| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <sstream> |
| #include <vector> |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "webrtc/base/buffer.h" |
| #include "webrtc/modules/audio_coding/codecs/isac/fix/interface/audio_encoder_isacfix.h" |
| #include "webrtc/modules/audio_coding/codecs/isac/main/interface/audio_encoder_isac.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h" |
| #include "webrtc/test/testsupport/fileutils.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| std::vector<int16_t> LoadSpeechData() { |
| webrtc::test::InputAudioFile input_file( |
| webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm")); |
| static const int kIsacNumberOfSamples = 32 * 60; // 60 ms at 32 kHz |
| std::vector<int16_t> speech_data(kIsacNumberOfSamples); |
| input_file.Read(kIsacNumberOfSamples, speech_data.data()); |
| return speech_data; |
| } |
| |
| template <typename T> |
| IsacBandwidthInfo GetBwInfo(typename T::instance_type* inst) { |
| IsacBandwidthInfo bi; |
| T::GetBandwidthInfo(inst, &bi); |
| EXPECT_TRUE(bi.in_use); |
| return bi; |
| } |
| |
| template <typename T> |
| rtc::Buffer EncodePacket(typename T::instance_type* inst, |
| const IsacBandwidthInfo* bi, |
| const int16_t* speech_data, |
| int framesize_ms) { |
| rtc::Buffer output(1000); |
| for (int i = 0;; ++i) { |
| if (bi) |
| T::SetBandwidthInfo(inst, bi); |
| int encoded_bytes = T::Encode(inst, speech_data, output.data()); |
| if (i + 1 == framesize_ms / 10) { |
| EXPECT_GT(encoded_bytes, 0); |
| EXPECT_LE(static_cast<size_t>(encoded_bytes), output.size()); |
| output.SetSize(encoded_bytes); |
| return output; |
| } |
| EXPECT_EQ(0, encoded_bytes); |
| } |
| } |
| |
| class BoundedCapacityChannel final { |
| public: |
| BoundedCapacityChannel(int rate_bits_per_second) |
| : current_time_rtp_(0), |
| channel_rate_bytes_per_sample_(rate_bits_per_second / |
| (8.0 * kSamplesPerSecond)) {} |
| |
| // Simulate sending the given number of bytes at the given RTP time. Returns |
| // the new current RTP time after the sending is done. |
| int Send(int send_time_rtp, int nbytes) { |
| current_time_rtp_ = std::max(current_time_rtp_, send_time_rtp) + |
| nbytes / channel_rate_bytes_per_sample_; |
| return current_time_rtp_; |
| } |
| |
| private: |
| int current_time_rtp_; |
| // The somewhat strange unit for channel rate, bytes per sample, is because |
| // RTP time is measured in samples: |
| const double channel_rate_bytes_per_sample_; |
| static const int kSamplesPerSecond = 16000; |
| }; |
| |
| template <typename T, bool adaptive> |
| struct TestParam {}; |
| |
| template <> |
| struct TestParam<IsacFloat, true> { |
| static const int time_to_settle = 200; |
| static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { |
| return rate_bits_per_second; |
| } |
| }; |
| |
| template <> |
| struct TestParam<IsacFix, true> { |
| static const int time_to_settle = 350; |
| static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { |
| // For some reason, IsacFix fails to adapt to the channel's actual |
| // bandwidth. Instead, it settles on a few hundred packets at 10kbit/s, |
| // then a few hundred at 5kbit/s, then a few hundred at 10kbit/s, and so |
| // on. The 200 packets starting at 350 are in the middle of the first |
| // 10kbit/s run. |
| return 10000; |
| } |
| }; |
| |
| template <> |
| struct TestParam<IsacFloat, false> { |
| static const int time_to_settle = 0; |
| static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { |
| return 32000; |
| } |
| }; |
| |
| template <> |
| struct TestParam<IsacFix, false> { |
| static const int time_to_settle = 0; |
| static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { |
| return 16000; |
| } |
| }; |
| |
| // Test that the iSAC encoder produces identical output whether or not we use a |
| // conjoined encoder+decoder pair or a separate encoder and decoder that |
| // communicate BW estimation info explicitly. |
| template <typename T, bool adaptive> |
| void TestGetSetBandwidthInfo(const int16_t* speech_data, |
| int rate_bits_per_second) { |
| using Param = TestParam<T, adaptive>; |
| const int framesize_ms = adaptive ? 60 : 30; |
| |
| // Conjoined encoder/decoder pair: |
| typename T::instance_type* encdec; |
| ASSERT_EQ(0, T::Create(&encdec)); |
| ASSERT_EQ(0, T::EncoderInit(encdec, adaptive ? 0 : 1)); |
| ASSERT_EQ(0, T::DecoderInit(encdec)); |
| |
| // Disjoint encoder/decoder pair: |
| typename T::instance_type* enc; |
| ASSERT_EQ(0, T::Create(&enc)); |
| ASSERT_EQ(0, T::EncoderInit(enc, adaptive ? 0 : 1)); |
| typename T::instance_type* dec; |
| ASSERT_EQ(0, T::Create(&dec)); |
| ASSERT_EQ(0, T::DecoderInit(dec)); |
| |
| // 0. Get initial BW info from decoder. |
| auto bi = GetBwInfo<T>(dec); |
| |
| BoundedCapacityChannel channel1(rate_bits_per_second), |
| channel2(rate_bits_per_second); |
| std::vector<size_t> packet_sizes; |
| for (int i = 0; i < Param::time_to_settle + 200; ++i) { |
| std::ostringstream ss; |
| ss << " i = " << i; |
| SCOPED_TRACE(ss.str()); |
| |
| // 1. Encode 6 * 10 ms (adaptive) or 3 * 10 ms (nonadaptive). The separate |
| // encoder is given the BW info before each encode call. |
| auto bitstream1 = |
| EncodePacket<T>(encdec, nullptr, speech_data, framesize_ms); |
| auto bitstream2 = EncodePacket<T>(enc, &bi, speech_data, framesize_ms); |
| EXPECT_EQ(bitstream1, bitstream2); |
| if (i > Param::time_to_settle) |
| packet_sizes.push_back(bitstream1.size()); |
| |
| // 2. Deliver the encoded data to the decoders (but don't actually ask them |
| // to decode it; that's not necessary). Then get new BW info from the |
| // separate decoder. |
| const int samples_per_packet = 16 * framesize_ms; |
| const int send_time = i * samples_per_packet; |
| EXPECT_EQ(0, T::UpdateBwEstimate( |
| encdec, bitstream1.data(), bitstream1.size(), i, send_time, |
| channel1.Send(send_time, bitstream1.size()))); |
| EXPECT_EQ(0, T::UpdateBwEstimate( |
| dec, bitstream2.data(), bitstream2.size(), i, send_time, |
| channel2.Send(send_time, bitstream2.size()))); |
| bi = GetBwInfo<T>(dec); |
| } |
| |
| EXPECT_EQ(0, T::Free(encdec)); |
| EXPECT_EQ(0, T::Free(enc)); |
| EXPECT_EQ(0, T::Free(dec)); |
| |
| // The average send bitrate is close to the channel's capacity. |
| double avg_size = |
| std::accumulate(packet_sizes.begin(), packet_sizes.end(), 0) / |
| static_cast<double>(packet_sizes.size()); |
| double avg_rate_bits_per_second = 8.0 * avg_size / (framesize_ms * 1e-3); |
| double expected_rate_bits_per_second = |
| Param::ExpectedRateBitsPerSecond(rate_bits_per_second); |
| EXPECT_GT(avg_rate_bits_per_second / expected_rate_bits_per_second, 0.95); |
| EXPECT_LT(avg_rate_bits_per_second / expected_rate_bits_per_second, 1.06); |
| |
| // The largest packet isn't that large, and the smallest not that small. |
| size_t min_size = *std::min_element(packet_sizes.begin(), packet_sizes.end()); |
| size_t max_size = *std::max_element(packet_sizes.begin(), packet_sizes.end()); |
| double size_range = max_size - min_size; |
| EXPECT_LE(size_range / avg_size, 0.16); |
| } |
| |
| } // namespace |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat12kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 12000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat15kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 15000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat19kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 19000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat22kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 22000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix12kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 12000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix15kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 15000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix19kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 19000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix22kAdaptive) { |
| TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 22000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat12k) { |
| TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 12000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat15k) { |
| TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 15000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat19k) { |
| TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 19000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFloat22k) { |
| TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 22000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix12k) { |
| TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 12000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix15k) { |
| TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 15000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix19k) { |
| TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 19000); |
| } |
| |
| TEST(IsacCommonTest, GetSetBandwidthInfoFix22k) { |
| TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 22000); |
| } |
| |
| } // namespace webrtc |