blob: a80fd08bcfcb33b8d8eaaa88d6d609386802ed06 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <numeric>
#include <sstream>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/buffer.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/interface/audio_encoder_isacfix.h"
#include "webrtc/modules/audio_coding/codecs/isac/main/interface/audio_encoder_isac.h"
#include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
namespace {
std::vector<int16_t> LoadSpeechData() {
webrtc::test::InputAudioFile input_file(
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"));
static const int kIsacNumberOfSamples = 32 * 60; // 60 ms at 32 kHz
std::vector<int16_t> speech_data(kIsacNumberOfSamples);
input_file.Read(kIsacNumberOfSamples, speech_data.data());
return speech_data;
}
template <typename T>
IsacBandwidthInfo GetBwInfo(typename T::instance_type* inst) {
IsacBandwidthInfo bi;
T::GetBandwidthInfo(inst, &bi);
EXPECT_TRUE(bi.in_use);
return bi;
}
template <typename T>
rtc::Buffer EncodePacket(typename T::instance_type* inst,
const IsacBandwidthInfo* bi,
const int16_t* speech_data,
int framesize_ms) {
rtc::Buffer output(1000);
for (int i = 0;; ++i) {
if (bi)
T::SetBandwidthInfo(inst, bi);
int encoded_bytes = T::Encode(inst, speech_data, output.data());
if (i + 1 == framesize_ms / 10) {
EXPECT_GT(encoded_bytes, 0);
EXPECT_LE(static_cast<size_t>(encoded_bytes), output.size());
output.SetSize(encoded_bytes);
return output;
}
EXPECT_EQ(0, encoded_bytes);
}
}
class BoundedCapacityChannel final {
public:
BoundedCapacityChannel(int rate_bits_per_second)
: current_time_rtp_(0),
channel_rate_bytes_per_sample_(rate_bits_per_second /
(8.0 * kSamplesPerSecond)) {}
// Simulate sending the given number of bytes at the given RTP time. Returns
// the new current RTP time after the sending is done.
int Send(int send_time_rtp, int nbytes) {
current_time_rtp_ = std::max(current_time_rtp_, send_time_rtp) +
nbytes / channel_rate_bytes_per_sample_;
return current_time_rtp_;
}
private:
int current_time_rtp_;
// The somewhat strange unit for channel rate, bytes per sample, is because
// RTP time is measured in samples:
const double channel_rate_bytes_per_sample_;
static const int kSamplesPerSecond = 16000;
};
template <typename T, bool adaptive>
struct TestParam {};
template <>
struct TestParam<IsacFloat, true> {
static const int time_to_settle = 200;
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
return rate_bits_per_second;
}
};
template <>
struct TestParam<IsacFix, true> {
static const int time_to_settle = 350;
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
// For some reason, IsacFix fails to adapt to the channel's actual
// bandwidth. Instead, it settles on a few hundred packets at 10kbit/s,
// then a few hundred at 5kbit/s, then a few hundred at 10kbit/s, and so
// on. The 200 packets starting at 350 are in the middle of the first
// 10kbit/s run.
return 10000;
}
};
template <>
struct TestParam<IsacFloat, false> {
static const int time_to_settle = 0;
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
return 32000;
}
};
template <>
struct TestParam<IsacFix, false> {
static const int time_to_settle = 0;
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
return 16000;
}
};
// Test that the iSAC encoder produces identical output whether or not we use a
// conjoined encoder+decoder pair or a separate encoder and decoder that
// communicate BW estimation info explicitly.
template <typename T, bool adaptive>
void TestGetSetBandwidthInfo(const int16_t* speech_data,
int rate_bits_per_second) {
using Param = TestParam<T, adaptive>;
const int framesize_ms = adaptive ? 60 : 30;
// Conjoined encoder/decoder pair:
typename T::instance_type* encdec;
ASSERT_EQ(0, T::Create(&encdec));
ASSERT_EQ(0, T::EncoderInit(encdec, adaptive ? 0 : 1));
ASSERT_EQ(0, T::DecoderInit(encdec));
// Disjoint encoder/decoder pair:
typename T::instance_type* enc;
ASSERT_EQ(0, T::Create(&enc));
ASSERT_EQ(0, T::EncoderInit(enc, adaptive ? 0 : 1));
typename T::instance_type* dec;
ASSERT_EQ(0, T::Create(&dec));
ASSERT_EQ(0, T::DecoderInit(dec));
// 0. Get initial BW info from decoder.
auto bi = GetBwInfo<T>(dec);
BoundedCapacityChannel channel1(rate_bits_per_second),
channel2(rate_bits_per_second);
std::vector<size_t> packet_sizes;
for (int i = 0; i < Param::time_to_settle + 200; ++i) {
std::ostringstream ss;
ss << " i = " << i;
SCOPED_TRACE(ss.str());
// 1. Encode 6 * 10 ms (adaptive) or 3 * 10 ms (nonadaptive). The separate
// encoder is given the BW info before each encode call.
auto bitstream1 =
EncodePacket<T>(encdec, nullptr, speech_data, framesize_ms);
auto bitstream2 = EncodePacket<T>(enc, &bi, speech_data, framesize_ms);
EXPECT_EQ(bitstream1, bitstream2);
if (i > Param::time_to_settle)
packet_sizes.push_back(bitstream1.size());
// 2. Deliver the encoded data to the decoders (but don't actually ask them
// to decode it; that's not necessary). Then get new BW info from the
// separate decoder.
const int samples_per_packet = 16 * framesize_ms;
const int send_time = i * samples_per_packet;
EXPECT_EQ(0, T::UpdateBwEstimate(
encdec, bitstream1.data(), bitstream1.size(), i, send_time,
channel1.Send(send_time, bitstream1.size())));
EXPECT_EQ(0, T::UpdateBwEstimate(
dec, bitstream2.data(), bitstream2.size(), i, send_time,
channel2.Send(send_time, bitstream2.size())));
bi = GetBwInfo<T>(dec);
}
EXPECT_EQ(0, T::Free(encdec));
EXPECT_EQ(0, T::Free(enc));
EXPECT_EQ(0, T::Free(dec));
// The average send bitrate is close to the channel's capacity.
double avg_size =
std::accumulate(packet_sizes.begin(), packet_sizes.end(), 0) /
static_cast<double>(packet_sizes.size());
double avg_rate_bits_per_second = 8.0 * avg_size / (framesize_ms * 1e-3);
double expected_rate_bits_per_second =
Param::ExpectedRateBitsPerSecond(rate_bits_per_second);
EXPECT_GT(avg_rate_bits_per_second / expected_rate_bits_per_second, 0.95);
EXPECT_LT(avg_rate_bits_per_second / expected_rate_bits_per_second, 1.06);
// The largest packet isn't that large, and the smallest not that small.
size_t min_size = *std::min_element(packet_sizes.begin(), packet_sizes.end());
size_t max_size = *std::max_element(packet_sizes.begin(), packet_sizes.end());
double size_range = max_size - min_size;
EXPECT_LE(size_range / avg_size, 0.16);
}
} // namespace
TEST(IsacCommonTest, GetSetBandwidthInfoFloat12kAdaptive) {
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 12000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFloat15kAdaptive) {
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 15000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFloat19kAdaptive) {
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 19000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFloat22kAdaptive) {
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 22000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix12kAdaptive) {
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 12000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix15kAdaptive) {
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 15000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix19kAdaptive) {
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 19000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix22kAdaptive) {
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 22000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFloat12k) {
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 12000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFloat15k) {
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 15000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFloat19k) {
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 19000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFloat22k) {
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 22000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix12k) {
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 12000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix15k) {
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 15000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix19k) {
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 19000);
}
TEST(IsacCommonTest, GetSetBandwidthInfoFix22k) {
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 22000);
}
} // namespace webrtc