blob: 779fe5df2dfc7b7a87f4d8bbe8a0f7c93c164db5 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_tools/rtc_event_log_visualizer/plot_base.h"
#include <algorithm>
#include <memory>
#include "rtc_base/checks.h"
namespace webrtc {
void Plot::SetXAxis(float min_value,
float max_value,
std::string label,
float left_margin,
float right_margin) {
RTC_DCHECK_LE(min_value, max_value);
xaxis_min_ = min_value - left_margin * (max_value - min_value);
xaxis_max_ = max_value + right_margin * (max_value - min_value);
xaxis_label_ = label;
}
void Plot::SetSuggestedXAxis(float min_value,
float max_value,
std::string label,
float left_margin,
float right_margin) {
for (const auto& series : series_list_) {
for (const auto& point : series.points) {
min_value = std::min(min_value, point.x);
max_value = std::max(max_value, point.x);
}
}
SetXAxis(min_value, max_value, label, left_margin, right_margin);
}
void Plot::SetYAxis(float min_value,
float max_value,
std::string label,
float bottom_margin,
float top_margin) {
RTC_DCHECK_LE(min_value, max_value);
yaxis_min_ = min_value - bottom_margin * (max_value - min_value);
yaxis_max_ = max_value + top_margin * (max_value - min_value);
yaxis_label_ = label;
}
void Plot::SetSuggestedYAxis(float min_value,
float max_value,
std::string label,
float bottom_margin,
float top_margin) {
for (const auto& series : series_list_) {
for (const auto& point : series.points) {
min_value = std::min(min_value, point.y);
max_value = std::max(max_value, point.y);
}
}
SetYAxis(min_value, max_value, label, bottom_margin, top_margin);
}
void Plot::SetYAxisTickLabels(
const std::vector<std::pair<float, std::string>>& labels) {
yaxis_tick_labels_ = labels;
}
void Plot::SetTitle(const std::string& title) {
title_ = title;
}
void Plot::SetId(const std::string& id) {
id_ = id;
}
void Plot::SetId(absl::string_view id) {
id_ = id;
}
void Plot::AppendTimeSeries(TimeSeries&& time_series) {
series_list_.emplace_back(std::move(time_series));
}
void Plot::AppendIntervalSeries(IntervalSeries&& interval_series) {
interval_list_.emplace_back(std::move(interval_series));
}
void Plot::AppendTimeSeriesIfNotEmpty(TimeSeries&& time_series) {
if (!time_series.points.empty()) {
series_list_.emplace_back(std::move(time_series));
}
}
void Plot::PrintPythonCode(absl::string_view figure_output_path) const {
// Write python commands to stdout. Intended program usage is
// ./event_log_visualizer event_log160330.dump | python
if (!series_list_.empty()) {
printf("color_count = %zu\n", series_list_.size());
printf(
"hls_colors = [(i*1.0/color_count, 0.25+i*0.5/color_count, 0.8) for i "
"in range(color_count)]\n");
printf("colors = [colorsys.hls_to_rgb(*hls) for hls in hls_colors]\n");
for (size_t i = 0; i < series_list_.size(); i++) {
printf("\n# === Series: %s ===\n", series_list_[i].label.c_str());
// List x coordinates
printf("x%zu = [", i);
if (!series_list_[i].points.empty())
printf("%.3f", series_list_[i].points[0].x);
for (size_t j = 1; j < series_list_[i].points.size(); j++)
printf(", %.3f", series_list_[i].points[j].x);
printf("]\n");
// List y coordinates
printf("y%zu = [", i);
if (!series_list_[i].points.empty())
printf("%G", series_list_[i].points[0].y);
for (size_t j = 1; j < series_list_[i].points.size(); j++)
printf(", %G", series_list_[i].points[j].y);
printf("]\n");
if (series_list_[i].line_style == LineStyle::kBar) {
// There is a plt.bar function that draws bar plots,
// but it is *way* too slow to be useful.
printf(
"plt.vlines(x%zu, [min(t,0) for t in y%zu], [max(t,0) for t in "
"y%zu], color=colors[%zu], label=\'%s\')\n",
i, i, i, i, series_list_[i].label.c_str());
if (series_list_[i].point_style == PointStyle::kHighlight) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], "
"marker='.', ls=' ')\n",
i, i, i);
}
} else if (series_list_[i].line_style == LineStyle::kLine) {
if (series_list_[i].point_style == PointStyle::kHighlight) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\', "
"marker='.')\n",
i, i, i, series_list_[i].label.c_str());
} else {
printf("plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\')\n", i,
i, i, series_list_[i].label.c_str());
}
} else if (series_list_[i].line_style == LineStyle::kStep) {
// Draw lines from (x[0],y[0]) to (x[1],y[0]) to (x[1],y[1]) and so on
// to illustrate the "steps". This can be expressed by duplicating all
// elements except the first in x and the last in y.
printf("xd%zu = [dup for v in x%zu for dup in [v, v]]\n", i, i);
printf("yd%zu = [dup for v in y%zu for dup in [v, v]]\n", i, i);
printf(
"plt.plot(xd%zu[1:], yd%zu[:-1], color=colors[%zu], "
"label=\'%s\')\n",
i, i, i, series_list_[i].label.c_str());
if (series_list_[i].point_style == PointStyle::kHighlight) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], "
"marker='.', ls=' ')\n",
i, i, i);
}
} else if (series_list_[i].line_style == LineStyle::kNone) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\', "
"marker='o', ls=' ')\n",
i, i, i, series_list_[i].label.c_str());
} else {
printf("raise Exception(\"Unknown graph type\")\n");
}
}
// IntervalSeries
printf("interval_colors = ['#ff8e82','#5092fc','#c4ffc4','#aaaaaa']\n");
RTC_CHECK_LE(interval_list_.size(), 4);
// To get the intervals to show up in the legend we have to create patches
// for them.
printf("legend_patches = []\n");
for (size_t i = 0; i < interval_list_.size(); i++) {
// List intervals
printf("\n# === IntervalSeries: %s ===\n",
interval_list_[i].label.c_str());
printf("ival%zu = [", i);
if (!interval_list_[i].intervals.empty()) {
printf("(%G, %G)", interval_list_[i].intervals[0].begin,
interval_list_[i].intervals[0].end);
}
for (size_t j = 1; j < interval_list_[i].intervals.size(); j++) {
printf(", (%G, %G)", interval_list_[i].intervals[j].begin,
interval_list_[i].intervals[j].end);
}
printf("]\n");
printf("for i in range(0, %zu):\n", interval_list_[i].intervals.size());
if (interval_list_[i].orientation == IntervalSeries::kVertical) {
printf(
" plt.axhspan(ival%zu[i][0], ival%zu[i][1], "
"facecolor=interval_colors[%zu], "
"alpha=0.3)\n",
i, i, i);
} else {
printf(
" plt.axvspan(ival%zu[i][0], ival%zu[i][1], "
"facecolor=interval_colors[%zu], "
"alpha=0.3)\n",
i, i, i);
}
printf(
"legend_patches.append(mpatches.Patch(ec=\'black\', "
"fc=interval_colors[%zu], label='%s'))\n",
i, interval_list_[i].label.c_str());
}
}
printf("plt.xlim(%f, %f)\n", xaxis_min_, xaxis_max_);
printf("plt.ylim(%f, %f)\n", yaxis_min_, yaxis_max_);
printf("plt.xlabel(\'%s\')\n", xaxis_label_.c_str());
printf("plt.ylabel(\'%s\')\n", yaxis_label_.c_str());
printf("plt.title(\'%s\')\n", title_.c_str());
printf("fig = plt.gcf()\n");
printf("fig.canvas.manager.set_window_title(\'%s\')\n", id_.c_str());
if (!yaxis_tick_labels_.empty()) {
printf("yaxis_tick_labels = [");
for (const auto& kv : yaxis_tick_labels_) {
printf("(%f,\"%s\"),", kv.first, kv.second.c_str());
}
printf("]\n");
printf("yaxis_tick_labels = list(zip(*yaxis_tick_labels))\n");
printf("plt.yticks(*yaxis_tick_labels)\n");
}
if (!series_list_.empty() || !interval_list_.empty()) {
printf("handles, labels = plt.gca().get_legend_handles_labels()\n");
printf("for lp in legend_patches:\n");
printf(" handles.append(lp)\n");
printf(" labels.append(lp.get_label())\n");
printf("plt.legend(handles, labels, loc=\'best\', fontsize=\'small\')\n");
}
if (!figure_output_path.empty()) {
printf("figure_output_dir = \"%.*s\"\n",
static_cast<int>(figure_output_path.size()),
figure_output_path.data());
printf("if not os.path.exists(figure_output_dir):\n");
printf(" os.makedirs(figure_output_dir)\n");
printf(
"figure_filename = os.path.join(figure_output_dir, "
"fig.canvas.get_default_filename())\n");
printf("fig.canvas.print_png(figure_filename)\n");
}
}
void Plot::ExportProtobuf(webrtc::analytics::Chart* chart) const {
for (size_t i = 0; i < series_list_.size(); i++) {
webrtc::analytics::DataSet* data_set = chart->add_data_sets();
for (const auto& point : series_list_[i].points) {
data_set->add_x_values(point.x);
}
for (const auto& point : series_list_[i].points) {
data_set->add_y_values(point.y);
}
if (series_list_[i].line_style == LineStyle::kBar) {
data_set->set_style(webrtc::analytics::ChartStyle::BAR_CHART);
} else if (series_list_[i].line_style == LineStyle::kLine) {
data_set->set_style(webrtc::analytics::ChartStyle::LINE_CHART);
} else if (series_list_[i].line_style == LineStyle::kStep) {
data_set->set_style(webrtc::analytics::ChartStyle::LINE_STEP_CHART);
} else if (series_list_[i].line_style == LineStyle::kNone) {
data_set->set_style(webrtc::analytics::ChartStyle::SCATTER_CHART);
} else {
data_set->set_style(webrtc::analytics::ChartStyle::UNDEFINED);
}
if (series_list_[i].point_style == PointStyle::kHighlight)
data_set->set_highlight_points(true);
data_set->set_label(series_list_[i].label);
}
chart->set_xaxis_min(xaxis_min_);
chart->set_xaxis_max(xaxis_max_);
chart->set_yaxis_min(yaxis_min_);
chart->set_yaxis_max(yaxis_max_);
chart->set_xaxis_label(xaxis_label_);
chart->set_yaxis_label(yaxis_label_);
chart->set_title(title_);
chart->set_id(id_);
for (const auto& kv : yaxis_tick_labels_) {
webrtc::analytics::TickLabel* tick = chart->add_yaxis_tick_labels();
tick->set_value(kv.first);
tick->set_label(kv.second);
}
}
void PlotCollection::PrintPythonCode(
bool shared_xaxis,
absl::string_view figure_output_path) const {
printf("import matplotlib.pyplot as plt\n");
printf("plt.rcParams.update({'figure.max_open_warning': 0})\n");
printf("import matplotlib.patches as mpatches\n");
printf("import matplotlib.patheffects as pe\n");
printf("import colorsys\n");
printf("import os\n");
printf("plt.rcParams['figure.figsize'] = [10, 3]\n");
for (size_t i = 0; i < plots_.size(); i++) {
printf("plt.figure(%zu)\n", i);
if (shared_xaxis) {
// Link x-axes across all figures for synchronized zooming.
if (i == 0) {
printf("axis0 = plt.subplot(111)\n");
} else {
printf("plt.subplot(111, sharex=axis0)\n");
}
}
plots_[i]->PrintPythonCode(figure_output_path);
}
if (figure_output_path.empty()) {
printf("plt.show()\n");
}
}
void PlotCollection::ExportProtobuf(
webrtc::analytics::ChartCollection* collection) const {
for (const auto& plot : plots_) {
webrtc::analytics::Chart* protobuf_representation =
collection->add_charts();
plot->ExportProtobuf(protobuf_representation);
}
if (calltime_to_utc_ms_) {
collection->set_calltime_to_utc_ms(*calltime_to_utc_ms_);
}
}
Plot* PlotCollection::AppendNewPlot() {
plots_.push_back(std::make_unique<Plot>());
return plots_.back().get();
}
Plot* PlotCollection::AppendNewPlot(absl::string_view chart_id) {
plots_.push_back(std::make_unique<Plot>());
plots_.back()->SetId(chart_id);
return plots_.back().get();
}
} // namespace webrtc