blob: 18eccb25a5d4c1950935b54a060b03ce8006250b [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "webrtc/modules/video_coding/codecs/h264/h264_encoder_impl.h"
#include <limits>
#include "third_party/openh264/src/codec/api/svc/codec_api.h"
#include "third_party/openh264/src/codec/api/svc/codec_app_def.h"
#include "third_party/openh264/src/codec/api/svc/codec_def.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
const bool kOpenH264EncoderDetailedLogging = false;
// Used by histograms. Values of entries should not be changed.
enum H264EncoderImplEvent {
kH264EncoderEventInit = 0,
kH264EncoderEventError = 1,
kH264EncoderEventMax = 16,
};
int NumberOfThreads(int width, int height, int number_of_cores) {
// TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac,
// see crbug.com/583348. Until further investigated, only use one thread.
// if (width * height >= 1920 * 1080 && number_of_cores > 8) {
// return 8; // 8 threads for 1080p on high perf machines.
// } else if (width * height > 1280 * 960 && number_of_cores >= 6) {
// return 3; // 3 threads for 1080p.
// } else if (width * height > 640 * 480 && number_of_cores >= 3) {
// return 2; // 2 threads for qHD/HD.
// } else {
// return 1; // 1 thread for VGA or less.
// }
return 1;
}
} // namespace
static FrameType EVideoFrameType_to_FrameType(EVideoFrameType type) {
switch (type) {
case videoFrameTypeInvalid:
return kEmptyFrame;
case videoFrameTypeIDR:
return kVideoFrameKey;
case videoFrameTypeSkip:
case videoFrameTypeI:
case videoFrameTypeP:
case videoFrameTypeIPMixed:
return kVideoFrameDelta;
default:
LOG(LS_WARNING) << "Unknown EVideoFrameType: " << type;
return kVideoFrameDelta;
}
}
// Helper method used by H264EncoderImpl::Encode.
// Copies the encoded bytes from |info| to |encoded_image| and updates the
// fragmentation information of |frag_header|. The |encoded_image->_buffer| may
// be deleted and reallocated if a bigger buffer is required.
//
// After OpenH264 encoding, the encoded bytes are stored in |info| spread out
// over a number of layers and "NAL units". Each NAL unit is a fragment starting
// with the four-byte start code {0,0,0,1}. All of this data (including the
// start codes) is copied to the |encoded_image->_buffer| and the |frag_header|
// is updated to point to each fragment, with offsets and lengths set as to
// exclude the start codes.
static void RtpFragmentize(EncodedImage* encoded_image,
std::unique_ptr<uint8_t[]>* encoded_image_buffer,
const VideoFrame& frame,
SFrameBSInfo* info,
RTPFragmentationHeader* frag_header) {
// Calculate minimum buffer size required to hold encoded data.
size_t required_size = 0;
size_t fragments_count = 0;
for (int layer = 0; layer < info->iLayerNum; ++layer) {
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) {
RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0);
// Ensure |required_size| will not overflow.
RTC_CHECK_LE(static_cast<size_t>(layerInfo.pNalLengthInByte[nal]),
std::numeric_limits<size_t>::max() - required_size);
required_size += layerInfo.pNalLengthInByte[nal];
}
}
if (encoded_image->_size < required_size) {
// Increase buffer size. Allocate enough to hold an unencoded image, this
// should be more than enough to hold any encoded data of future frames of
// the same size (avoiding possible future reallocation due to variations in
// required size).
encoded_image->_size = CalcBufferSize(kI420, frame.width(), frame.height());
if (encoded_image->_size < required_size) {
// Encoded data > unencoded data. Allocate required bytes.
LOG(LS_WARNING) << "Encoding produced more bytes than the original image "
<< "data! Original bytes: " << encoded_image->_size
<< ", encoded bytes: " << required_size << ".";
encoded_image->_size = required_size;
}
encoded_image->_buffer = new uint8_t[encoded_image->_size];
encoded_image_buffer->reset(encoded_image->_buffer);
}
// Iterate layers and NAL units, note each NAL unit as a fragment and copy
// the data to |encoded_image->_buffer|.
const uint8_t start_code[4] = {0, 0, 0, 1};
frag_header->VerifyAndAllocateFragmentationHeader(fragments_count);
size_t frag = 0;
encoded_image->_length = 0;
for (int layer = 0; layer < info->iLayerNum; ++layer) {
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
// Iterate NAL units making up this layer, noting fragments.
size_t layer_len = 0;
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) {
// Because the sum of all layer lengths, |required_size|, fits in a
// |size_t|, we know that any indices in-between will not overflow.
RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+0], start_code[0]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+1], start_code[1]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+2], start_code[2]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+3], start_code[3]);
frag_header->fragmentationOffset[frag] =
encoded_image->_length + layer_len + sizeof(start_code);
frag_header->fragmentationLength[frag] =
layerInfo.pNalLengthInByte[nal] - sizeof(start_code);
layer_len += layerInfo.pNalLengthInByte[nal];
}
// Copy the entire layer's data (including start codes).
memcpy(encoded_image->_buffer + encoded_image->_length,
layerInfo.pBsBuf,
layer_len);
encoded_image->_length += layer_len;
}
}
H264EncoderImpl::H264EncoderImpl()
: openh264_encoder_(nullptr),
encoded_image_callback_(nullptr),
has_reported_init_(false),
has_reported_error_(false) {
}
H264EncoderImpl::~H264EncoderImpl() {
Release();
}
int32_t H264EncoderImpl::InitEncode(const VideoCodec* codec_settings,
int32_t number_of_cores,
size_t /*max_payload_size*/) {
ReportInit();
if (!codec_settings ||
codec_settings->codecType != kVideoCodecH264) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (codec_settings->maxFramerate == 0) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (codec_settings->width < 1 || codec_settings->height < 1) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int32_t release_ret = Release();
if (release_ret != WEBRTC_VIDEO_CODEC_OK) {
ReportError();
return release_ret;
}
RTC_DCHECK(!openh264_encoder_);
// Create encoder.
if (WelsCreateSVCEncoder(&openh264_encoder_) != 0) {
// Failed to create encoder.
LOG(LS_ERROR) << "Failed to create OpenH264 encoder";
RTC_DCHECK(!openh264_encoder_);
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_DCHECK(openh264_encoder_);
if (kOpenH264EncoderDetailedLogging) {
int trace_level = WELS_LOG_DETAIL;
openh264_encoder_->SetOption(ENCODER_OPTION_TRACE_LEVEL,
&trace_level);
}
// else WELS_LOG_DEFAULT is used by default.
codec_settings_ = *codec_settings;
if (codec_settings_.targetBitrate == 0)
codec_settings_.targetBitrate = codec_settings_.startBitrate;
// Initialization parameters.
// There are two ways to initialize. There is SEncParamBase (cleared with
// memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt
// which is a superset of SEncParamBase (cleared with GetDefaultParams) used
// in InitializeExt.
SEncParamExt init_params;
openh264_encoder_->GetDefaultParams(&init_params);
if (codec_settings_.mode == kRealtimeVideo) {
init_params.iUsageType = CAMERA_VIDEO_REAL_TIME;
} else if (codec_settings_.mode == kScreensharing) {
init_params.iUsageType = SCREEN_CONTENT_REAL_TIME;
} else {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
init_params.iPicWidth = codec_settings_.width;
init_params.iPicHeight = codec_settings_.height;
// |init_params| uses bit/s, |codec_settings_| uses kbit/s.
init_params.iTargetBitrate = codec_settings_.targetBitrate * 1000;
init_params.iMaxBitrate = codec_settings_.maxBitrate * 1000;
// Rate Control mode
init_params.iRCMode = RC_BITRATE_MODE;
init_params.fMaxFrameRate = static_cast<float>(codec_settings_.maxFramerate);
// The following parameters are extension parameters (they're in SEncParamExt,
// not in SEncParamBase).
init_params.bEnableFrameSkip =
codec_settings_.codecSpecific.H264.frameDroppingOn;
// |uiIntraPeriod| - multiple of GOP size
// |keyFrameInterval| - number of frames
init_params.uiIntraPeriod =
codec_settings_.codecSpecific.H264.keyFrameInterval;
init_params.uiMaxNalSize = 0;
// Threading model: use auto.
// 0: auto (dynamic imp. internal encoder)
// 1: single thread (default value)
// >1: number of threads
init_params.iMultipleThreadIdc = NumberOfThreads(init_params.iPicWidth,
init_params.iPicHeight,
number_of_cores);
// The base spatial layer 0 is the only one we use.
init_params.sSpatialLayers[0].iVideoWidth = init_params.iPicWidth;
init_params.sSpatialLayers[0].iVideoHeight = init_params.iPicHeight;
init_params.sSpatialLayers[0].fFrameRate = init_params.fMaxFrameRate;
init_params.sSpatialLayers[0].iSpatialBitrate = init_params.iTargetBitrate;
init_params.sSpatialLayers[0].iMaxSpatialBitrate = init_params.iMaxBitrate;
// Slice num according to number of threads.
init_params.sSpatialLayers[0].sSliceCfg.uiSliceMode = SM_AUTO_SLICE;
// Initialize.
if (openh264_encoder_->InitializeExt(&init_params) != 0) {
LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder";
Release();
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
int video_format = EVideoFormatType::videoFormatI420;
openh264_encoder_->SetOption(ENCODER_OPTION_DATAFORMAT,
&video_format);
// Initialize encoded image. Default buffer size: size of unencoded data.
encoded_image_._size = CalcBufferSize(
kI420, codec_settings_.width, codec_settings_.height);
encoded_image_._buffer = new uint8_t[encoded_image_._size];
encoded_image_buffer_.reset(encoded_image_._buffer);
encoded_image_._completeFrame = true;
encoded_image_._encodedWidth = 0;
encoded_image_._encodedHeight = 0;
encoded_image_._length = 0;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::Release() {
if (openh264_encoder_) {
int uninit_ret = openh264_encoder_->Uninitialize();
if (uninit_ret != 0) {
LOG(LS_WARNING) << "OpenH264 encoder's Uninitialize() returned "
<< "unsuccessful: " << uninit_ret;
}
WelsDestroySVCEncoder(openh264_encoder_);
openh264_encoder_ = nullptr;
}
if (encoded_image_._buffer != nullptr) {
encoded_image_._buffer = nullptr;
encoded_image_buffer_.reset();
}
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_image_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::SetRates(uint32_t bitrate, uint32_t framerate) {
if (bitrate <= 0 || framerate <= 0) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
codec_settings_.targetBitrate = bitrate;
codec_settings_.maxFramerate = framerate;
SBitrateInfo target_bitrate;
memset(&target_bitrate, 0, sizeof(SBitrateInfo));
target_bitrate.iLayer = SPATIAL_LAYER_ALL,
target_bitrate.iBitrate = codec_settings_.targetBitrate * 1000;
openh264_encoder_->SetOption(ENCODER_OPTION_BITRATE,
&target_bitrate);
float max_framerate = static_cast<float>(codec_settings_.maxFramerate);
openh264_encoder_->SetOption(ENCODER_OPTION_FRAME_RATE,
&max_framerate);
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::Encode(
const VideoFrame& frame, const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
if (!IsInitialized()) {
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (frame.IsZeroSize()) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (!encoded_image_callback_) {
LOG(LS_WARNING) << "InitEncode() has been called, but a callback function "
<< "has not been set with RegisterEncodeCompleteCallback()";
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (frame.width() != codec_settings_.width ||
frame.height() != codec_settings_.height) {
LOG(LS_WARNING) << "Encoder initialized for " << codec_settings_.width
<< "x" << codec_settings_.height << " but trying to encode "
<< frame.width() << "x" << frame.height() << " frame.";
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_SIZE;
}
bool force_key_frame = false;
if (frame_types != nullptr) {
// We only support a single stream.
RTC_DCHECK_EQ(frame_types->size(), static_cast<size_t>(1));
// Skip frame?
if ((*frame_types)[0] == kEmptyFrame) {
return WEBRTC_VIDEO_CODEC_OK;
}
// Force key frame?
force_key_frame = (*frame_types)[0] == kVideoFrameKey;
}
if (force_key_frame) {
// API doc says ForceIntraFrame(false) does nothing, but calling this
// function forces a key frame regardless of the |bIDR| argument's value.
// (If every frame is a key frame we get lag/delays.)
openh264_encoder_->ForceIntraFrame(true);
}
// EncodeFrame input.
SSourcePicture picture;
memset(&picture, 0, sizeof(SSourcePicture));
picture.iPicWidth = frame.width();
picture.iPicHeight = frame.height();
picture.iColorFormat = EVideoFormatType::videoFormatI420;
picture.uiTimeStamp = frame.ntp_time_ms();
picture.iStride[0] = frame.stride(kYPlane);
picture.iStride[1] = frame.stride(kUPlane);
picture.iStride[2] = frame.stride(kVPlane);
picture.pData[0] = const_cast<uint8_t*>(frame.buffer(kYPlane));
picture.pData[1] = const_cast<uint8_t*>(frame.buffer(kUPlane));
picture.pData[2] = const_cast<uint8_t*>(frame.buffer(kVPlane));
// EncodeFrame output.
SFrameBSInfo info;
memset(&info, 0, sizeof(SFrameBSInfo));
// Encode!
int enc_ret = openh264_encoder_->EncodeFrame(&picture, &info);
if (enc_ret != 0) {
LOG(LS_ERROR) << "OpenH264 frame encoding failed, EncodeFrame returned "
<< enc_ret << ".";
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
encoded_image_._encodedWidth = frame.width();
encoded_image_._encodedHeight = frame.height();
encoded_image_._timeStamp = frame.timestamp();
encoded_image_.ntp_time_ms_ = frame.ntp_time_ms();
encoded_image_.capture_time_ms_ = frame.render_time_ms();
encoded_image_.rotation_ = frame.rotation();
encoded_image_._frameType = EVideoFrameType_to_FrameType(info.eFrameType);
// Split encoded image up into fragments. This also updates |encoded_image_|.
RTPFragmentationHeader frag_header;
RtpFragmentize(&encoded_image_, &encoded_image_buffer_, frame, &info,
&frag_header);
// Encoder can skip frames to save bandwidth in which case
// |encoded_image_._length| == 0.
if (encoded_image_._length > 0) {
// Deliver encoded image.
CodecSpecificInfo codec_specific;
codec_specific.codecType = kVideoCodecH264;
encoded_image_callback_->Encoded(encoded_image_,
&codec_specific,
&frag_header);
}
return WEBRTC_VIDEO_CODEC_OK;
}
bool H264EncoderImpl::IsInitialized() const {
return openh264_encoder_ != nullptr;
}
void H264EncoderImpl::ReportInit() {
if (has_reported_init_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
kH264EncoderEventInit,
kH264EncoderEventMax);
has_reported_init_ = true;
}
void H264EncoderImpl::ReportError() {
if (has_reported_error_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
kH264EncoderEventError,
kH264EncoderEventMax);
has_reported_error_ = true;
}
int32_t H264EncoderImpl::SetChannelParameters(
uint32_t packet_loss, int64_t rtt) {
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::SetPeriodicKeyFrames(bool enable) {
return WEBRTC_VIDEO_CODEC_OK;
}
void H264EncoderImpl::OnDroppedFrame() {
}
} // namespace webrtc