blob: c580d835c5a347051f4fd1458e645594231b38b1 [file] [log] [blame]
/*
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <memory>
#include <set>
#include <string>
#include "absl/memory/memory.h"
#include "rtc_base/buffer_queue.h"
#include "rtc_base/checks.h"
#include "rtc_base/gunit.h"
#include "rtc_base/helpers.h"
#include "rtc_base/memory/fifo_buffer.h"
#include "rtc_base/memory_stream.h"
#include "rtc_base/message_digest.h"
#include "rtc_base/openssl_stream_adapter.h"
#include "rtc_base/ssl_adapter.h"
#include "rtc_base/ssl_identity.h"
#include "rtc_base/ssl_stream_adapter.h"
#include "rtc_base/stream.h"
#include "rtc_base/task_utils/pending_task_safety_flag.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "test/field_trial.h"
using ::testing::Combine;
using ::testing::tuple;
using ::testing::Values;
using ::testing::WithParamInterface;
static const int kBlockSize = 4096;
static const char kExporterLabel[] = "label";
static const unsigned char kExporterContext[] = "context";
static int kExporterContextLen = sizeof(kExporterContext);
// A private key used for testing, broken into pieces in order to avoid
// issues with Git's checks for private keys in repos.
#define RSA_PRIVATE_KEY_HEADER "-----BEGIN RSA PRIVATE KEY-----\n"
static const char kRSA_PRIVATE_KEY_PEM[] = RSA_PRIVATE_KEY_HEADER
"MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBAMYRkbhmI7kVA/rM\n"
"czsZ+6JDhDvnkF+vn6yCAGuRPV03zuRqZtDy4N4to7PZu9PjqrRl7nDMXrG3YG9y\n"
"rlIAZ72KjcKKFAJxQyAKLCIdawKRyp8RdK3LEySWEZb0AV58IadqPZDTNHHRX8dz\n"
"5aTSMsbbkZ+C/OzTnbiMqLL/vg6jAgMBAAECgYAvgOs4FJcgvp+TuREx7YtiYVsH\n"
"mwQPTum2z/8VzWGwR8BBHBvIpVe1MbD/Y4seyI2aco/7UaisatSgJhsU46/9Y4fq\n"
"2TwXH9QANf4at4d9n/R6rzwpAJOpgwZgKvdQjkfrKTtgLV+/dawvpxUYkRH4JZM1\n"
"CVGukMfKNrSVH4Ap4QJBAOJmGV1ASPnB4r4nc99at7JuIJmd7fmuVUwUgYi4XgaR\n"
"WhScBsgYwZ/JoywdyZJgnbcrTDuVcWG56B3vXbhdpMsCQQDf9zeJrjnPZ3Cqm79y\n"
"kdqANep0uwZciiNiWxsQrCHztywOvbFhdp8iYVFG9EK8DMY41Y5TxUwsHD+67zao\n"
"ZNqJAkEA1suLUP/GvL8IwuRneQd2tWDqqRQ/Td3qq03hP7e77XtF/buya3Ghclo5\n"
"54czUR89QyVfJEC6278nzA7n2h1uVQJAcG6mztNL6ja/dKZjYZye2CY44QjSlLo0\n"
"MTgTSjdfg/28fFn2Jjtqf9Pi/X+50LWI/RcYMC2no606wRk9kyOuIQJBAK6VSAim\n"
"1pOEjsYQn0X5KEIrz1G3bfCbB848Ime3U2/FWlCHMr6ch8kCZ5d1WUeJD3LbwMNG\n"
"UCXiYxSsu20QNVw=\n"
"-----END RSA PRIVATE KEY-----\n";
#undef RSA_PRIVATE_KEY_HEADER
static const char kCERT_PEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIBmTCCAQKgAwIBAgIEbzBSAjANBgkqhkiG9w0BAQsFADARMQ8wDQYDVQQDEwZX\n"
"ZWJSVEMwHhcNMTQwMTAyMTgyNDQ3WhcNMTQwMjAxMTgyNDQ3WjARMQ8wDQYDVQQD\n"
"EwZXZWJSVEMwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMYRkbhmI7kVA/rM\n"
"czsZ+6JDhDvnkF+vn6yCAGuRPV03zuRqZtDy4N4to7PZu9PjqrRl7nDMXrG3YG9y\n"
"rlIAZ72KjcKKFAJxQyAKLCIdawKRyp8RdK3LEySWEZb0AV58IadqPZDTNHHRX8dz\n"
"5aTSMsbbkZ+C/OzTnbiMqLL/vg6jAgMBAAEwDQYJKoZIhvcNAQELBQADgYEAUflI\n"
"VUe5Krqf5RVa5C3u/UTAOAUJBiDS3VANTCLBxjuMsvqOG0WvaYWP3HYPgrz0jXK2\n"
"LJE/mGw3MyFHEqi81jh95J+ypl6xKW6Rm8jKLR87gUvCaVYn/Z4/P3AqcQTB7wOv\n"
"UD0A8qfhfDM+LK6rPAnCsVN0NRDY3jvd6rzix9M=\n"
"-----END CERTIFICATE-----\n";
static const char kIntCert1[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIEUjCCAjqgAwIBAgIBAjANBgkqhkiG9w0BAQsFADCBljELMAkGA1UEBhMCVVMx\n"
"EzARBgNVBAgMCkNhbGlmb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFDAS\n"
"BgNVBAoMC0dvb2dsZSwgSW5jMQwwCgYDVQQLDANHVFAxFzAVBgNVBAMMDnRlbGVw\n"
"aG9ueS5nb29nMR0wGwYJKoZIhvcNAQkBFg5ndHBAZ29vZ2xlLmNvbTAeFw0xNzA5\n"
"MjYwNDA5MDNaFw0yMDA2MjIwNDA5MDNaMGQxCzAJBgNVBAYTAlVTMQswCQYDVQQI\n"
"DAJDQTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzEXMBUGA1UECgwOdGVsZXBob255\n"
"Lmdvb2cxFzAVBgNVBAMMDnRlbGVwaG9ueS5nb29nMIGfMA0GCSqGSIb3DQEBAQUA\n"
"A4GNADCBiQKBgQDJXWeeU1v1+wlqkVobzI3aN7Uh2iVQA9YCdq5suuabtiD/qoOD\n"
"NKpmQqsx7WZGGWSZTDFEBaUpvIK7Hb+nzRqk6iioPCFOFuarm6GxO1xVneImMuE6\n"
"tuWb3YZPr+ikChJbl11y5UcSbg0QsbeUc+jHl5umNvrL85Y+z8SP0rxbBwIDAQAB\n"
"o2AwXjAdBgNVHQ4EFgQU7tdZobqlN8R8V72FQnRxmqq8tKswHwYDVR0jBBgwFoAU\n"
"5GgKMUtcxkQ2dJrtNR5YOlIAPDswDwYDVR0TAQH/BAUwAwEB/zALBgNVHQ8EBAMC\n"
"AQYwDQYJKoZIhvcNAQELBQADggIBADObh9Z+z14FmP9zSenhFtq7hFnmNrSkklk8\n"
"eyYWXKfOuIriEQQBZsz76ZcnzStih8Rj+yQ0AXydk4fJ5LOwC2cUqQBar17g6Pd2\n"
"8g4SIL4azR9WvtiSvpuGlwp25b+yunaacDne6ebnf/MUiiKT5w61Xo3cEPVfl38e\n"
"/Up2l0bioid5enUTmg6LY6RxDO6tnZQkz3XD+nNSwT4ehtkqFpHYWjErj0BbkDM2\n"
"hiVc/JsYOZn3DmuOlHVHU6sKwqh3JEyvHO/d7DGzMGWHpHwv2mCTJq6l/sR95Tc2\n"
"GaQZgGDVNs9pdEouJCDm9e/PbQWRYhnat82PTkXx/6mDAAwdZlIi/pACzq8K4p7e\n"
"6hF0t8uKGnXJubHPXxlnJU6yxZ0yWmivAGjwWK4ur832gKlho4jeMDhiI/T3QPpl\n"
"iMNsIvxRhdD+GxJkQP1ezayw8s+Uc9KwKglrkBSRRDLCJUfPOvMmXLUDSTMX7kp4\n"
"/Ak1CA8dVLJIlfEjLBUuvAttlP7+7lsKNgxAjCxZkWLXIyGULzNPQwVWkGfCbrQs\n"
"XyMvSbFsSIb7blV7eLlmf9a+2RprUUkc2ALXLLCI9YQXmxm2beBfMyNmmebwBJzT\n"
"B0OR+5pFFNTJPoNlqpdrDsGrDu7JlUtk0ZLZzYyKXbgy2qXxfd4OWzXXjxpLMszZ\n"
"LDIpOAkj\n"
"-----END CERTIFICATE-----\n";
static const char kCACert[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIGETCCA/mgAwIBAgIJAKN9r/BdbGUJMA0GCSqGSIb3DQEBCwUAMIGWMQswCQYD\n"
"VQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4g\n"
"VmlldzEUMBIGA1UECgwLR29vZ2xlLCBJbmMxDDAKBgNVBAsMA0dUUDEXMBUGA1UE\n"
"AwwOdGVsZXBob255Lmdvb2cxHTAbBgkqhkiG9w0BCQEWDmd0cEBnb29nbGUuY29t\n"
"MB4XDTE3MDcyNzIzMDE0NVoXDTE3MDgyNjIzMDE0NVowgZYxCzAJBgNVBAYTAlVT\n"
"MRMwEQYDVQQIDApDYWxpZm9ybmlhMRYwFAYDVQQHDA1Nb3VudGFpbiBWaWV3MRQw\n"
"EgYDVQQKDAtHb29nbGUsIEluYzEMMAoGA1UECwwDR1RQMRcwFQYDVQQDDA50ZWxl\n"
"cGhvbnkuZ29vZzEdMBsGCSqGSIb3DQEJARYOZ3RwQGdvb2dsZS5jb20wggIiMA0G\n"
"CSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCfvpF7aBV5Hp1EHsWoIlL3GeHwh8dS\n"
"lv9VQCegN9rD06Ny7MgcED5AiK2vqXmUmOVS+7NbATkdVYN/eozDhKtN3Q3n87kJ\n"
"Nt/TD/TcZZHOZIGsRPbrf2URK26E/5KzTzbzXVBOA1e+gSj+EBbltGqb01ZO5ErF\n"
"iPGViPM/HpYKdq6mfz2bS5PhU67XZMM2zvToyReQ/Fjm/6PJhwKSRXSgZF5djPhk\n"
"2LfOKMLS0AeZtd2C4DFsCU41lfLUkybioDgFuzTQ3TFi1K8A07KYTMmLY/yQppnf\n"
"SpNX58shlVhM+Ed37K1Z0rU0OfVCZ5P+KKaSSfMranjlU7zeUIhZYjqq/EYrEhbS\n"
"dLnNHwgJrqxzId3kq8uuLM6+VB7JZKnZLfT90GdAbX4+tutNe21smmogF9f80vEy\n"
"gM4tOp9rXrvz9vCwWHXVY9kdKemdLAsREoO6MS9k2ctK4jj80o2dROuFC6Q3e7mz\n"
"RjvZr5Tvi464c2o9o/jNlJ0O6q7V2eQzohD+7VnV5QPpRGXxlIeqpR2zoAg+WtRS\n"
"4OgHOVYiD3M6uAlggJA5pcDjMfkEZ+pkhtVcT4qMCEoruk6GbyPxS565oSHu16bH\n"
"EjeCqbZOVND5T3oA7nz6aQSs8sJabt0jmxUkGVnE+4ZDIuuRtkRma+0P/96Mtqor\n"
"OlpNWY1OBDY64QIDAQABo2AwXjAdBgNVHQ4EFgQU5GgKMUtcxkQ2dJrtNR5YOlIA\n"
"PDswHwYDVR0jBBgwFoAU5GgKMUtcxkQ2dJrtNR5YOlIAPDswDwYDVR0TAQH/BAUw\n"
"AwEB/zALBgNVHQ8EBAMCAQYwDQYJKoZIhvcNAQELBQADggIBAARQly5/bB6VUL2C\n"
"ykDYgWt48go407pAra6tL2kjpdfxV5PdL7iMZRkeht00vj+BVahIqZKrNOa/f5Fx\n"
"vlpahZFu0PDN436aQwRZ9qWut2qDOK0/z9Hhj6NWybquRFwMwqkPG/ivLMDU8Dmj\n"
"CIplpngPYNwXCs0KzdjSXYxqxJbwMjQXELD+/RcurY0oTtJMM1/2vKQMzw24UJqe\n"
"XLJAlsnd2AnWzWNUEviDZY89j9NdkHerBmV2gGzcU+X5lgOO5M8odBv0ZC9D+a6Z\n"
"QPZAOfdGVw60hhGvTW5s/s0dHwCpegRidhs0MD0fTmwwjYFBSmUx3Gztr4JTzOOr\n"
"7e5daJuak2ujQ5DqcGBvt1gePjSudb5brS7JQtN8tI/FyrnR4q/OuOwv1EvlC5RG\n"
"hLX+TXaWqFxB1Hd8ebKRR40mboFG6KcUI3lLBthDvQE7jnq48QfZMjlMQK0ZF1l7\n"
"SrlwRXWA74bU8CLJvnZKKo9p4TsTiDYGSYC6tNHKj5s3TGWL46oqGyZ0KdGNhrtC\n"
"rIGenMhth1vPYjyy0XuGBndXT85yi+IM2l8g8oU845+plxIhgpSI8bbC0oLwnhQ5\n"
"ARfsiYLkXDE7imSS0CSUmye76372mlzAIB1is4bBB/SzpPQtBuB9LDKtONgpSGHn\n"
"dGaXBy+qbVXVyGXaeEbIRjtJ6m92\n"
"-----END CERTIFICATE-----\n";
class SSLStreamAdapterTestBase;
class SSLDummyStreamBase : public rtc::StreamInterface,
public sigslot::has_slots<> {
public:
SSLDummyStreamBase(SSLStreamAdapterTestBase* test,
const std::string& side,
rtc::StreamInterface* in,
rtc::StreamInterface* out)
: test_base_(test), side_(side), in_(in), out_(out), first_packet_(true) {
in_->SignalEvent.connect(this, &SSLDummyStreamBase::OnEventIn);
out_->SignalEvent.connect(this, &SSLDummyStreamBase::OnEventOut);
}
rtc::StreamState GetState() const override { return rtc::SS_OPEN; }
rtc::StreamResult Read(void* buffer,
size_t buffer_len,
size_t* read,
int* error) override {
rtc::StreamResult r;
r = in_->Read(buffer, buffer_len, read, error);
if (r == rtc::SR_BLOCK)
return rtc::SR_BLOCK;
if (r == rtc::SR_EOS)
return rtc::SR_EOS;
if (r != rtc::SR_SUCCESS) {
ADD_FAILURE();
return rtc::SR_ERROR;
}
return rtc::SR_SUCCESS;
}
// Catch readability events on in and pass them up.
void OnEventIn(rtc::StreamInterface* stream, int sig, int err) {
int mask = (rtc::SE_READ | rtc::SE_CLOSE);
if (sig & mask) {
RTC_LOG(LS_VERBOSE) << "SSLDummyStreamBase::OnEvent side=" << side_
<< " sig=" << sig << " forwarding upward";
PostEvent(sig & mask, 0);
}
}
// Catch writeability events on out and pass them up.
void OnEventOut(rtc::StreamInterface* stream, int sig, int err) {
if (sig & rtc::SE_WRITE) {
RTC_LOG(LS_VERBOSE) << "SSLDummyStreamBase::OnEvent side=" << side_
<< " sig=" << sig << " forwarding upward";
PostEvent(sig & rtc::SE_WRITE, 0);
}
}
// Write to the outgoing FifoBuffer
rtc::StreamResult WriteData(const void* data,
size_t data_len,
size_t* written,
int* error) {
return out_->Write(data, data_len, written, error);
}
rtc::StreamResult Write(const void* data,
size_t data_len,
size_t* written,
int* error) override;
void Close() override {
RTC_LOG(LS_INFO) << "Closing outbound stream";
out_->Close();
}
private:
void PostEvent(int events, int err) {
thread_->PostTask(webrtc::ToQueuedTask(task_safety_, [this, events, err]() {
SignalEvent(this, events, err);
}));
}
webrtc::ScopedTaskSafety task_safety_;
rtc::Thread* const thread_ = rtc::Thread::Current();
SSLStreamAdapterTestBase* test_base_;
const std::string side_;
rtc::StreamInterface* in_;
rtc::StreamInterface* out_;
bool first_packet_;
};
class SSLDummyStreamTLS : public SSLDummyStreamBase {
public:
SSLDummyStreamTLS(SSLStreamAdapterTestBase* test,
const std::string& side,
rtc::FifoBuffer* in,
rtc::FifoBuffer* out)
: SSLDummyStreamBase(test, side, in, out) {}
};
class BufferQueueStream : public rtc::StreamInterface {
public:
BufferQueueStream(size_t capacity, size_t default_size)
: buffer_(capacity, default_size) {}
// Implementation of abstract StreamInterface methods.
// A buffer queue stream is always "open".
rtc::StreamState GetState() const override { return rtc::SS_OPEN; }
// Reading a buffer queue stream will either succeed or block.
rtc::StreamResult Read(void* buffer,
size_t buffer_len,
size_t* read,
int* error) override {
const bool was_writable = buffer_.is_writable();
if (!buffer_.ReadFront(buffer, buffer_len, read))
return rtc::SR_BLOCK;
if (!was_writable)
NotifyWritableForTest();
return rtc::SR_SUCCESS;
}
// Writing to a buffer queue stream will either succeed or block.
rtc::StreamResult Write(const void* data,
size_t data_len,
size_t* written,
int* error) override {
const bool was_readable = buffer_.is_readable();
if (!buffer_.WriteBack(data, data_len, written))
return rtc::SR_BLOCK;
if (!was_readable)
NotifyReadableForTest();
return rtc::SR_SUCCESS;
}
// A buffer queue stream can not be closed.
void Close() override {}
protected:
void NotifyReadableForTest() { PostEvent(rtc::SE_READ, 0); }
void NotifyWritableForTest() { PostEvent(rtc::SE_WRITE, 0); }
private:
void PostEvent(int events, int err) {
thread_->PostTask(webrtc::ToQueuedTask(task_safety_, [this, events, err]() {
SignalEvent(this, events, err);
}));
}
rtc::Thread* const thread_ = rtc::Thread::Current();
webrtc::ScopedTaskSafety task_safety_;
rtc::BufferQueue buffer_;
};
class SSLDummyStreamDTLS : public SSLDummyStreamBase {
public:
SSLDummyStreamDTLS(SSLStreamAdapterTestBase* test,
const std::string& side,
BufferQueueStream* in,
BufferQueueStream* out)
: SSLDummyStreamBase(test, side, in, out) {}
};
static const int kFifoBufferSize = 4096;
static const int kBufferCapacity = 1;
static const size_t kDefaultBufferSize = 2048;
class SSLStreamAdapterTestBase : public ::testing::Test,
public sigslot::has_slots<> {
public:
SSLStreamAdapterTestBase(
const std::string& client_cert_pem,
const std::string& client_private_key_pem,
bool dtls,
rtc::KeyParams client_key_type = rtc::KeyParams(rtc::KT_DEFAULT),
rtc::KeyParams server_key_type = rtc::KeyParams(rtc::KT_DEFAULT))
: client_cert_pem_(client_cert_pem),
client_private_key_pem_(client_private_key_pem),
client_key_type_(client_key_type),
server_key_type_(server_key_type),
client_stream_(nullptr),
server_stream_(nullptr),
delay_(0),
mtu_(1460),
loss_(0),
lose_first_packet_(false),
damage_(false),
dtls_(dtls),
handshake_wait_(5000),
identities_set_(false) {
// Set use of the test RNG to get predictable loss patterns.
rtc::SetRandomTestMode(true);
}
~SSLStreamAdapterTestBase() override {
// Put it back for the next test.
rtc::SetRandomTestMode(false);
}
void SetUp() override {
CreateStreams();
client_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(client_stream_));
server_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(server_stream_));
// Set up the slots
client_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent);
server_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent);
std::unique_ptr<rtc::SSLIdentity> client_identity;
if (!client_cert_pem_.empty() && !client_private_key_pem_.empty()) {
client_identity = rtc::SSLIdentity::CreateFromPEMStrings(
client_private_key_pem_, client_cert_pem_);
} else {
client_identity = rtc::SSLIdentity::Create("client", client_key_type_);
}
auto server_identity = rtc::SSLIdentity::Create("server", server_key_type_);
client_ssl_->SetIdentity(std::move(client_identity));
server_ssl_->SetIdentity(std::move(server_identity));
}
void TearDown() override {
client_ssl_.reset(nullptr);
server_ssl_.reset(nullptr);
}
virtual void CreateStreams() = 0;
// Recreate the client/server identities with the specified validity period.
// |not_before| and |not_after| are offsets from the current time in number
// of seconds.
void ResetIdentitiesWithValidity(int not_before, int not_after) {
CreateStreams();
client_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(client_stream_));
server_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(server_stream_));
client_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent);
server_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent);
time_t now = time(nullptr);
rtc::SSLIdentityParams client_params;
client_params.key_params = rtc::KeyParams(rtc::KT_DEFAULT);
client_params.common_name = "client";
client_params.not_before = now + not_before;
client_params.not_after = now + not_after;
auto client_identity = rtc::SSLIdentity::CreateForTest(client_params);
rtc::SSLIdentityParams server_params;
server_params.key_params = rtc::KeyParams(rtc::KT_DEFAULT);
server_params.common_name = "server";
server_params.not_before = now + not_before;
server_params.not_after = now + not_after;
auto server_identity = rtc::SSLIdentity::CreateForTest(server_params);
client_ssl_->SetIdentity(std::move(client_identity));
server_ssl_->SetIdentity(std::move(server_identity));
}
virtual void OnEvent(rtc::StreamInterface* stream, int sig, int err) {
RTC_LOG(LS_VERBOSE) << "SSLStreamAdapterTestBase::OnEvent sig=" << sig;
if (sig & rtc::SE_READ) {
ReadData(stream);
}
if ((stream == client_ssl_.get()) && (sig & rtc::SE_WRITE)) {
WriteData();
}
}
void SetPeerIdentitiesByDigest(bool correct, bool expect_success) {
unsigned char server_digest[20];
size_t server_digest_len;
unsigned char client_digest[20];
size_t client_digest_len;
bool rv;
rtc::SSLPeerCertificateDigestError err;
rtc::SSLPeerCertificateDigestError expected_err =
expect_success
? rtc::SSLPeerCertificateDigestError::NONE
: rtc::SSLPeerCertificateDigestError::VERIFICATION_FAILED;
RTC_LOG(LS_INFO) << "Setting peer identities by digest";
rv = server_identity()->certificate().ComputeDigest(
rtc::DIGEST_SHA_1, server_digest, 20, &server_digest_len);
ASSERT_TRUE(rv);
rv = client_identity()->certificate().ComputeDigest(
rtc::DIGEST_SHA_1, client_digest, 20, &client_digest_len);
ASSERT_TRUE(rv);
if (!correct) {
RTC_LOG(LS_INFO) << "Setting bogus digest for server cert";
server_digest[0]++;
}
rv = client_ssl_->SetPeerCertificateDigest(rtc::DIGEST_SHA_1, server_digest,
server_digest_len, &err);
EXPECT_EQ(expected_err, err);
EXPECT_EQ(expect_success, rv);
if (!correct) {
RTC_LOG(LS_INFO) << "Setting bogus digest for client cert";
client_digest[0]++;
}
rv = server_ssl_->SetPeerCertificateDigest(rtc::DIGEST_SHA_1, client_digest,
client_digest_len, &err);
EXPECT_EQ(expected_err, err);
EXPECT_EQ(expect_success, rv);
identities_set_ = true;
}
void SetupProtocolVersions(rtc::SSLProtocolVersion server_version,
rtc::SSLProtocolVersion client_version) {
server_ssl_->SetMaxProtocolVersion(server_version);
client_ssl_->SetMaxProtocolVersion(client_version);
}
void TestHandshake(bool expect_success = true) {
server_ssl_->SetMode(dtls_ ? rtc::SSL_MODE_DTLS : rtc::SSL_MODE_TLS);
client_ssl_->SetMode(dtls_ ? rtc::SSL_MODE_DTLS : rtc::SSL_MODE_TLS);
if (!dtls_) {
// Make sure we simulate a reliable network for TLS.
// This is just a check to make sure that people don't write wrong
// tests.
RTC_CHECK_EQ(1460, mtu_);
RTC_CHECK(!loss_);
RTC_CHECK(!lose_first_packet_);
}
if (!identities_set_)
SetPeerIdentitiesByDigest(true, true);
// Start the handshake
int rv;
server_ssl_->SetServerRole();
rv = server_ssl_->StartSSL();
ASSERT_EQ(0, rv);
rv = client_ssl_->StartSSL();
ASSERT_EQ(0, rv);
// Now run the handshake
if (expect_success) {
EXPECT_TRUE_WAIT((client_ssl_->GetState() == rtc::SS_OPEN) &&
(server_ssl_->GetState() == rtc::SS_OPEN),
handshake_wait_);
} else {
EXPECT_TRUE_WAIT(client_ssl_->GetState() == rtc::SS_CLOSED,
handshake_wait_);
}
}
// This tests that the handshake can complete before the identity is verified,
// and the identity will be verified after the fact. It also verifies that
// packets can't be read or written before the identity has been verified.
void TestHandshakeWithDelayedIdentity(bool valid_identity) {
server_ssl_->SetMode(dtls_ ? rtc::SSL_MODE_DTLS : rtc::SSL_MODE_TLS);
client_ssl_->SetMode(dtls_ ? rtc::SSL_MODE_DTLS : rtc::SSL_MODE_TLS);
if (!dtls_) {
// Make sure we simulate a reliable network for TLS.
// This is just a check to make sure that people don't write wrong
// tests.
RTC_CHECK_EQ(1460, mtu_);
RTC_CHECK(!loss_);
RTC_CHECK(!lose_first_packet_);
}
// Start the handshake
server_ssl_->SetServerRole();
ASSERT_EQ(0, server_ssl_->StartSSL());
ASSERT_EQ(0, client_ssl_->StartSSL());
// Now run the handshake.
EXPECT_TRUE_WAIT(
client_ssl_->IsTlsConnected() && server_ssl_->IsTlsConnected(),
handshake_wait_);
// Until the identity has been verified, the state should still be
// SS_OPENING and writes should return SR_BLOCK.
EXPECT_EQ(rtc::SS_OPENING, client_ssl_->GetState());
EXPECT_EQ(rtc::SS_OPENING, server_ssl_->GetState());
unsigned char packet[1];
size_t sent;
EXPECT_EQ(rtc::SR_BLOCK, client_ssl_->Write(&packet, 1, &sent, 0));
EXPECT_EQ(rtc::SR_BLOCK, server_ssl_->Write(&packet, 1, &sent, 0));
// Collect both of the certificate digests; needs to be done before calling
// SetPeerCertificateDigest as that may reset the identity.
unsigned char server_digest[20];
size_t server_digest_len;
unsigned char client_digest[20];
size_t client_digest_len;
bool rv;
rv = server_identity()->certificate().ComputeDigest(
rtc::DIGEST_SHA_1, server_digest, 20, &server_digest_len);
ASSERT_TRUE(rv);
rv = client_identity()->certificate().ComputeDigest(
rtc::DIGEST_SHA_1, client_digest, 20, &client_digest_len);
ASSERT_TRUE(rv);
if (!valid_identity) {
RTC_LOG(LS_INFO) << "Setting bogus digest for client/server certs";
client_digest[0]++;
server_digest[0]++;
}
// Set the peer certificate digest for the client.
rtc::SSLPeerCertificateDigestError err;
rtc::SSLPeerCertificateDigestError expected_err =
valid_identity
? rtc::SSLPeerCertificateDigestError::NONE
: rtc::SSLPeerCertificateDigestError::VERIFICATION_FAILED;
rv = client_ssl_->SetPeerCertificateDigest(rtc::DIGEST_SHA_1, server_digest,
server_digest_len, &err);
EXPECT_EQ(expected_err, err);
EXPECT_EQ(valid_identity, rv);
// State should then transition to SS_OPEN or SS_CLOSED based on validation
// of the identity.
if (valid_identity) {
EXPECT_EQ(rtc::SS_OPEN, client_ssl_->GetState());
// If the client sends a packet while the server still hasn't verified the
// client identity, the server should continue to return SR_BLOCK.
EXPECT_EQ(rtc::SR_SUCCESS, client_ssl_->Write(&packet, 1, &sent, 0));
EXPECT_EQ(rtc::SR_BLOCK, server_ssl_->Read(&packet, 1, 0, 0));
} else {
EXPECT_EQ(rtc::SS_CLOSED, client_ssl_->GetState());
}
// Set the peer certificate digest for the server.
rv = server_ssl_->SetPeerCertificateDigest(rtc::DIGEST_SHA_1, client_digest,
client_digest_len, &err);
EXPECT_EQ(expected_err, err);
EXPECT_EQ(valid_identity, rv);
if (valid_identity) {
EXPECT_EQ(rtc::SS_OPEN, server_ssl_->GetState());
} else {
EXPECT_EQ(rtc::SS_CLOSED, server_ssl_->GetState());
}
}
rtc::StreamResult DataWritten(SSLDummyStreamBase* from,
const void* data,
size_t data_len,
size_t* written,
int* error) {
// Randomly drop loss_ percent of packets
if (rtc::CreateRandomId() % 100 < static_cast<uint32_t>(loss_)) {
RTC_LOG(LS_VERBOSE) << "Randomly dropping packet, size=" << data_len;
*written = data_len;
return rtc::SR_SUCCESS;
}
if (dtls_ && (data_len > mtu_)) {
RTC_LOG(LS_VERBOSE) << "Dropping packet > mtu, size=" << data_len;
*written = data_len;
return rtc::SR_SUCCESS;
}
// Optionally damage application data (type 23). Note that we don't damage
// handshake packets and we damage the last byte to keep the header
// intact but break the MAC.
if (damage_ && (*static_cast<const unsigned char*>(data) == 23)) {
std::vector<char> buf(data_len);
RTC_LOG(LS_VERBOSE) << "Damaging packet";
memcpy(&buf[0], data, data_len);
buf[data_len - 1]++;
return from->WriteData(&buf[0], data_len, written, error);
}
return from->WriteData(data, data_len, written, error);
}
void SetDelay(int delay) { delay_ = delay; }
int GetDelay() { return delay_; }
void SetLoseFirstPacket(bool lose) { lose_first_packet_ = lose; }
bool GetLoseFirstPacket() { return lose_first_packet_; }
void SetLoss(int percent) { loss_ = percent; }
void SetDamage() { damage_ = true; }
void SetMtu(size_t mtu) { mtu_ = mtu; }
void SetHandshakeWait(int wait) { handshake_wait_ = wait; }
void SetDtlsSrtpCryptoSuites(const std::vector<int>& ciphers, bool client) {
if (client)
client_ssl_->SetDtlsSrtpCryptoSuites(ciphers);
else
server_ssl_->SetDtlsSrtpCryptoSuites(ciphers);
}
bool GetDtlsSrtpCryptoSuite(bool client, int* retval) {
if (client)
return client_ssl_->GetDtlsSrtpCryptoSuite(retval);
else
return server_ssl_->GetDtlsSrtpCryptoSuite(retval);
}
std::unique_ptr<rtc::SSLCertificate> GetPeerCertificate(bool client) {
std::unique_ptr<rtc::SSLCertChain> chain;
if (client)
chain = client_ssl_->GetPeerSSLCertChain();
else
chain = server_ssl_->GetPeerSSLCertChain();
return (chain && chain->GetSize()) ? chain->Get(0).Clone() : nullptr;
}
bool GetSslCipherSuite(bool client, int* retval) {
if (client)
return client_ssl_->GetSslCipherSuite(retval);
else
return server_ssl_->GetSslCipherSuite(retval);
}
int GetSslVersion(bool client) {
if (client)
return client_ssl_->GetSslVersion();
else
return server_ssl_->GetSslVersion();
}
bool ExportKeyingMaterial(const char* label,
const unsigned char* context,
size_t context_len,
bool use_context,
bool client,
unsigned char* result,
size_t result_len) {
if (client)
return client_ssl_->ExportKeyingMaterial(label, context, context_len,
use_context, result, result_len);
else
return server_ssl_->ExportKeyingMaterial(label, context, context_len,
use_context, result, result_len);
}
// To be implemented by subclasses.
virtual void WriteData() = 0;
virtual void ReadData(rtc::StreamInterface* stream) = 0;
virtual void TestTransfer(int size) = 0;
protected:
rtc::SSLIdentity* client_identity() const {
if (!client_ssl_) {
return nullptr;
}
return client_ssl_->GetIdentityForTesting();
}
rtc::SSLIdentity* server_identity() const {
if (!server_ssl_) {
return nullptr;
}
return server_ssl_->GetIdentityForTesting();
}
std::string client_cert_pem_;
std::string client_private_key_pem_;
rtc::KeyParams client_key_type_;
rtc::KeyParams server_key_type_;
SSLDummyStreamBase* client_stream_; // freed by client_ssl_ destructor
SSLDummyStreamBase* server_stream_; // freed by server_ssl_ destructor
std::unique_ptr<rtc::SSLStreamAdapter> client_ssl_;
std::unique_ptr<rtc::SSLStreamAdapter> server_ssl_;
int delay_;
size_t mtu_;
int loss_;
bool lose_first_packet_;
bool damage_;
bool dtls_;
int handshake_wait_;
bool identities_set_;
};
class SSLStreamAdapterTestTLS
: public SSLStreamAdapterTestBase,
public WithParamInterface<tuple<rtc::KeyParams, rtc::KeyParams>> {
public:
SSLStreamAdapterTestTLS()
: SSLStreamAdapterTestBase("",
"",
false,
::testing::get<0>(GetParam()),
::testing::get<1>(GetParam())),
client_buffer_(kFifoBufferSize),
server_buffer_(kFifoBufferSize) {}
void CreateStreams() override {
client_stream_ =
new SSLDummyStreamTLS(this, "c2s", &client_buffer_, &server_buffer_);
server_stream_ =
new SSLDummyStreamTLS(this, "s2c", &server_buffer_, &client_buffer_);
}
// Test data transfer for TLS
void TestTransfer(int size) override {
RTC_LOG(LS_INFO) << "Starting transfer test with " << size << " bytes";
// Create some dummy data to send.
size_t received;
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, nullptr, nullptr);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Start sending
WriteData();
// Wait for the client to close
EXPECT_TRUE_WAIT(server_ssl_->GetState() == rtc::SS_CLOSED, 10000);
// Now check the data
recv_stream_.GetSize(&received);
EXPECT_EQ(static_cast<size_t>(size), received);
EXPECT_EQ(0,
memcmp(send_stream_.GetBuffer(), recv_stream_.GetBuffer(), size));
}
void WriteData() override {
size_t position, tosend, size;
rtc::StreamResult rv;
size_t sent;
char block[kBlockSize];
send_stream_.GetSize(&size);
if (!size)
return;
for (;;) {
send_stream_.GetPosition(&position);
if (send_stream_.Read(block, sizeof(block), &tosend, nullptr) !=
rtc::SR_EOS) {
rv = client_ssl_->Write(block, tosend, &sent, 0);
if (rv == rtc::SR_SUCCESS) {
send_stream_.SetPosition(position + sent);
RTC_LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else if (rv == rtc::SR_BLOCK) {
RTC_LOG(LS_VERBOSE) << "Blocked...";
send_stream_.SetPosition(position);
break;
} else {
ADD_FAILURE();
break;
}
} else {
// Now close
RTC_LOG(LS_INFO) << "Wrote " << position << " bytes. Closing";
client_ssl_->Close();
break;
}
}
}
void ReadData(rtc::StreamInterface* stream) override {
char buffer[1600];
size_t bread;
int err2;
rtc::StreamResult r;
for (;;) {
r = stream->Read(buffer, sizeof(buffer), &bread, &err2);
if (r == rtc::SR_ERROR || r == rtc::SR_EOS) {
// Unfortunately, errors are the way that the stream adapter
// signals close in OpenSSL.
stream->Close();
return;
}
if (r == rtc::SR_BLOCK)
break;
ASSERT_EQ(rtc::SR_SUCCESS, r);
RTC_LOG(LS_VERBOSE) << "Read " << bread;
recv_stream_.Write(buffer, bread, nullptr, nullptr);
}
}
private:
rtc::FifoBuffer client_buffer_;
rtc::FifoBuffer server_buffer_;
rtc::MemoryStream send_stream_;
rtc::MemoryStream recv_stream_;
};
class SSLStreamAdapterTestDTLSBase : public SSLStreamAdapterTestBase {
public:
SSLStreamAdapterTestDTLSBase(rtc::KeyParams param1, rtc::KeyParams param2)
: SSLStreamAdapterTestBase("", "", true, param1, param2),
client_buffer_(kBufferCapacity, kDefaultBufferSize),
server_buffer_(kBufferCapacity, kDefaultBufferSize),
packet_size_(1000),
count_(0),
sent_(0) {}
SSLStreamAdapterTestDTLSBase(const std::string& cert_pem,
const std::string& private_key_pem)
: SSLStreamAdapterTestBase(cert_pem, private_key_pem, true),
client_buffer_(kBufferCapacity, kDefaultBufferSize),
server_buffer_(kBufferCapacity, kDefaultBufferSize),
packet_size_(1000),
count_(0),
sent_(0) {}
void CreateStreams() override {
client_stream_ =
new SSLDummyStreamDTLS(this, "c2s", &client_buffer_, &server_buffer_);
server_stream_ =
new SSLDummyStreamDTLS(this, "s2c", &server_buffer_, &client_buffer_);
}
void WriteData() override {
unsigned char* packet = new unsigned char[1600];
while (sent_ < count_) {
unsigned int rand_state = sent_;
packet[0] = sent_;
for (size_t i = 1; i < packet_size_; i++) {
// This is a simple LC PRNG. Keep in synch with identical code below.
rand_state = (rand_state * 251 + 19937) >> 7;
packet[i] = rand_state & 0xff;
}
size_t sent;
rtc::StreamResult rv = client_ssl_->Write(packet, packet_size_, &sent, 0);
if (rv == rtc::SR_SUCCESS) {
RTC_LOG(LS_VERBOSE) << "Sent: " << sent_;
sent_++;
} else if (rv == rtc::SR_BLOCK) {
RTC_LOG(LS_VERBOSE) << "Blocked...";
break;
} else {
ADD_FAILURE();
break;
}
}
delete[] packet;
}
void ReadData(rtc::StreamInterface* stream) override {
unsigned char buffer[2000];
size_t bread;
int err2;
rtc::StreamResult r;
for (;;) {
r = stream->Read(buffer, 2000, &bread, &err2);
if (r == rtc::SR_ERROR) {
// Unfortunately, errors are the way that the stream adapter
// signals close right now
stream->Close();
return;
}
if (r == rtc::SR_BLOCK)
break;
ASSERT_EQ(rtc::SR_SUCCESS, r);
RTC_LOG(LS_VERBOSE) << "Read " << bread;
// Now parse the datagram
ASSERT_EQ(packet_size_, bread);
unsigned char packet_num = buffer[0];
unsigned int rand_state = packet_num;
for (size_t i = 1; i < packet_size_; i++) {
// This is a simple LC PRNG. Keep in synch with identical code above.
rand_state = (rand_state * 251 + 19937) >> 7;
ASSERT_EQ(rand_state & 0xff, buffer[i]);
}
received_.insert(packet_num);
}
}
void TestTransfer(int count) override {
count_ = count;
WriteData();
EXPECT_TRUE_WAIT(sent_ == count_, 10000);
RTC_LOG(LS_INFO) << "sent_ == " << sent_;
if (damage_) {
WAIT(false, 2000);
EXPECT_EQ(0U, received_.size());
} else if (loss_ == 0) {
EXPECT_EQ_WAIT(static_cast<size_t>(sent_), received_.size(), 1000);
} else {
RTC_LOG(LS_INFO) << "Sent " << sent_ << " packets; received "
<< received_.size();
}
}
protected:
BufferQueueStream client_buffer_;
BufferQueueStream server_buffer_;
private:
size_t packet_size_;
int count_;
int sent_;
std::set<int> received_;
};
class SSLStreamAdapterTestDTLS
: public SSLStreamAdapterTestDTLSBase,
public WithParamInterface<tuple<rtc::KeyParams, rtc::KeyParams>> {
public:
SSLStreamAdapterTestDTLS()
: SSLStreamAdapterTestDTLSBase(::testing::get<0>(GetParam()),
::testing::get<1>(GetParam())) {}
SSLStreamAdapterTestDTLS(const std::string& cert_pem,
const std::string& private_key_pem)
: SSLStreamAdapterTestDTLSBase(cert_pem, private_key_pem) {}
};
rtc::StreamResult SSLDummyStreamBase::Write(const void* data,
size_t data_len,
size_t* written,
int* error) {
RTC_LOG(LS_VERBOSE) << "Writing to loopback " << data_len;
if (first_packet_) {
first_packet_ = false;
if (test_base_->GetLoseFirstPacket()) {
RTC_LOG(LS_INFO) << "Losing initial packet of length " << data_len;
*written = data_len; // Fake successful writing also to writer.
return rtc::SR_SUCCESS;
}
}
return test_base_->DataWritten(this, data, data_len, written, error);
}
class SSLStreamAdapterTestDTLSFromPEMStrings : public SSLStreamAdapterTestDTLS {
public:
SSLStreamAdapterTestDTLSFromPEMStrings()
: SSLStreamAdapterTestDTLS(kCERT_PEM, kRSA_PRIVATE_KEY_PEM) {}
};
// Test fixture for certificate chaining. Server will push more than one
// certificate.
class SSLStreamAdapterTestDTLSCertChain : public SSLStreamAdapterTestDTLS {
public:
SSLStreamAdapterTestDTLSCertChain() : SSLStreamAdapterTestDTLS("", "") {}
void SetUp() override {
CreateStreams();
client_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(client_stream_));
server_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(server_stream_));
// Set up the slots
client_ssl_->SignalEvent.connect(
reinterpret_cast<SSLStreamAdapterTestBase*>(this),
&SSLStreamAdapterTestBase::OnEvent);
server_ssl_->SignalEvent.connect(
reinterpret_cast<SSLStreamAdapterTestBase*>(this),
&SSLStreamAdapterTestBase::OnEvent);
std::unique_ptr<rtc::SSLIdentity> client_identity;
if (!client_cert_pem_.empty() && !client_private_key_pem_.empty()) {
client_identity = rtc::SSLIdentity::CreateFromPEMStrings(
client_private_key_pem_, client_cert_pem_);
} else {
client_identity = rtc::SSLIdentity::Create("client", client_key_type_);
}
client_ssl_->SetIdentity(std::move(client_identity));
}
};
// Basic tests: TLS
// Test that we can make a handshake work
TEST_P(SSLStreamAdapterTestTLS, TestTLSConnect) {
TestHandshake();
}
TEST_P(SSLStreamAdapterTestTLS, GetPeerCertChainWithOneCertificate) {
TestHandshake();
std::unique_ptr<rtc::SSLCertChain> cert_chain =
client_ssl_->GetPeerSSLCertChain();
ASSERT_NE(nullptr, cert_chain);
EXPECT_EQ(1u, cert_chain->GetSize());
EXPECT_EQ(cert_chain->Get(0).ToPEMString(),
server_identity()->certificate().ToPEMString());
}
TEST_F(SSLStreamAdapterTestDTLSCertChain, TwoCertHandshake) {
auto server_identity = rtc::SSLIdentity::CreateFromPEMChainStrings(
kRSA_PRIVATE_KEY_PEM, std::string(kCERT_PEM) + kCACert);
server_ssl_->SetIdentity(std::move(server_identity));
TestHandshake();
std::unique_ptr<rtc::SSLCertChain> peer_cert_chain =
client_ssl_->GetPeerSSLCertChain();
ASSERT_NE(nullptr, peer_cert_chain);
ASSERT_EQ(2u, peer_cert_chain->GetSize());
EXPECT_EQ(kCERT_PEM, peer_cert_chain->Get(0).ToPEMString());
EXPECT_EQ(kCACert, peer_cert_chain->Get(1).ToPEMString());
}
TEST_F(SSLStreamAdapterTestDTLSCertChain, TwoCertHandshakeWithCopy) {
server_ssl_->SetIdentity(rtc::SSLIdentity::CreateFromPEMChainStrings(
kRSA_PRIVATE_KEY_PEM, std::string(kCERT_PEM) + kCACert));
TestHandshake();
std::unique_ptr<rtc::SSLCertChain> peer_cert_chain =
client_ssl_->GetPeerSSLCertChain();
ASSERT_NE(nullptr, peer_cert_chain);
ASSERT_EQ(2u, peer_cert_chain->GetSize());
EXPECT_EQ(kCERT_PEM, peer_cert_chain->Get(0).ToPEMString());
EXPECT_EQ(kCACert, peer_cert_chain->Get(1).ToPEMString());
}
TEST_F(SSLStreamAdapterTestDTLSCertChain, ThreeCertHandshake) {
server_ssl_->SetIdentity(rtc::SSLIdentity::CreateFromPEMChainStrings(
kRSA_PRIVATE_KEY_PEM, std::string(kCERT_PEM) + kIntCert1 + kCACert));
TestHandshake();
std::unique_ptr<rtc::SSLCertChain> peer_cert_chain =
client_ssl_->GetPeerSSLCertChain();
ASSERT_NE(nullptr, peer_cert_chain);
ASSERT_EQ(3u, peer_cert_chain->GetSize());
EXPECT_EQ(kCERT_PEM, peer_cert_chain->Get(0).ToPEMString());
EXPECT_EQ(kIntCert1, peer_cert_chain->Get(1).ToPEMString());
EXPECT_EQ(kCACert, peer_cert_chain->Get(2).ToPEMString());
}
// Test that closing the connection on one side updates the other side.
TEST_P(SSLStreamAdapterTestTLS, TestTLSClose) {
TestHandshake();
client_ssl_->Close();
EXPECT_EQ_WAIT(rtc::SS_CLOSED, server_ssl_->GetState(), handshake_wait_);
}
// Test transfer -- trivial
TEST_P(SSLStreamAdapterTestTLS, TestTLSTransfer) {
TestHandshake();
TestTransfer(100000);
}
// Test read-write after close.
TEST_P(SSLStreamAdapterTestTLS, ReadWriteAfterClose) {
TestHandshake();
TestTransfer(100000);
client_ssl_->Close();
rtc::StreamResult rv;
char block[kBlockSize];
size_t dummy;
// It's an error to write after closed.
rv = client_ssl_->Write(block, sizeof(block), &dummy, nullptr);
ASSERT_EQ(rtc::SR_ERROR, rv);
// But after closed read gives you EOS.
rv = client_ssl_->Read(block, sizeof(block), &dummy, nullptr);
ASSERT_EQ(rtc::SR_EOS, rv);
}
// Test a handshake with a bogus peer digest
TEST_P(SSLStreamAdapterTestTLS, TestTLSBogusDigest) {
SetPeerIdentitiesByDigest(false, true);
TestHandshake(false);
}
TEST_P(SSLStreamAdapterTestTLS, TestTLSDelayedIdentity) {
TestHandshakeWithDelayedIdentity(true);
}
TEST_P(SSLStreamAdapterTestTLS, TestTLSDelayedIdentityWithBogusDigest) {
TestHandshakeWithDelayedIdentity(false);
}
// Test that the correct error is returned when SetPeerCertificateDigest is
// called with an unknown algorithm.
TEST_P(SSLStreamAdapterTestTLS,
TestSetPeerCertificateDigestWithUnknownAlgorithm) {
unsigned char server_digest[20];
size_t server_digest_len;
bool rv;
rtc::SSLPeerCertificateDigestError err;
rv = server_identity()->certificate().ComputeDigest(
rtc::DIGEST_SHA_1, server_digest, 20, &server_digest_len);
ASSERT_TRUE(rv);
rv = client_ssl_->SetPeerCertificateDigest("unknown algorithm", server_digest,
server_digest_len, &err);
EXPECT_EQ(rtc::SSLPeerCertificateDigestError::UNKNOWN_ALGORITHM, err);
EXPECT_FALSE(rv);
}
// Test that the correct error is returned when SetPeerCertificateDigest is
// called with an invalid digest length.
TEST_P(SSLStreamAdapterTestTLS, TestSetPeerCertificateDigestWithInvalidLength) {
unsigned char server_digest[20];
size_t server_digest_len;
bool rv;
rtc::SSLPeerCertificateDigestError err;
rv = server_identity()->certificate().ComputeDigest(
rtc::DIGEST_SHA_1, server_digest, 20, &server_digest_len);
ASSERT_TRUE(rv);
rv = client_ssl_->SetPeerCertificateDigest(rtc::DIGEST_SHA_1, server_digest,
server_digest_len - 1, &err);
EXPECT_EQ(rtc::SSLPeerCertificateDigestError::INVALID_LENGTH, err);
EXPECT_FALSE(rv);
}
// Test moving a bunch of data
// Basic tests: DTLS
// Test that we can make a handshake work
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSConnect) {
TestHandshake();
}
// Test that we can make a handshake work if the first packet in
// each direction is lost. This gives us predictable loss
// rather than having to tune random
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSConnectWithLostFirstPacket) {
SetLoseFirstPacket(true);
TestHandshake();
}
// Test a handshake with loss and delay
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSConnectWithLostFirstPacketDelay2s) {
SetLoseFirstPacket(true);
SetDelay(2000);
SetHandshakeWait(20000);
TestHandshake();
}
// Test a handshake with small MTU
// Disabled due to https://code.google.com/p/webrtc/issues/detail?id=3910
TEST_P(SSLStreamAdapterTestDTLS, DISABLED_TestDTLSConnectWithSmallMtu) {
SetMtu(700);
SetHandshakeWait(20000);
TestHandshake();
}
// Test transfer -- trivial
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSTransfer) {
TestHandshake();
TestTransfer(100);
}
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSTransferWithLoss) {
TestHandshake();
SetLoss(10);
TestTransfer(100);
}
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSTransferWithDamage) {
SetDamage(); // Must be called first because first packet
// write happens at end of handshake.
TestHandshake();
TestTransfer(100);
}
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSDelayedIdentity) {
TestHandshakeWithDelayedIdentity(true);
}
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSDelayedIdentityWithBogusDigest) {
TestHandshakeWithDelayedIdentity(false);
}
// Test DTLS-SRTP with all high ciphers
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpHigh) {
std::vector<int> high;
high.push_back(rtc::SRTP_AES128_CM_SHA1_80);
SetDtlsSrtpCryptoSuites(high, true);
SetDtlsSrtpCryptoSuites(high, false);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, rtc::SRTP_AES128_CM_SHA1_80);
}
// Test DTLS-SRTP with all low ciphers
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpLow) {
std::vector<int> low;
low.push_back(rtc::SRTP_AES128_CM_SHA1_32);
SetDtlsSrtpCryptoSuites(low, true);
SetDtlsSrtpCryptoSuites(low, false);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, rtc::SRTP_AES128_CM_SHA1_32);
}
// Test DTLS-SRTP with a mismatch -- should not converge
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpHighLow) {
std::vector<int> high;
high.push_back(rtc::SRTP_AES128_CM_SHA1_80);
std::vector<int> low;
low.push_back(rtc::SRTP_AES128_CM_SHA1_32);
SetDtlsSrtpCryptoSuites(high, true);
SetDtlsSrtpCryptoSuites(low, false);
TestHandshake();
int client_cipher;
ASSERT_FALSE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_FALSE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
}
// Test DTLS-SRTP with each side being mixed -- should select high
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpMixed) {
std::vector<int> mixed;
mixed.push_back(rtc::SRTP_AES128_CM_SHA1_80);
mixed.push_back(rtc::SRTP_AES128_CM_SHA1_32);
SetDtlsSrtpCryptoSuites(mixed, true);
SetDtlsSrtpCryptoSuites(mixed, false);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, rtc::SRTP_AES128_CM_SHA1_80);
}
// Test DTLS-SRTP with all GCM-128 ciphers.
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpGCM128) {
std::vector<int> gcm128;
gcm128.push_back(rtc::SRTP_AEAD_AES_128_GCM);
SetDtlsSrtpCryptoSuites(gcm128, true);
SetDtlsSrtpCryptoSuites(gcm128, false);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, rtc::SRTP_AEAD_AES_128_GCM);
}
// Test DTLS-SRTP with all GCM-256 ciphers.
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpGCM256) {
std::vector<int> gcm256;
gcm256.push_back(rtc::SRTP_AEAD_AES_256_GCM);
SetDtlsSrtpCryptoSuites(gcm256, true);
SetDtlsSrtpCryptoSuites(gcm256, false);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, rtc::SRTP_AEAD_AES_256_GCM);
}
// Test DTLS-SRTP with mixed GCM-128/-256 ciphers -- should not converge.
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpGCMMismatch) {
std::vector<int> gcm128;
gcm128.push_back(rtc::SRTP_AEAD_AES_128_GCM);
std::vector<int> gcm256;
gcm256.push_back(rtc::SRTP_AEAD_AES_256_GCM);
SetDtlsSrtpCryptoSuites(gcm128, true);
SetDtlsSrtpCryptoSuites(gcm256, false);
TestHandshake();
int client_cipher;
ASSERT_FALSE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_FALSE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
}
// Test DTLS-SRTP with both GCM-128/-256 ciphers -- should select GCM-256.
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpGCMMixed) {
std::vector<int> gcmBoth;
gcmBoth.push_back(rtc::SRTP_AEAD_AES_256_GCM);
gcmBoth.push_back(rtc::SRTP_AEAD_AES_128_GCM);
SetDtlsSrtpCryptoSuites(gcmBoth, true);
SetDtlsSrtpCryptoSuites(gcmBoth, false);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetDtlsSrtpCryptoSuite(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, rtc::SRTP_AEAD_AES_256_GCM);
}
// Test SRTP cipher suite lengths.
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSSrtpKeyAndSaltLengths) {
int key_len;
int salt_len;
ASSERT_FALSE(rtc::GetSrtpKeyAndSaltLengths(rtc::SRTP_INVALID_CRYPTO_SUITE,
&key_len, &salt_len));
ASSERT_TRUE(rtc::GetSrtpKeyAndSaltLengths(rtc::SRTP_AES128_CM_SHA1_32,
&key_len, &salt_len));
ASSERT_EQ(128 / 8, key_len);
ASSERT_EQ(112 / 8, salt_len);
ASSERT_TRUE(rtc::GetSrtpKeyAndSaltLengths(rtc::SRTP_AES128_CM_SHA1_80,
&key_len, &salt_len));
ASSERT_EQ(128 / 8, key_len);
ASSERT_EQ(112 / 8, salt_len);
ASSERT_TRUE(rtc::GetSrtpKeyAndSaltLengths(rtc::SRTP_AEAD_AES_128_GCM,
&key_len, &salt_len));
ASSERT_EQ(128 / 8, key_len);
ASSERT_EQ(96 / 8, salt_len);
ASSERT_TRUE(rtc::GetSrtpKeyAndSaltLengths(rtc::SRTP_AEAD_AES_256_GCM,
&key_len, &salt_len));
ASSERT_EQ(256 / 8, key_len);
ASSERT_EQ(96 / 8, salt_len);
}
// Test an exporter
TEST_P(SSLStreamAdapterTestDTLS, TestDTLSExporter) {
TestHandshake();
unsigned char client_out[20];
unsigned char server_out[20];
bool result;
result = ExportKeyingMaterial(kExporterLabel, kExporterContext,
kExporterContextLen, true, true, client_out,
sizeof(client_out));
ASSERT_TRUE(result);
result = ExportKeyingMaterial(kExporterLabel, kExporterContext,
kExporterContextLen, true, false, server_out,
sizeof(server_out));
ASSERT_TRUE(result);
ASSERT_TRUE(!memcmp(client_out, server_out, sizeof(client_out)));
}
// Test not yet valid certificates are not rejected.
TEST_P(SSLStreamAdapterTestDTLS, TestCertNotYetValid) {
long one_day = 60 * 60 * 24;
// Make the certificates not valid until one day later.
ResetIdentitiesWithValidity(one_day, one_day);
TestHandshake();
}
// Test expired certificates are not rejected.
TEST_P(SSLStreamAdapterTestDTLS, TestCertExpired) {
long one_day = 60 * 60 * 24;
// Make the certificates already expired.
ResetIdentitiesWithValidity(-one_day, -one_day);
TestHandshake();
}
// Test data transfer using certs created from strings.
TEST_F(SSLStreamAdapterTestDTLSFromPEMStrings, TestTransfer) {
TestHandshake();
TestTransfer(100);
}
// Test getting the remote certificate.
TEST_F(SSLStreamAdapterTestDTLSFromPEMStrings, TestDTLSGetPeerCertificate) {
// Peer certificates haven't been received yet.
ASSERT_FALSE(GetPeerCertificate(true));
ASSERT_FALSE(GetPeerCertificate(false));
TestHandshake();
// The client should have a peer certificate after the handshake.
std::unique_ptr<rtc::SSLCertificate> client_peer_cert =
GetPeerCertificate(true);
ASSERT_TRUE(client_peer_cert);
// It's not kCERT_PEM.
std::string client_peer_string = client_peer_cert->ToPEMString();
ASSERT_NE(kCERT_PEM, client_peer_string);
// The server should have a peer certificate after the handshake.
std::unique_ptr<rtc::SSLCertificate> server_peer_cert =
GetPeerCertificate(false);
ASSERT_TRUE(server_peer_cert);
// It's kCERT_PEM
ASSERT_EQ(kCERT_PEM, server_peer_cert->ToPEMString());
}
// Test getting the used DTLS 1.2 ciphers.
// DTLS 1.2 enabled for client and server -> DTLS 1.2 will be used.
TEST_P(SSLStreamAdapterTestDTLS, TestGetSslCipherSuiteDtls12Both) {
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_12);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetSslCipherSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetSslCipherSuite(false, &server_cipher));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_12, GetSslVersion(true));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_12, GetSslVersion(false));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_TRUE(rtc::SSLStreamAdapter::IsAcceptableCipher(
server_cipher, ::testing::get<1>(GetParam()).type()));
}
// Test getting the used DTLS ciphers.
// DTLS 1.2 is max version for client and server.
TEST_P(SSLStreamAdapterTestDTLS, TestGetSslCipherSuite) {
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_12);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetSslCipherSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetSslCipherSuite(false, &server_cipher));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_12, GetSslVersion(true));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_12, GetSslVersion(false));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_TRUE(rtc::SSLStreamAdapter::IsAcceptableCipher(
server_cipher, ::testing::get<1>(GetParam()).type()));
}
// The RSA keysizes here might look strange, why not include the RFC's size
// 2048?. The reason is test case slowness; testing two sizes to exercise
// parametrization is sufficient.
INSTANTIATE_TEST_SUITE_P(
SSLStreamAdapterTestsTLS,
SSLStreamAdapterTestTLS,
Combine(Values(rtc::KeyParams::RSA(1024, 65537),
rtc::KeyParams::RSA(1152, 65537),
rtc::KeyParams::ECDSA(rtc::EC_NIST_P256)),
Values(rtc::KeyParams::RSA(1024, 65537),
rtc::KeyParams::RSA(1152, 65537),
rtc::KeyParams::ECDSA(rtc::EC_NIST_P256))));
INSTANTIATE_TEST_SUITE_P(
SSLStreamAdapterTestsDTLS,
SSLStreamAdapterTestDTLS,
Combine(Values(rtc::KeyParams::RSA(1024, 65537),
rtc::KeyParams::RSA(1152, 65537),
rtc::KeyParams::ECDSA(rtc::EC_NIST_P256)),
Values(rtc::KeyParams::RSA(1024, 65537),
rtc::KeyParams::RSA(1152, 65537),
rtc::KeyParams::ECDSA(rtc::EC_NIST_P256))));
// Tests for enabling / disabling legacy TLS protocols in DTLS.
class SSLStreamAdapterTestDTLSLegacyProtocols
: public SSLStreamAdapterTestDTLSBase {
public:
SSLStreamAdapterTestDTLSLegacyProtocols()
: SSLStreamAdapterTestDTLSBase(rtc::KeyParams::ECDSA(rtc::EC_NIST_P256),
rtc::KeyParams::ECDSA(rtc::EC_NIST_P256)) {
}
// Do not use the SetUp version from the parent class.
void SetUp() override {}
// The legacy TLS protocols flag is read when the OpenSSLStreamAdapter is
// initialized, so we set the experiment while creationg client_ssl_
// and server_ssl_.
void ConfigureClient(std::string experiment) {
webrtc::test::ScopedFieldTrials trial(experiment);
client_stream_ =
new SSLDummyStreamDTLS(this, "c2s", &client_buffer_, &server_buffer_);
client_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(client_stream_));
client_ssl_->SignalEvent.connect(
static_cast<SSLStreamAdapterTestBase*>(this),
&SSLStreamAdapterTestBase::OnEvent);
auto client_identity = rtc::SSLIdentity::Create("client", client_key_type_);
client_ssl_->SetIdentity(std::move(client_identity));
}
void ConfigureServer(std::string experiment) {
webrtc::test::ScopedFieldTrials trial(experiment);
server_stream_ =
new SSLDummyStreamDTLS(this, "s2c", &server_buffer_, &client_buffer_);
server_ssl_ =
rtc::SSLStreamAdapter::Create(absl::WrapUnique(server_stream_));
server_ssl_->SignalEvent.connect(
static_cast<SSLStreamAdapterTestBase*>(this),
&SSLStreamAdapterTestBase::OnEvent);
server_ssl_->SetIdentity(
rtc::SSLIdentity::Create("server", server_key_type_));
}
};
// Test getting the used DTLS ciphers.
// DTLS 1.2 enabled for neither client nor server -> DTLS 1.0 will be used.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols, TestGetSslCipherSuite) {
ConfigureClient("WebRTC-LegacyTlsProtocols/Enabled/");
ConfigureServer("WebRTC-LegacyTlsProtocols/Enabled/");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetSslCipherSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetSslCipherSuite(false, &server_cipher));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_10, GetSslVersion(true));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_10, GetSslVersion(false));
ASSERT_EQ(client_cipher, server_cipher);
}
// Test getting the used DTLS 1.2 ciphers.
// DTLS 1.2 enabled for client and server -> DTLS 1.2 will be used.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslCipherSuiteDtls12Both) {
ConfigureClient("");
ConfigureServer("");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_12);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetSslCipherSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetSslCipherSuite(false, &server_cipher));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_12, GetSslVersion(true));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_12, GetSslVersion(false));
ASSERT_EQ(client_cipher, server_cipher);
}
// DTLS 1.2 enabled for client only -> DTLS 1.0 will be used.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslCipherSuiteDtls12Client) {
ConfigureClient("WebRTC-LegacyTlsProtocols/Enabled/");
ConfigureServer("WebRTC-LegacyTlsProtocols/Enabled/");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_12);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetSslCipherSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetSslCipherSuite(false, &server_cipher));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_10, GetSslVersion(true));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_10, GetSslVersion(false));
ASSERT_EQ(client_cipher, server_cipher);
}
// DTLS 1.2 enabled for server only -> DTLS 1.0 will be used.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslCipherSuiteDtls12Server) {
ConfigureClient("WebRTC-LegacyTlsProtocols/Enabled/");
ConfigureServer("WebRTC-LegacyTlsProtocols/Enabled/");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_10);
TestHandshake();
int client_cipher;
ASSERT_TRUE(GetSslCipherSuite(true, &client_cipher));
int server_cipher;
ASSERT_TRUE(GetSslCipherSuite(false, &server_cipher));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_10, GetSslVersion(true));
ASSERT_EQ(rtc::SSL_PROTOCOL_DTLS_10, GetSslVersion(false));
ASSERT_EQ(client_cipher, server_cipher);
}
// Client has legacy TLS versions disabled, server has DTLS 1.0 only.
// This is meant to cause a failure.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslVersionLegacyDisabledServer10) {
ConfigureClient("");
ConfigureServer("WebRTC-LegacyTlsProtocols/Enabled/");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_12);
// Handshake should fail.
TestHandshake(false);
}
// Both client and server have legacy TLS versions disabled and support
// DTLS 1.2. This should work.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslVersionLegacyDisabledServer12) {
ConfigureClient("");
ConfigureServer("");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_12);
TestHandshake();
}
// Both client and server have legacy TLS versions enabled and support DTLS 1.0.
// This should work.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslVersionLegacyEnabledClient10Server10) {
ConfigureClient("WebRTC-LegacyTlsProtocols/Enabled/");
ConfigureServer("WebRTC-LegacyTlsProtocols/Enabled/");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10);
TestHandshake();
}
// Legacy protocols are disabled in the client, max TLS version is 1.0
// This should be a configuration error, and handshake should fail.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslVersionLegacyDisabledClient10Server10) {
ConfigureClient("");
ConfigureServer("WebRTC-LegacyTlsProtocols/Enabled/");
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10);
TestHandshake(false);
}
// Both client and server have legacy TLS versions enabled and support DTLS 1.0.
// This should work.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslVersionLegacyOverrideEnabledClient10Server10) {
rtc::SetAllowLegacyTLSProtocols(true);
ConfigureClient("");
ConfigureServer("");
// Remove override.
rtc::SetAllowLegacyTLSProtocols(absl::nullopt);
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10);
TestHandshake();
}
// Client has legacy TLS disabled and server has legacy TLS enabled via
// override. Handshake for DTLS 1.0 should fail.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslVersionLegacyOverrideDisabledClient10EnabledServer10) {
rtc::SetAllowLegacyTLSProtocols(false);
ConfigureClient("");
rtc::SetAllowLegacyTLSProtocols(true);
ConfigureServer("");
// Remove override.
rtc::SetAllowLegacyTLSProtocols(absl::nullopt);
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10);
TestHandshake(false);
}
// Client has legacy TLS enabled and server has legacy TLS disabled via
// override. Handshake for DTLS 1.0 should fail.
TEST_F(SSLStreamAdapterTestDTLSLegacyProtocols,
TestGetSslVersionLegacyOverrideEnabledClient10DisabledServer10) {
rtc::SetAllowLegacyTLSProtocols(true);
ConfigureClient("");
rtc::SetAllowLegacyTLSProtocols(false);
ConfigureServer("");
// Remove override.
rtc::SetAllowLegacyTLSProtocols(absl::nullopt);
SetupProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10);
TestHandshake(false);
}