The sid may have been unassigned when controller_->ConnectDataChannel was
// done. So always add the streams even if connected_to_transport_ is true.
if (id_.HasValue()) {
controller_->AddSctpDataStream(id_);
}
}
void SctpDataChannel::OnTransportChannelClosed(RTCError error) {
// The SctpTransport is unusable, which could come from multiple reasons:
// - the SCTP m= section was rejected
// - the DTLS transport is closed
// - the SCTP transport is closed
CloseAbruptlyWithError(std::move(error));
}
DataChannelStats SctpDataChannel::GetStats() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
DataChannelStats stats{internal_id_, id(), label(),
protocol(), state(), messages_sent(),
messages_received(), bytes_sent(), bytes_received()};
return stats;
}
void SctpDataChannel::OnDataReceived(DataMessageType type,
const rtc::CopyOnWriteBuffer& payload) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (type == DataMessageType::kControl) {
if (handshake_state_ != kHandshakeWaitingForAck) {
// Ignore it if we are not expecting an ACK message.
RTC_LOG(LS_WARNING)
<< "DataChannel received unexpected CONTROL message, sid = "
<< id_.stream_id_int();
return;
}
if (ParseDataChannelOpenAckMessage(payload)) {
// We can send unordered as soon as we receive the ACK message.
handshake_state_ = kHandshakeReady;
RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = "
<< id_.stream_id_int();
} else {
RTC_LOG(LS_WARNING)
<< "DataChannel failed to parse OPEN_ACK message, sid = "
<< id_.stream_id_int();
}
return;
}
RTC_DCHECK(type == DataMessageType::kBinary ||
type == DataMessageType::kText);
RTC_DLOG(LS_VERBOSE) << "DataChannel received DATA message, sid = "
<< id_.stream_id_int();
// We can send unordered as soon as we receive any DATA message since the
// remote side must have received the OPEN (and old clients do not send
// OPEN_ACK).
if (handshake_state_ == kHandshakeWaitingForAck) {
handshake_state_ = kHandshakeReady;
}
bool binary = (type == DataMessageType::kBinary);
auto buffer = std::make_unique<DataBuffer>(payload, binary);
if (state_ == kOpen && observer_) {
++messages_received_;
bytes_received_ += buffer->size();
observer_->OnMessage(*buffer.get());
} else {
if (queued_received_data_.byte_count() + payload.size() >
kMaxQueuedReceivedDataBytes) {
RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size.";
queued_received_data_.Clear();
CloseAbruptlyWithError(
RTCError(RTCErrorType::RESOURCE_EXHAUSTED,
"Queued received data exceeds the max buffer size."));
return;
}
queued_received_data_.PushBack(std::move(buffer));
}
}
void SctpDataChannel::OnTransportReady() {
RTC_DCHECK_RUN_ON(signaling_thread_);
// TODO(tommi, hta): We don't need the `writable_` flag for SCTP datachannels.
// Remove it and just rely on `connected_to_transport_` instead.
// In practice the transport is configured inside
// `PeerConnection::SetupDataChannelTransport_n`, which results in
// `SctpDataChannel` getting the OnTransportChannelCreated callback, and then
// that's immediately followed by calling `transport->SetDataSink` which is
// what triggers the callback to `OnTransportReady()`.
// These steps are currently accomplished via two separate PostTask calls to
// the signaling thread, but could simply be done in single method call on
// the network thread (which incidentally is the thread that we'll need to
// be on for the below `Send*` calls, which currently do a BlockingCall
// from the signaling thread to the network thread.
RTC_DCHECK(connected_to_transport_);
writable_ = true;
SendQueuedControlMessages();
SendQueuedDataMessages();
UpdateState();
}
void SctpDataChannel::CloseAbruptlyWithError(RTCError error) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ == kClosed) {
return;
}
connected_to_transport_ = false;
// Closing abruptly means any queued data gets thrown away.
queued_send_data_.Clear();
queued_control_data_.Clear();
// Still go to "kClosing" before "kClosed", since observers may be expecting
// that.
SetState(kClosing);
error_ = std::move(error);
SetState(kClosed);
}
void SctpDataChannel::CloseAbruptlyWithDataChannelFailure(
const std::string& message) {
RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message);
error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE);
CloseAbruptlyWithError(std::move(error));
}
void SctpDataChannel::UpdateState() {
RTC_DCHECK_RUN_ON(signaling_thread_);
// UpdateState determines what to do from a few state variables. Include
// all conditions required for each state transition here for
// clarity. OnTransportReady(true) will send any queued data and then invoke
// UpdateState().
switch (state_) {
case kConnecting: {
if (connected_to_transport_) {
if (handshake_state_ == kHandshakeShouldSendOpen) {
rtc::CopyOnWriteBuffer payload;
WriteDataChannelOpenMessage(label_, protocol_, priority_, ordered_,
max_retransmits_, max_retransmit_time_,
&payload);
SendControlMessage(payload);
} else if (handshake_state_ == kHandshakeShouldSendAck) {
rtc::CopyOnWriteBuffer payload;
WriteDataChannelOpenAckMessage(&payload);
SendControlMessage(payload);
}
if (writable_ && (handshake_state_ == kHandshakeReady ||
handshake_state_ == kHandshakeWaitingForAck)) {
SetState(kOpen);
// If we have received buffers before the channel got writable.
// Deliver them now.
DeliverQueuedReceivedData();
}
} else {
RTC_DCHECK(!id_.HasValue());
}
break;
}
case kOpen: {
break;
}
case kClosing: {
if (connected_to_transport_) {
// Wait for all queued data to be sent before beginning the closing
// procedure.
if (queued_send_data_.Empty() && queued_control_data_.Empty()) {
// For SCTP data channels, we need to wait for the closing procedure
// to complete; after calling RemoveSctpDataStream,
// OnClosingProcedureComplete will end up called asynchronously
// afterwards.
if (!started_closing_procedure_ && controller_ && id_.HasValue()) {
started_closing_procedure_ = true;
controller_->RemoveSctpDataStream(id_);
}
}
} else {
// When we're not connected to a transport, we'll transition
// directly to the `kClosed` state from here.
queued_send_data_.Clear();
queued_control_data_.Clear();
SetState(kClosed);
}
break;
}
case kClosed:
break;
}
}
void SctpDataChannel::SetState(DataState state) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ == state) {
return;
}
state_ = state;
if (observer_) {
observer_->OnStateChange();
}
if (controller_)
controller_->OnChannelStateChanged(this, state_);
}
void SctpDataChannel::DeliverQueuedReceivedData() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (!observer_) {
return;
}
while (!queued_received_data_.Empty()) {
std::unique_ptr<DataBuffer> buffer = queued_received_data_.PopFront();
++messages_received_;
bytes_received_ += buffer->size();
observer_->OnMessage(*buffer);
}
}
void SctpDataChannel::SendQueuedDataMessages() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (queued_send_data_.Empty()) {
return;
}
RTC_DCHECK(state_ == kOpen || state_ == kClosing);
while (!queued_send_data_.Empty()) {
std::unique_ptr<DataBuffer> buffer = queued_send_data_.PopFront();
if (!SendDataMessage(*buffer, false)) {
// Return the message to the front of the queue if sending is aborted.
queued_send_data_.PushFront(std::move(buffer));
break;
}
}
}
bool SctpDataChannel::SendDataMessage(const DataBuffer& buffer,
bool queue_if_blocked) {
RTC_DCHECK_RUN_ON(signaling_thread_);
SendDataParams send_params;
if (!controller_) {
return false;
}
send_params.ordered = ordered_;
// Send as ordered if it is still going through OPEN/ACK signaling.
if (handshake_state_ != kHandshakeReady && !ordered_) {
send_params.ordered = true;
RTC_DLOG(LS_VERBOSE)
<< "Sending data as ordered for unordered DataChannel "
"because the OPEN_ACK message has not been received.";
}
send_params.max_rtx_count = max_retransmits_;
send_params.max_rtx_ms = max_retransmit_time_;
send_params.type =
buffer.binary ? DataMessageType::kBinary : DataMessageType::kText;
RTCError error = controller_->SendData(id_, send_params, buffer.data);
if (error.ok()) {
++messages_sent_;
bytes_sent_ += buffer.size();
if (observer_ && buffer.size() > 0) {
observer_->OnBufferedAmountChange(buffer.size());
}
return true;
}
if (error.type() == RTCErrorType::RESOURCE_EXHAUSTED) {
if (!queue_if_blocked || QueueSendDataMessage(buffer)) {
return false;
}
}
// Close the channel if the error is not SDR_BLOCK, or if queuing the
// message failed.
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, "
"send_result = "
<< ToString(error.type()) << ":" << error.message();
CloseAbruptlyWithError(
RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data"));
return false;
}
bool SctpDataChannel::QueueSendDataMessage(const DataBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
size_t start_buffered_amount = queued_send_data_.byte_count();
if (start_buffered_amount + buffer.size() >
DataChannelInterface::MaxSendQueueSize()) {
RTC_LOG(LS_ERROR) << "Can't buffer any more data for the data channel.";
return false;
}
queued_send_data_.PushBack(std::make_unique<DataBuffer>(buffer));
return true;
}
void SctpDataChannel::SendQueuedControlMessages() {
RTC_DCHECK_RUN_ON(signaling_thread_);
PacketQueue control_packets;
control_packets.Swap(&queued_control_data_);
while (!control_packets.Empty()) {
std::unique_ptr<DataBuffer> buf = control_packets.PopFront();
SendControlMessage(buf->data);
}
}
void SctpDataChannel::QueueControlMessage(
const rtc::CopyOnWriteBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
queued_control_data_.PushBack(std::make_unique<DataBuffer>(buffer, true));
}
bool SctpDataChannel::SendControlMessage(const rtc::CopyOnWriteBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
RTC_DCHECK(writable_);
RTC_DCHECK(connected_to_transport_);
RTC_DCHECK(id_.HasValue());
if (!controller_) {
return false;
}
bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen;
RTC_DCHECK(!is_open_message || !negotiated_);
SendDataParams send_params;
// Send data as ordered before we receive any message from the remote peer to
// make sure the remote peer will not receive any data before it receives the
// OPEN message.
send_params.ordered = ordered_ || is_open_message;
send_params.type = DataMessageType::kControl;
RTCError err = controller_->SendData(id_, send_params, buffer);
if (err.ok()) {
RTC_DLOG(LS_VERBOSE) << "Sent CONTROL message on channel "
<< id_.stream_id_int();
if (handshake_state_ == kHandshakeShouldSendAck) {
handshake_state_ = kHandshakeReady;
} else if (handshake_state_ == kHandshakeShouldSendOpen) {
handshake_state_ = kHandshakeWaitingForAck;
}
} else if (err.type() == RTCErrorType::RESOURCE_EXHAUSTED) {
QueueControlMessage(buffer);
} else {
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send"
" the CONTROL message, send_result = "
<< ToString(err.type());
err.set_message("Failed to send a CONTROL message");
CloseAbruptlyWithError(err);
}
return err.ok();
}
// static
void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) {
g_unique_id = new_value;
}
SctpDataChannel* DowncastProxiedDataChannelInterfaceToSctpDataChannelForTesting(
DataChannelInterface* channel) {
return static_cast<SctpDataChannel*>(
static_cast<DataChannelProxy*>(channel)->internal());
}
} // namespace webrtc